2014-2015学年下学期高一下学期数学期末联考试卷
- 格式:doc
- 大小:1018.50 KB
- 文档页数:6
2014-2015学年度下期期末联考(本卷共4页,满分150分,考试时间120分钟)1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题的答案标号涂黑。
若需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束,将试题卷和答题卡一并交回。
.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,.等比数列{}n a 中,44=a ,则35a a = A.20B. 16C.15D.10如果,,a b R ∈且a b >,那么下列不等式中不一定...成立的是 A .a b -<- B. 12a b ->- C. ab a >2D. a b b a ->-在ABC ∆中,若45A =°,60B =°,2a =.则b = A.6下列事件是随机事件的是1)连续两次掷一枚硬币,两次都出现正面向上. (2)异性电荷相互吸引 3)在标准大气压下,水在1℃时结冰 (4)任意掷一枚骰子朝上的点数是偶数 A.(1)(2) B. (2)(3) C.(3)(4) D. (1)(4) ABC ∆中,2,3,60,b c A ===︒则a =36. 变量y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-,0,0,02x y x y x ,目标函数y x z +=2,则z 的最小值是A .21-B .0C .1D .1-7.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a = A .4- B. 6- C.8- D.10-8.执行如图所示的程序框图,若输出的S =88,则判断框内应填入的条件是 A .?7>k B .?6>k C .?5>kD .?4>k9.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如下图),21,s s 分别表示甲、乙选手的标准差,则1s 与2s 的关系是 A. 21s s < B . 21s s = C. 21s s > D. 不能确定10.在数列{}n a 中,4,3211-==+n n a a a ,则数列{}n a 的前n 项和n s 的最大值是 A. 136 B. 140 C. 144 D. 148 11. 下列说法正确的是 A.函数x x y 2+=的最小值为 B.函数)0(sin 2sin π<<+=x xx y的最小值为 C.函数xx y 2+=的最小值为函数x x y lg 2lg +=的最小值为12.在钝角三角形ABC 中,若45B =°,a =c 的取值范围是A.(B.()()0,12,+∞ C.()1,2 D.),2()1,0(+∞二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置上.13. 不等式()()120x x -+<的解集是 .14.程序:M=1 M=M+1 M=M+2 PRINT M END M 的最后输出值为甲 乙8 7 6 75 4 1 8 0 2 9 4 315. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8.若用分层抽样从中抽取6个城市,则丙组中应抽取的城市数为________.16. 函数)0,1(1)3(log >≠-+=a a x y a 的图象恒过定点A ,若点A 在直线01=++ny mx 上,其中0,0>>n m ,则nm 21+的最小值为 . 三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 在等差数列{}n a 中,11760,12.a a =-=- (Ⅰ)求通项n a ;(Ⅱ)求此数列前30项的绝对值的和.18.(本小题满分12分)设ABC ∆的内角C B A ,,所对应的边长分别是,,,a b c 且3cos , 2.5B b == (Ⅰ)当︒=30A 时,求a 的值;(Ⅱ)当ABC ∆的面积为3时,求c a +的值.19. (本小题满分12分)某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图; (Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm ,试求这批球的直径误差不超过[39.97,39.99)0.03 mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20. (本小题满分12分)已知1)1()(2++-=x aa x x f . (Ⅰ)当21=a 时,解不等式()0f x ≥; (Ⅱ)若0>a ,解关于x 的不等式0)(≤x f .21. (本小题满分12分) 设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且c a C b 21cos -=. (Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.22. (本题满分10分)已知数列{}n a 和{}n b 中,数列{}n a 的前n 项和为,n s 若点),(n s n 在函数x x y 142+-=的图象上,点),(n b n 在函数x a y =的图象上.设数列{}=n c {}n n b a .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n c 的前n 项和n T ; (Ⅲ)求数列{}n c 的最大值.重庆市部分区县2014—2015学年度下期期末联考 高一数学参考答案一、选择题:(每小题5分,共60分)。
韶关市2014-2015学年第二学期末检测高一数学试题说明:本试卷分第Ⅰ卷和第Ⅱ卷(解答题)两部分,满分150分,考试时间120分钟. 注意事项:1.答第I 卷前,考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔或圆珠笔、签字笔写在答卷上。
2.第I 卷每小题得出答案后,请将答案填写在答题卷相应表格指定位置上。
参考公式: 锥体体积公式: 13V sh =,s 是锥体底面积, h 是锥体的高.一、本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合}21|{≤≤-=x x A ,}40|{≤≤=x x B ,则A ∪B=( ) A .[0,2] B .[1,2] C .[0,4] D .[-1,4] 2. 已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( ) A. (4,6)-- B. (4,6) C. (2,2)-- D.(2,2) 3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是( )A .12log y x = B .1y x = C .3y x = D .tan y x =4. 要得到函数cos(2)3y x π=+的图像,只要将函数cos 2y x =的图像( ) A . 向左平移3π个单位 B .向右平移3π个单位 C . 向左平移6π个单位 D .向右平移6π个单位5. 如右图1,程序框图的运算结果为( ) A .6B .24C .20D .1206.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图2所示,该四棱锥的侧面积是( )B.8C.D. 1) 7. 根据如下样本数据图1图2可得到的回归方程为y bx a ∧=+,则( ) A.0,0a b ><B.0,0a b >>C.0,0a b <<D.0,0a b <>8. 在区间[3,3]-上随机取一个实数a , 能使函数2()21f x x x a =++-在R 上有零点的概率为( )A.16B.13C.12 D.569. 使sin cos x x <成立的一个区间是( ) A.3(,)44ππ- B. 1(,)22ππ- C. 13(,)44ππ- D. (0,)π 10. 对任意的实数k ,直线1y kx =+与圆222xy +=的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心 11. 在ABC ∆中,已知53cos =A ,2tan =B ,则C cos 的值为( ) A.25511 B.55C. 55-D. 12. 四边形ABCD 是正方形,延长CD 至E ,使得DE=CD.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中AP AB AE λμ=+,下列判断正确..的是 A.满足2λμ+=的点P 必为BC 的中点B.满足1λμ+=的点P 有且只有一个C.λμ+的最大值为3D.λμ+的最小值不存在图3图4二.填空题(本大题共4小题,每小题5分,满分20分). 13. 过点(1,0)且与直线220x y --=平行的直线方程是_________.14.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100 根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标), 所得数据均在区间[5,40]中,其频率分布直方图如图所示,则 在抽测的100根中,有_____________根棉花纤维的长度小于15mm. 15. 若33cos(),(,)252ππααπ+=∈,则=α2tan 16. 过已知直线:1l y x =+上的一点作圆22:(2)(1)1C x y -+-=切线,切线长的最小值为___________.2014-2015学年第二学期末检测高一数学试题一.选择题答卷:二、填空题答卷:13.____________________. 14.__________________________. 15.____________________.16.__________________________.三.解答题(本大题共6题,满分70分,解答应写出文字说明.证明过程或演算步骤). 17.(本小题满分10分) 已知函数)32sin()(π-=x a x f ,且3)2(=πf .)1(求函数()f x 的最大值以及取得最大值时x 的集合; )2(求函数)(x f 的最小正周期和单调递增区间.图518.(本小题满分12分)韶关某中学高一(19)班的排球队和篮球队各有10名同学,现测得排球队10人的的身高(单位:cm)分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm)分别是:170、159、162、173、181、165、176、168、178、179.(Ⅰ)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算,只需简单说明理由);(Ⅱ)现从两队所有身高超过178cm的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率为多小?图619. (本小题满分12分)已知向量(1,2)a =,(2,)b x =-. (Ⅰ)当a b ⊥时,求x 的值;(Ⅱ)若向量a 与(4)a b +的夹角是锐角,,求||b 的取值范围.DB20.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为矩形,侧棱PA 垂直平面A B C D ,1,2ADPA AB ===,E F 分别为棱,AD PC 的中点. (Ⅰ)证明://EF 平面PAB; (Ⅱ) 证明:EF ⊥平面PBC; (Ⅲ) 求三棱锥C BEF -的体积.21. (本小题满分12分)圆心在直线:10l x y ++=上的圆C 经过点(1,2),(1,0)A B -;(I )若过点(0,3)D 的直线1l 被圆C 截得的弦长为1l 的方程;(II )在x 轴上是否存在定点M ,使得圆C 上任意一点P 到点O (O 为坐标原点)的距离与到点M 的距离之比为常数,如果存在,求出点M 的坐标并求出这个常数;如果不存在请说明理由.22. (本小题满分12分)设函数)x (f y =是定义在(0,)+∞上的函数,并且满足下面三个条件:(1)对任意正数y x 、,都有)()()(y f x f xy f +=;(2)当1x >时,0)(<x f ;(3)1)3(f -=, (I )求)1(f 、)91(f 的值;(II )若不等式2)x 2(f )x (f <-+成立,求x 的取值范围.(III )若存在正数k ,使得不等式2)x 2(f )kx (f <-+有解,求正数k 的取值范围.2014-2015学年第二学期末检测试高一数学参考解答和评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题:,DCBCB CADAC BC 部分题目解析:2.(1,2)(3,4)(-2,2)CB AB AC =-=-=-,选C4.将cos 2y x =图象左移6π,得到cos 2()cos(2)63y x x ππ=+=+,选C5. 由图分析可知,本程序是计算4321⨯⨯⨯的值,即结果为24,故选B.6.由图知,此棱锥高为2,底面正方形的边长为2,侧面积需要计算侧面三角形的高51222=+=h ,5452214=⎪⎭⎫⎝⎛⨯⨯⨯=侧S .选C.7. 解析:画出散点图如图所示,y 的值大致随x 的增加而减小,所以b<0,a>0. 选A.8. 解析:0∆≥,得2a ≤, 又[3,3]a ∈-,所以所求概率56p =选D 9. 解析:同一坐标系中作出sin ,cos ,[,]yx y x x ππ==∈- 图象可知,选A10. 解析:方法一(代数比较):圆心00(,)到直线1y kx =+ 距离1d =≤<直线与圆相交,又圆心00(,)不在直线上,所以直线与圆相交但直线不过圆心;方法二(几何定点):动直线1y kx =+恒过定点0(,1),而点 0(,1)在圆222x y +=内部,则动直线1y kx =+与圆总会相交, 又圆心00(,)不在直线上,所以直线与圆相交但直线不过圆心. 选C11. 在ABC ∆中,已知54sin 53cos =⇒=A A ,tan 2((0,))B B π=∈sin BB ⇒==cos cos()C A B=-+= 34cos cos sin sin 555A B A B -+=-+==选B 12.解析: 由题意可知, 0,0u λ≥≥,当0u λ==时,u λ+最小值为0,此时,点P 与点A 重合,D 不对;当1,1u λ==时, 点P 也可以在D 处,故A 不对;当1,0u λ==时,1u λ+=P 在B 处,当P 在线段AD 中点时,12u λ==,有1u λ+=,故B 错误.所以选C 另解:如图建立坐标系,(0,0),(1,0),(1,1),(0,1),(1,1)A B C D E - 设(,)P t m , 则(,)AP t m =,(1,0)AB =,(1,1)AE =-AP AB AE λμ=+ 得: =2t m λμ++, 若=2λμ+,则2=2t m +,11,2t m ==,P 是BC 中点,0,1t m ==,P 与D 不对;若=1λμ+,方程2=t m +1解不唯一,故B 错误,由题意可知, 0,0u λ≥≥,当0u λ==时,u λ+最小值为0,此时,点P 与点A 重合,D 不对,所以选C二、填空题:部分题目解析:15. 解析:54cos )23,(,53sin -=⇒∈-=αππαα 724)43(1432tan 1tan 22tan 43tan 22=-⨯=-=⇒=αααα 16.方法一(函数建模求最值):设直线1y x =+上一点,1)Pt t +(,则切线长 2222(2)(11)1d t t =-++--222432(1)11t t t =-+=-+≥;方法二(几何定义求最值): 由切线长PH =PC 最短,而直线与圆相离,圆心C 到直线:1l y x =+上一点P 的最小距离就是点C 到直线:1l y x =+的距离d ==,则有最小值1。
答案一、CDABA BACDCDA 13、57-14、3/10 15、017、)4sin(π+x 18、3- 19、解:(1)由条件1OA =,AON θ∠=cos OC θ∴=,sin AC θ= ……2分1sin cos sin 22S θθθ∴== ……4分其中02πθ<< ……6分(2) 02πθ<<,02θπ∴<< ……8分故当22πθ=,即4πθ=时,……10分max 12S =. ……12分20、解:(1) 这二十五个数据的中位数是397.……4分 (2)品种A 亩产量的频率分布表如下:………………………8分(3)品种A 亩产量的频率分布直方图如下:0.0.0.0.0.0.0.0.………12分21、解:(1)由图象知:4()24T πππ=-=,则:22Tπω==,…………2分 由(0)1f =-得:sin 1ϕ=-,即:()2k k z πϕπ=-∈,……………4分∵||ϕπ< ∴ 2πϕ=-。
………………………………6分(2)由(1)知:()sin(2)cos 22f x x x π=-=-,……………………7分∴g()()()1cos )[cos()]12284xx x f x x ππ=--=----2[sin )]12cos 2sin cos 12x x x x x x =+-=+-cos 2sin 2)4x x x π=+=+,………………………10分当[0,]2x π∈时,52[,]444x πππ+∈,则sin(2)[,1]42x π+∈-,∴()g x 的值域为[-。
………………………………………12分22、解:(1)设(14,)P y ,则(14,),(8,3)OP y PB y ==---, ……………1分 由OP PB λ=,得(14,)(8,3)y y λ=---, …………2分 解得7,74y λ=-=-,所以点(14,7)P -。
2014-2015学年某某省佛山南海一中高一(下)期末数学复习试卷一、选择题(共12小题,每小题3分,满分36分)1.等差数列{a n}中,a5+a8+a11+a14=20,则a2+a17的值为()A. 21 B. 19 C. 10 D. 202.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于()A. 80 B. 30 C. 26 D. 163.设2a=3,2b=6,2c=12,则数列a,b,c是()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.非等差数列,又非等比数列4.已知等比数列a2=2,a3=4,则a7=()A. 64 B. 81 C. 243 D. 1285.由a1=1,a n+1=给出的数列{a n}的第34项()A.B. 100 C.D.6.设S n为等差数列{a n}的前n项和,已知在S n中有 S12<0,S13>0,那么S n中最小的是()A. S4B. S5C. S6D. S77.设等差数列{a n}的前n项和为S n,若a1>0,3a8=5a13,则S n中最大的是()A. S10B. S11C. S20D. S218.数列{a n}中,a1=3且a n+1=a n+2,则数列{}前n项和是()A. n(n+1)B.C.D.9.若数列{a n}满足a1=1,,则此数列是()A.等差数列B.等比数列C.既是等差数列又是等比数列D.既非等差数列又非等比数列10.对于每个自然数.抛物线y=(n2+n)x2﹣(2n+1)x+1与x轴交于A n,B n两点,|A n B n|表示这两点间的距离,那么|A1B1|+|A2B2|+…+|A2008B2008|的值()A.B.C.D.11.等比数列x,2x+2,3x+3,…的第四项为()A.B.C.﹣27 D. 2712.等差数列{a n}中,a1=8,a100=107,则a107=()A. 117 B. 110 C. 97 D. 114二、填空题(共4小题,每小题3分,满分12分)13.数列S n=1++++…+,则S100=.14.等差数列{a n}中,前4项的和为40,后4项的和为80,所有项的和为210,则项数n=.15.设S n是等差数列{a n}的前n项和,若S7=35,则a4=.16.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2=.三、解答题(共6小题,满分0分)17.求等差数列8,5,2的第10项;(2)﹣401是不是等差数列﹣5,﹣9,﹣13,…的项?如果是,是第几项?1012春•某某市校级期末)有四个数,前三个数成等差数列,后三个数成等比数列,且这四个数的首末两项之和为37,中间两项和为36,求这四个数.1012春•某某市校级期末)数列{a n}中,已知a1=2,a n﹣1与a n满足lga n=lga n﹣1+lgt关系式(其中t为大于零的常数)求:(1)数列{a n}的通项公式(2)数列{a n}的前n项和S n.2012春•某某市校级期末)设{a n}是等差数列,其前n项和是S n,a3=6,S3=12.(1)求数列{a n}的通项公式;(2)求++…+的值.2012春•某某市校级期末)观察下面的数阵,容易看出,第n行最右边的数是n2,那么第20行最左边的数是几?第20行所有数的和是多少?2012春•某某市校级期末)小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清,商场提出的付款方式为:购买后二个月第一次付款,再过二个月第二次付款…,购买后12个月第六次付款,每次付款金额相同,约定月利率为0.8%每月利息按复利计算.求小华每期付款的金额是多少?一、附加题:23.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B. 1 C. 2 D. 324.已知数列{a n}满足a1=2,a n+1=(n∈N*),则连乘积a1a2a3…a2009a2010的值为()A.﹣6 B. 3 C. 2 D. 125.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为整数的个数是.26.已知数列{a n}满足a1==2n,当n=时,取得最小值.27.在数列{a n}中,已知a1=,a n+1=(n∈N*),则数列{a n}的前2012项的和为.28.已知{a n}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++)(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=(a n+)2,求数列{b n}的前n项和T n.2014-2015学年某某省某某南海一中高一(下)期末数学复习试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.等差数列{a n}中,a5+a8+a11+a14=20,则a2+a17的值为()A. 21 B. 19 C. 10 D. 20考点:等差数列的性质;等差数列的通项公式.专题:等差数列与等比数列.分析:根据等差数列的性质,进行转化即可.解答:解:在等差数列中,a2+a17=a5+a14=a8+a11,∵a5+a8+a11+a14=20,∴2(a5+a14)=20,则a5+a14=10,即a2+a17=a5+a14=10,故选:C.点评:本题主要考查等差数列的性质的考查,比较基础.2.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于()A. 80 B. 30 C. 26 D. 16考点:等比数列的前n项和;等比数列的性质.专题:计算题;等差数列与等比数列.分析:利用等比数列的求和公式,整体思维,即可求得结论.解答:解:设各项均为正数的等比数列{a n}的公比等于q,∵S n=2,S3n=14,∴q≠1∴=2,=14,解得 q n=2,=﹣2.∴S4n =(1﹣q4n)=﹣2(1﹣16)=30,故选B.点评:本题考查等比数列的求和公式,考查学生的计算能力,属于基础题.3.设2a=3,2b=6,2c=12,则数列a,b,c是()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.非等差数列,又非等比数列考点:等差关系的确定;对数的运算性质.专题:函数的性质及应用;等差数列与等比数列.分析:根据对数的定义求出a=log23,b=log26,c=log212;b﹣a=c﹣b,得到a、b、c是等差数列.而≠,所以a、b、c不是等比数列.解答:解:因为2a=3,2b=6,2c=12,根据对数定义得:a=log23,b=log26,c=log212;而b﹣a=log26﹣log23=log2=log22=1;c﹣b=log212﹣log26=log22=1,所以b﹣a=c﹣b,数列a、b、c为等差数列.而≠,所以数列a、b、c不为等比数列.故选:A.点评:考查学生会确定等差、等比数列的关系,以及会根据对数定义化简求值.4.已知等比数列a2=2,a3=4,则a7=()A. 64 B. 81 C. 243 D. 128考点:等比数列的通项公式.专题:等差数列与等比数列.分析:根据等比数列的通项公式,先求出公比,建立方程关系即可得到结论.解答:解:在等比数列中a3=a2q,即2q=4,解得q=2,则a7=a3q4=4×24=64,故选:A点评:本题主要考查等比数列通项公式的应用,根据等比数列的通项公式求出公比是解决本题的关键.5.由a1=1,a n+1=给出的数列{a n}的第34项()A.B. 100 C.D.考点:数列递推式.专题:计算题;等差数列与等比数列.分析:对数列递推式,取倒数,可得数列{}是以1为首项,3为公差的等差数列,求出数列{a n}通项,即可得到结论.解答:解:∵a n+1=,∴=∴∵a1=1,∴数列{}是以1为首项,3为公差的等差数列∴=1+3(n﹣1)=3n﹣2∴∴数列{a n}的第34项为=故选C.点评:本题考查数列递推式,考查等差数列的判断,考查学生的计算能力,属于基础题.6.设S n为等差数列{a n}的前n项和,已知在S n中有 S12<0,S13>0,那么S n中最小的是()A. S4B. S5C. S6D. S7考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的求和公式和等差数列的性质可得等差数列{a n}的前6项为负数,从第7项开始为正数,可得结论.解答:解:由题意可得S12==6(a1+a12)=6(a6+a7)<0,S13===13a7>0,∴a6+a7<0,a7>0,∴a6<0,a7>0,∴等差数列{a n}的前6项为负数,从第7项开始为正数,∴S n中最小的是S6故选:C点评:本题考查等差数列的通项公式和等差数列的性质,得出数列项的正负规律是解决问题的关键,属基础题.7.设等差数列{a n}的前n项和为S n,若a1>0,3a8=5a13,则S n中最大的是()A. S10B. S11C. S20D. S21考点:等差数列的性质.专题:等差数列与等比数列.分析:由题意可得:等差数列的公差d<0,结合题意可得a1=﹣19.5d,可得S n=0.5dn2﹣20dn,进而结合二次不等式的性质求出答案.解答:解:由题意可得:等差数列的S n为二次函数,依题意是开口向下的抛物线故有最大值,所以等差数列的公差d<0.因为a13=a8+5d,所以a1=﹣19.5d由S n=n×a1+d可得S n=0.5dn2﹣20dn,当n=20时.S n取得最大值.故选C.点评:本题是一个最大值的问题,主要是利用等差数列的性质与等差数列的前n项和的公式以及结合二次函数的性质来解题.8.数列{a n}中,a1=3且a n+1=a n+2,则数列{}前n项和是()A. n(n+1)B.C.D.考点:数列的求和.专题:等差数列与等比数列.分析:利用等差数列的通项公式及其前n项和公式即可得出.解答:解:∵数列{a n}中,a1=3且a n+1=a n+2,即a n+1﹣a n=2.∴数列{a n}是等差数列,首项为3,公差为2.∴a n=3+2(n﹣1)=2n+1.∴数列{a n}的前n项和==n(n+2),则数列==n+2.∴数列{}是等差数列,首项为3,公差为1.∴数列{}前n项和==.故选:C.点评:本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.9.若数列{a n}满足a1=1,,则此数列是()A.等差数列B.等比数列C.既是等差数列又是等比数列D.既非等差数列又非等比数列考点:等差关系的确定.专题:转化思想.分析:根据题意可得:a n==n,再利用等差数列的定义进行证明即可.解答:解:因为,所以,,…,所以a n==n,所以a n=n,a n﹣1=n﹣1,所以a n﹣a n﹣1=1,所以数列{a n}是等差数列.故选A.点评:本题主要考查了数列的递推式.解题的关键是从递推式中找到规律,进而求得数列的通项公式.10.对于每个自然数.抛物线y=(n2+n)x2﹣(2n+1)x+1与x轴交于A n,B n两点,|A n B n|表示这两点间的距离,那么|A1B1|+|A2B2|+…+|A2008B2008|的值()A.B.C.D.考点:数列的应用;二次函数的性质.专题:函数的性质及应用;点列、递归数列与数学归纳法.分析:通过整理可知方程y=0的两根分别为:、,进而并项相加即得结论.解答:解:y=(n2+n)x2﹣(2n+1)x+1=n(n+1)x2﹣x+1=(nx﹣1),∴方程y=0的两根分别为:、,∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|A2008B2008|=1﹣+﹣+…+﹣=1﹣=,故选:B.点评:本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.11.等比数列x,2x+2,3x+3,…的第四项为()A.B.C.﹣27 D. 27考点:等比数列的通项公式.专题:计算题.分析:按照等比数列定义,列出关于x的方程.求出x的值,确定出公比,再利用等比数列定义求第四项解答:解:等比数列定义,(2x+2)2=x(3x+3),化简整理得x2+5x+4=0,解得x=﹣1,(此时2x+2=0,舍去)或x=﹣4,此时数列为﹣4,﹣6,﹣9,…,公比为,∴第四项为﹣9×=故选A.点评:本题考查等比数列定义,以及应用,注意等比数列中不会有数0,遇到项中含有字母时,要注意字母取值X围.12.等差数列{a n}中,a1=8,a100=107,则a107=()A. 117 B. 110 C. 97 D. 114考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由已知数据可得等差数列的公差,进而又通项公式可得答案.解答:解:设等差数列{a n}的公差为d,则d===1,∴a107=a1+106d=8+106=114故选:D.点评:本题考查等差数列的通项公式,求出数列的公差是解决问题的关键,属基础题.二、填空题(共4小题,每小题3分,满分12分)13.数列S n=1++++…+,则S100= 2﹣()99.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:根据等比数列的前n项和公式进行求解即可.解答:解:S n=1++++…+==2﹣()n﹣1,则S100=2﹣()99,故答案为:2﹣()99点评:本题主要考查等比数列的前n项和公式的应用,比较基础.14.等差数列{a n}中,前4项的和为40,后4项的和为80,所有项的和为210,则项数n= 14 .考点:等差数列的性质;等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a1+a2+a3+a4=40.a n+a n﹣1+a n﹣2+a n﹣3=80.两式相加可得a1+a n=30,而S n===210,代入求解.解答:解:由题意可得a1+a2+a3+a4=40.a n+a n﹣1+a n﹣2+a n﹣3=80.两式相加可得a1+a n+a2+a n﹣1+a3+a n﹣1+a4+a n﹣3=120由等差数列的性质可得4(a1+a n)=120,∴a1+a n=30.则S n===210,解得n=14.故答案为:14.点评:本题考查等差数列的求和公式和等差数列的性质,属基础题.15.设S n是等差数列{a n}的前n项和,若S7=35,则a4= 5 .考点:等差数列的性质;等比数列的前n项和.专题:计算题.分析:先根据S7=35求得a1+a7的值,进而根据等差中项的性质可求得a4.解答:解:S7==35,∴a1+a7=10∴2a4=a1+a7=10,a4=5故答案为5.点评:本题主要考查了等差数列的性质.特别是等差中项的性质.属基础题.16.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2= ﹣9 .考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由题意得(a1+6)2=a1(a1+9),即a1=﹣12,即可得出结论.解答:解:∵等差数列{a n}的公差为3,a1、a3、a4成等比数列,∴(a1+6)2=a1(a1+9).∴a1=﹣12,∴a2=﹣9,故答案为:﹣9.点评:本题考查等差数列的通项,涉及等比中项的应用,属中档题.三、解答题(共6小题,满分0分)17.求等差数列8,5,2的第10项;(2)﹣401是不是等差数列﹣5,﹣9,﹣13,…的项?如果是,是第几项?考点:等差数列的通项公式.专题:等差数列与等比数列.分析:利用等差数列的通项公式求解.解答:解:(1)等差数列8,5,2的首项a1=8,公差d=﹣3,∴a10=8+9×(﹣3)=﹣19.(2)等差数列﹣5,﹣9,﹣13,…中,a1=﹣5,d=﹣4,∴a n=﹣5+(n﹣1)×(﹣4)=﹣4n﹣1,令﹣4n﹣1=﹣401,得n=100.∴﹣401是等差数列﹣5,﹣9,﹣13,…的第100项.点评:本题考查等差数列的通项公式的应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.1012春•某某市校级期末)有四个数,前三个数成等差数列,后三个数成等比数列,且这四个数的首末两项之和为37,中间两项和为36,求这四个数.考点:等比数列的通项公式;等差数列的通项公式.专题:等差数列与等比数列.分析:由题知,首末两数之和为37,中间两数之和为36,设四个数为﹣a,18﹣b,18+b,,由此能求出四个数.解答:解:由题知,首末两数之和为37,中间两数之和为36,所以设四个数为﹣a,18﹣b,18+b,,前三个数成等差数列得到2(18﹣b)=(18+b)+(﹣a)即a=3b+,后三个数成等比数列得到(18+b)2=(18﹣b)(+a),将a=3b+代入得(18+b)2=(18﹣b)(19+3b)即182+36b+b2=18*19+35b﹣3b2即4b2+b﹣18=0解得b=2,或b=﹣对应的a=6.5,或a=﹣所以,四个数为12,16,20,25,或,,,.点评:本题考查四个数的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.1012春•某某市校级期末)数列{a n}中,已知a1=2,a n﹣1与a n满足lga n=lga n﹣1+lgt关系式(其中t为大于零的常数)求:(1)数列{a n}的通项公式(2)数列{a n}的前n项和S n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)利用对数的性质可知数列{a n}为等比数列,进而可得结论;(2)利用等比数列的求和公式计算即得结论.解答:解:(1)∵lga n=lga n﹣1+lgt=lg(t•a n﹣1),∴a n=t•a n﹣1,又∵a1=2,∴数列{a n}的通项a n=2•t n﹣1;(2)由(1)可知数列{a n}是以2为首项、t为公比的等比数列,∴数列{a n}的前n项和S n=.点评:本题考查数列的通项及前n项和,涉及对数的性质等基础知识,注意解题方法的积累,属于基础题.2012春•某某市校级期末)设{a n}是等差数列,其前n项和是S n,a3=6,S3=12.(1)求数列{a n}的通项公式;(2)求++…+的值.考点:数列的求和;等差数列的前n项和.专题:等差数列与等比数列.分析:(1)由已知条件得,由此能求出a n=2n.(2)由(1)求出S n=n2+n,从而得到==,由此利用裂项求和法能求出++…+的值.解答:解:(1)∵{a n}是等差数列,其前n项和是S n,a3=6,S3=12,∴,解得a1=2,d=2,∴a n=2+(n﹣1)×2=2n.(2)∵a1=2,d=2,∴=n2+n,∴==,∴++…+=1﹣=1﹣=.点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要注意裂项求和法的合理运用.2012春•某某市校级期末)观察下面的数阵,容易看出,第n行最右边的数是n2,那么第20行最左边的数是几?第20行所有数的和是多少?考点:归纳推理.专题:推理和证明.分析:由已知可得第20行最左边的数比第19行最右边的数大1,分别求出前19行和前20行所有数的和,相减可得答案.解答:解:∵第n行最右边的数是n2,∴第19行最右边的数是192=361,故第20行最左边的数是362;第20行最右边的数是202=400,故第20行共有39个数,故第20行所有数的和是(362+400)×39÷2=14859.点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).2012春•某某市校级期末)小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清,商场提出的付款方式为:购买后二个月第一次付款,再过二个月第二次付款…,购买后12个月第六次付款,每次付款金额相同,约定月利率为0.8%每月利息按复利计算.求小华每期付款的金额是多少?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:通过从小华每次还款后还欠商场的金额这个角度出发,利用最后一次还款为0,计算即得结论.解答:解:设小华每期还款x元、第k个月末还款后的本利欠款数为A k元,则:A2=5000•(1+0.008)2﹣x,A4=A2•(1+0.008)2﹣x=5000•(1+0.008)4﹣(1+0.008)2x﹣x,…A12=A10•(1+0.008)12﹣x=5000•(1+0.008)12﹣(1+0.008)10x﹣…﹣(1+0.008)4x﹣(1+0.008)2x﹣x,由题意年底还清,即A12=0,解得:x=≈880.8(元),答:小华每期还款的金额为880.8元.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.注:本题还可以从“各期所付的款额连同最后一次付款时所生的利息之和等于商品售价及从购买到最后一次付款时的利息之和”这个角度来解题.一、附加题:23.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B. 1 C. 2 D. 3考点:等差数列的性质.专题:计算题.分析:先用等差数列的求和公式表示出S3和S2,进而根据﹣=,求得d.解答:解:S3=a1+a2+a3=3a1+3d,S2=a1+a2=2a1+d,∴﹣==1∴d=2故选C点评:本题主要考查了等差数列的性质.属基础题.24.已知数列{a n}满足a1=2,a n+1=(n∈N*),则连乘积a1a2a3…a2009a2010的值为()A.﹣6 B. 3 C. 2 D. 1考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过计算出前几项可知该数列周期为4,进而计算可得结论.解答:解:∵a1=2,a n+1=,∴a2=﹣3,a3=﹣,a4=,a5=2,∴数列{a n}的周期为4,且a1a2a3a4=1,∴a1a2a3a4…a2009a2010=a1a2=2×(﹣3)=﹣6,答案:A.点评:本题考查数列的递推式,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.25.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为整数的个数是7 .考点:等差数列的前n项和.专题:等差数列与等比数列.分析:根据等差数列的前n项和公式进行化简即可.解答:解:∵===,∴=====5+.∴要使∈Z,只要∈Z即可,∴n+1为24的正约数,即2,3,4,6,8,12,24,共有7个.故答案为:7.点评:本题主要考查等差数列通项公式以及前n项和公式的应用,利用等差数列的性质进行转化是解决本题的关键.26.已知数列{a n}满足a1==2n,当n= 3 时,取得最小值.考点:数列递推式.专题:计算题.分析:先由数列的递推关系式求得a n=+n2﹣n,再代入利用基本不等式求得其最小值即可.(注意n为正整数).解答:解:因为,所以a n=a n﹣1+2(n﹣1)=a n﹣2+2(n﹣2)+2(n﹣1)=a n﹣3+2(n﹣3)+2(n﹣2)+2(n﹣1)=…=a1+2×1+2×2+…+2(n﹣1)=+2×=+n2﹣n.∴=+n﹣1≥2﹣1,当=n时取最小值,此时⇒n2=,又因为n∈N,故取n=3.故答案为:3.点评:解决本题的关键在于由数列的递推关系式求得a n=+n2﹣n,对与本题求数列的通项公式也可以用叠加法.27.在数列{a n}中,已知a1=,a n+1=(n∈N*),则数列{a n}的前2012项的和为.考点:数列递推式;数列的求和.专题:计算题.分析:由已知可得,=即,,可得数列{}是以2为首项,以1为公差的等差数列,利用等差数列的通项公式可求,进而可求a n,然后利用裂项求和即可求解解答:解:∵∴=∴∵∴∴数列{}是以2为首项,以1为公差的等差数列∴=n+1∴=∴=1﹣=故答案为:点评:本题主要考查了利用数列的递推公式求解数列的和,解题的关键是构造等差数列求出数列的通项公式,及裂项求和方法的应用.28.已知{a n}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++)(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=(a n+)2,求数列{b n}的前n项和T n.考点:等比数列的通项公式;数列的求和.专题:计算题.分析:(1)由题意利用等比数列的通项公式建立首项a1与公比q的方程,然后求解即可(2)由b n的定义求出通项公式,在由通项公式,利用分组求和法即可求解解答:解:(1)设正等比数列{a n}首项为a1,公比为q,由题意得:∴a n=2n﹣1(6分)(2)∴b n的前n项和T n=(12分)点评:(1)此问重基础及学生的基本运算技能(2)此处重点考查了高考常考的数列求和方法之一的分组求和,及指数的基本运算性质。
2014-2015学年高一下学期期中考试数学试卷-Word版含答案2014——2015学年下学期高一年级期中考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 不等式0121≤+-x x 的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞) B.⎣⎢⎡⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) D. ⎝ ⎛⎦⎥⎤-12,12. 若0<<b a ,则下列不等式不能成立的是 ( ) A.ba11> B .b a 22> C .b a > D .b a )21()21(> 3. 不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( )A .297B .144C .99D .665. 已知直线1l :01)4()3(=+-+-y k x k 与2l :032)3(2=+--y x k 平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或26. 在△ABC 中,80=a ,70=b ,45=A ,则此三角形解的情况是 ( ) A 、一解 B 、两解 C 、一解或两解 D 、无解7. 如果0<⋅C A ,且0<⋅C B ,那么直线0=++C By Ax 不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知点()5,x 关于点),1(y 的对称点为()3,2--,则点()y x p ,到原点的距离为( )A .4B .13C .15D .179. 计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数(11…114个01)2转换成十进制数是( )A .216-1B .216-2C .216-3D .216-4 10. 数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( ) A.61B .61- C .6 D .6- 11. 已知0,0>>y x ,且112=+yx,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-2,4)C .(-∞,-4]∪[2,+∞)D .(-4,2) 12. 设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( ) A .2012 B .2013 C .2014 D .2015第Ⅱ卷(非选择题 共90分)19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。
2014〜2015学年度第二学期末武汉市部分学校高一年级调研测试数学试卷武汉市教育科学研究院命制说明:本试卷分为第I卷和第n卷两部分。
第I卷为选择题,第n卷为非选择题。
第I 卷为1至2页,第n卷为3至4页。
本试卷满分150分,考试用时120分钟。
注意:请考生用钢笔或黑色水性笔将自己的姓名、班级等信息及所有答案填写在答题卷相应的位置上。
(选择题,共50 分)1A.-2A. 0.12B. 2.12C. 2.10D. 0.10、选择题:本大题共10小题,每小题有一项是符合题目要求的。
cos42 5分,共50分。
在每小题列出的四个选项中,只1.sin72cos72 sin42 2•不等式2x23的解集是3A. 1,2 B. 32,C.D.3•关于x的二次不等式ax2bx 0恒成立的充要条件是a 0A. b24ac 0B. ab24acaC. b2D.4aca 0b24ac 04•若实数x,y满足14x 2y的取值范围是2015 . 6. 30 D. 15.已知数列a n中,311 4 1 /,a n 1 (n4 a n 11),则a201514A. -B. 5C D. 2015456.在下列命题中,错误的是A. 如果一个直线上的两点在平面内,那么这条直线在此平面内B. 过不在一条直线上的三点,有且只有一个平面C. 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线D. 平行于同一个平面的两条直线平行7. 《莱因德纸草书》是世界上最古老的数学著作之一•书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的二是较小的两份之和,问最7小1份为()A. !.■ B . _i.i C . D. __3368. 一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为11 1 1A. —B. —C. —D.-8 7 6 59.数列a n的前n项和为S n,若印1耳1 3S n(n 1),则a6A. 3 44B. 3 44 1C. 45D. 45110. “祖暅原理”是我国古代数学学家祖暅在研究球的体积的过程中发现的一个原理。
2014/2015学年第二学期联盟学校高一期中联考数学试题卷命题:长河高级中学 章燕君一、选择题:(3分/题,共30分)1. 已知tan α=-43,则tan ⎝ ⎛⎭⎪⎫π4-α的值为( ). A .-7 B .7 C .-17D.172. 下列四个函数中,以π为最小正周期,且在区间(π2,π)上为减函数的是( ) A .y =sin2x B .y =2|cosx| C .y =cos x2 D .y =tan(-x)3. cos(α+β)=35,sin ⎝ ⎛⎭⎪⎫β-π4=513,α,β∈⎝ ⎛⎭⎪⎫0,π2,那么cos ⎝⎛⎭⎪⎫α+π4的值为 ( ) A.22B.32 C.5665D.36654. 设D ,E ,F 分别为△ABC 的三边BC 、CA 、AB 的中点,则EB →+FC →=( ) A.AD → B.12AD → C.BC →D.12BC →5. 在△ABC 中,AB =4,AC =3,AC →·BC →=1,则BC =( ) A. 3 B . 2 C .2 D .36. 已知函数y =2sin(ωx +θ)为偶函数(0<θ<π),其图像与直线y =2的交点的横坐标为x 1、x2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π47.化简的结果是( )A.sin 3-cos 3B.cos 3-sin 3C.±(sin 3-cos 3)D.以上都不对8. 一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里9. 在△ABC 中,如果0<tan A tan B <1,那么△ABC 是 ( ).A .锐角三角形B .直角三角形C .钝角三角形D .不能确定10. 如图所示,点A 、B 、C 是圆O 上的点,线段OC 与线段AB 交于圆内一点P , 若OC →=mOA →+2mOB →,AP →=λAB →,则λ=( )A.56 B .45 C.34 D .23二、填空题:(4分/题,共28分)11. 若向量a =(1,1),b =(-1,2),则a ²b 等于_____________.12. 如果点P(sin2θ,2cos θ)位于第三象限,则角θ是第_______象限角.13. 如图,半圆的直径|AB|=6,O 为圆心,C 为半圆上不同于A,B 的任意一点,若P 为半径OC 上的动点,则(+)²的最小值是 .14. 在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若其面积S =14(b 2+c 2-a 2),则∠A=________.15. 已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A 、B 、C 三点共线,则k =________.16. 若将函数y =2sin(3x +φ)的图像向右平移π4个单位后得到图像关于点(π3,0)对称,则|φ|的最小值是________.17. 设1e ,2e 为单位向量.且1e 、2e 的夹角为3π,若12a e 3e =+,1b 2e =,则向量a 在b 方向上的射影为________.三、解答题:(共42分) 18. 已知sin(3π+α)= -13,cos(π-α)>0, (1)求cos 1sin α+α的值.(2)求2 2 3sin ()cos ()22π+α-π+α的值. 19. 已知A(-1,0),B(0,2),C(-3,1), ²=5,2AD =10.(1)求D 点的坐标.(2)若D 点在第二象限,用,表示.(3)设= (t,2),若3+与垂直,求的坐标.20. 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?21.在锐角三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,m =(2b -c ,cos C ),n =(a ,cos A ),且m ∥n .(1)求角A 的大小;(2)求函数y =2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B 的值域.2014/2015学年第二学期联盟学校高一期中联考数学试题答案一、 选择题:(3分/题,共30分)A D C A DB A AC A二、 填空题:(4分/题,共28分)11.1 12.二 13. - 14. π4 15. -23 16. π4 17. 52.三、 解答题:(共42分)18. (8分)(1)因为sin(3π+α)=sin(π+α)=-sin α,即sin α=13.——(1分) 又因为cos(π-α)=-cos α>0,即cos α<0, 所以cos α=3=-----(2分)得1cos 1331sin 3+α+==-α——(4分) (2)223sin ()cos ()22π+α-π+α =cos 2α-sin 2α2217()().339=--=———(8分) 19. (12分)(1)设D(x,y ),=(1,2),=(x+1,y).由题得222AB AD x 12y 5,AD x 1y 10,⎧=++=⎪⎨=++=⎪⎩()∴或∴D 点的坐标为(-2,3)或(2,1).——(4分)(2)∵D 点在第二象限,∴D(-2,3). ∴=(-1,3).∵=(-2,1),设=m +n ,——(5分)则(-2,1)=m(1,2)+n(-1,3),——(6分) ∴∴∴=-+.——(8分)(3)∵3+=3(1,2)+(-2,1)=(1,7),=(t,2),——(9分)∵3+与垂直,∴(3+)²=0,——(10分)∴t+14=0,∴t=-14,∴=(-14,2).——(12分)20.(10分)(1)因为f (t )=10-2(32cos π12t +12sin π12t )=10-2sin(π12t +π3).—(2分) 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin(π12t +π3)≤1.——(3分)当t =2时,sin(π12t +π3)=1;——(4分)当t =14时,sin(π12t +π3)=-1.——(5分)于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. (2)依题意,当f (t )>11时,实验室需要降温. 由(1)得f (t )=10-2sin(π12t +π3),故有10-2sin(π12t +π3)>11,即sin(π12t +π3)<-12.——(7分)又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.在10时至18时实验室需要降温.——(10分)21.(12分)(1)由m ∥n ,得(2b -c )cos A -a cos C =0, ∴(2sin B -sin C )cos A -sin A cos C =0,——(2分) 2sin B cos A =sin C cos A +sin A cos C=sin(A +C )=sin(π-B )=sin B .——(4分) 在锐角三角形ABC 中,sin B >0,∴cos A =12,故A =π3.——(6分)(2)在锐角三角形ABC 中,A =π3,故π6<B <π2.——(7分) ∴y =2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B +32sin 2B=1+32sin 2B -12cos 2B =1+sin ⎝⎛⎭⎪⎫2B -π6.——(9分) ∵π6<B <π2,∴π6<2B -π6<5π6.——(10分) ∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,32<y ≤2. ∴函数y =2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B 的值域为⎝ ⎛⎦⎥⎤32,2.——(12分)。
2014-2015学年高一下学期期中考试数学试卷-Word版含答案D19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t ≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。
2014—2015学年度第二学期期末学业水平监测高一数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的A 、B 、C 、D 的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上.(不用答题卡的,填在第3页相应的答题栏内)1.以下四个数是数列{})2(+n n 的项的是( )A .98B .99C .100D .101 2.在ABC ∆中,若B a b sin 2=,则A 为( ) A .3π B .6π C .3π或π32 D .π65或6π3.在等差数列}{a n 中,6,242==a a ,则=10a ( )A .12B .14C .16D .18 4.在ABC ∆中,已知bc c b a 2222=--,则角C B +等于( )A .4π B .43π C .45π D .4π或 43π5.不等式01)3(≤+-x x 的解集为( )A .)[3,+∞B .),3[]1--+∞∞ ,( C .)[3,{-1}+∞ D .]3,1[- 6.某高校有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…, 840 随机编号,则抽取的42人中,编号落在区间的频数为( )A .11B .12C .13D .147.集合{3,4,5}B {4,5}==,A ,从B A ,中各任意取一个数,则这两个数之和等于8的概率是( ) A .32 B .21C .31D .61 8.某单位有职工750人,其中青年职工350,中年职工250人,老年职工150人,为了了解单位职工健康情况,用分层抽样的方法从中抽取样本,若样本中青年职工为7人,则样本容量为( ) A .7 B .15 C .25 D .359.若不等式04)3(2)3(2<--+-x a x a 对一切R x ∈恒成立,则实数a 取值的集合为( ) A .)3,(-∞ B .)3,1(- C .]3,1[- D .]3,1(-10.已知第一象限的点),(b a P 在一次函数232+-=x y 图像上运动,则b a 32+的最小值为( )A .38B .311C .4D .62511.如果执行如图的程序框图,那么输出的值是( ) A .2010B .-1C .12D .2(图1)12.已知nn a )21(=,把数列}{n a 的各项排列成如下的三角形状, 1a2a 3a 4a 5a 6a 7a 8a 9a (图2)记),(n m A 表示第m 行的第n 个数,则A (10,13)=…( )A .93)21(B .92)21(C .94)21(D .112)21(二、填空题:本大题共4小题,每小题5分,共20分.请将答案直接填在题中横线上.13.北京地铁2号线到达时间相隔5分钟,某人在2号线等待时间超过4分钟的概率为P 1,北京地铁2号公路到站时间相隔8分钟,某人在2路车等待时间超过6分钟的概率为P2,则1P 与2P 的大小关系为____________. 14.若关于x 的方程03)2(22=-+-+a x a x 的一根比2小且另一根比2大,则a 的取值范围是____________. 15.在ABC ∆中,若7,532===AC BC B ,π,则ABC ∆的面积=S ______________。
高一下学期数学期末卷选择题1.sin390°=( )A.21B.21- C 23. D23.-2.下列程序框图表示赋值计算功能是( )A B C D3.某校共有高中生1000人,其中高一年级400人,高二年级340人,高三年级260人,现采用分层抽样抽取50的样本,那么高一,高二,高三各年级抽取的人数分别为 A.20,17,13 B.20,15,15 C.40,34,26 D.20,20,104.袋中装有6只白球,5只黄球,4只红球,从中任取一球,抽到不是白球的概率为A 52.B 154.C 53.D.非以上答案 5.已知)3,(x =)1,3(,=,且⊥,则x 等于( )A.-1B. -9C.9D.16.下列函数中,最小正周期为2π的是( )A .y sinx =B .sin y xcosx = C2tan.π=y D .4y cos x =7.( ) A .1cos θ- B 2.(1)cos θ- C .1cos θ- D .2cos θ8.已知,满足,2||,3|==a 4a b ⋅=,则=-||( ) A 3. B 5. C 3. D.109.已知)1,5(1P)4,21(,2P 212,PP P P =,则P 点坐标是( ) A )23,611.( B )25,411.( C )3,2.( D )2,621.(10.在样本的频率分布直方图中,共有11个小长方体,若中间一个小长方体的面积等于其他10个小长方体的面积和的41,且样本容量为160,则中间一组频数为( )A.32B. 0.2C.40D. 0.25 11.如下图所示算法流程图中,第3个输出的数是( )A.1B.32C.2 D 5212.函数,[0,]y sinx cosx x π=+∈的值域是( ) A]2,2.[- B ]2,2.[- C ]2,1.[- D ]2,1.[(第15题程序)填空题.(本大题共4个小题,每小题5分,共20分,把答案填在横线上)] 13.如果向量b a ,的夹角为30°,且5||,3||==b a ,那么b a ⋅的值等于_______ 14.计算75157515cos cos sin sin +=________15.写出右上方程序运行结果 若程序运行后输入2-=x ,则输出的结果为________16.已知12,2cos α=则44sin cos αα-=_______三.解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或算法步骤) 18(12分)已知=(1,3),=(4,-2),求: ⑴|2-|; ⑵(2-)·(2+).19.(12分)已知)2,1(),2,1(-==b a ,当k 为何值时, ⑴b a k +与b a 3-垂直?⑵b a k +与b a 3-平行?平行时它们的方向是同向还是反方向?20.(12分)某校有学生会干部7名,其中男干部有1A ,A 2,A 3,A 4共4人;女干部有B 1,B 2,B 3共3人.从中选出男、女干部各1名,组成一个小组参加某项活动. (1)求A 1被选中的概率;(2)求A 2,B 2 不全被选中的概率.21.(12分)在△ABC 中4,,tan 25cosA B ==,求)22tan(B A +的值.22(12分)已知(2,2),(1,3)a sin x cos x b ==,且b a x f ⋅=)( 求)(x f 的周期,最大值,单调递增区间.17( 12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为0.01频率组距整数)分成六段[)50,40,[)60,50…[]100,90后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:求第四小组的频率,并补全这个频率分布直方图;估计这次考试的及格率(60分及以上为及格)和平均分; 解:统 计1. 已知样本99,100,101,x,y 的平均数是100,方差是2,则xy=_____________2. 观察新生婴儿的体重,其频率分布直方图如图:则新生婴儿体重在(2700,3000)的频率为______________________3. 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:门:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?60名,将其成绩(均为整数)整理后画(1)79.5---89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)5.以下是某地搜集到的新房屋的销售价格 y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为150㎡时的销售价格.x (1)画出散点图;(2)求回归直线方程; (3)据此估计广告费用为10销售收入y 的值。
3.【解】74)7090708060(51=++++=甲x 73)7580706080(51=++++=乙x 104416461451222222=++++=)(甲s 5627313751222222=++++=)(乙s∵22乙甲乙甲,s sx x >>∴ 甲的平均成绩较好,乙的各门功课发展较平衡4.【解】(1)频率为:0.025×10=0.25,频数:60×0.25=15 (2)0.015×10+0.025×10+0.03×10+0.005×10=0.75 5【解】(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx ,308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=,则1962.01570308≈==xxxy l l b8166.115703081092.23≈⨯-=-=x b y a故所求回归直线方程为8166.11962.0+=x y (3)据(2),当x=150(㎡)时,销售价格的估计值为:2466.318166.11501962.0=+⨯=y(万元)6.提示:(1)图略;(2)()12456855x =++++=,()13040605070505y =++++=,5222262124568145ii x==++++=∑,52222221304060507013500ii y==++++=∑,511380i ii x y==∑,∴2138055506.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,∴回归直线方程为 6.517.5y x =+。
(3)10x =时,预报y 的值为10 6.517.582.5y =⨯+=。
高一下学期数学期末考试参考答案 选择题:1、A2、C3、A4、A5、A6、D7、C8、B9、C 10、A 11、C 12、C 二、填空题:13、 14、12 15、1 16、12-三、解答题:17、(1)因为各组的频率各等于1,故第四组的频率:()3.010005.001.02015.0025.014=⨯--⨯--=f直方图如右所示 :依题意,60及以上的分数所在的第三、四、五、六组,频率的为(0.015+0.03+0.025+0.005)⨯10=0.75所以抽样学生的合格率为0.75。
利用组中值估算抽样学生的平均分:71958575655545654321=⋅+⋅+⋅+⋅+⋅+⨯f f f f f f ,估计这次考试的平均分是71分。
]3k =-(2)(1,22)4(1)4(22)13ka b k k k k k +=-+--=+=-20.选出男女干部各1名,其一切可能的结果共有12种()()()()12312111,,,,,,,B A B A B A B A ,(22,B A ),(32,B A ),(13,B A ),(23,B A ),(33,B A ),(14,B A ),(24,B A ),(34,B A ).用M 表示“1A 被选中”这一事件,则M 中的结果有3种:(11,B A ),(21,B A ,(31,B A ).由于所有12种结果是等可能的,其中事件M 中的结果有3种,因此,由古典概型的概率计算公式可得: P(M)=41123=(2)用N 表示“22,B A 不全被选中”这一事件,则其对立事件N 表示“22,B A 全被选中”这一事件,N 只有一种结果,故()121=N P ,()12111211=-=∴N P21、在△ABC 中,224cos 501803sin 53sin 35tan 4cos 45tan 232tan tan 114tan()31tan tan 2124112()2tan()442tan(22)1171()1tan 11()2A A A A A AB A B A B A B A B A B A B =<<∴==∴====++∴+===---⨯⨯-++===-+--。