河北省衡水中学高三数学上学期一调考试试题文(扫描版)
- 格式:doc
- 大小:596.50 KB
- 文档页数:8
河北衡水中学2023届高三一模数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.某商店为了解该店铺商品的销售情况,对某产品近三年的产品月销售数据进行统计分析,绘制了折线统计图,如图.下列结论正确的有( )A .该产品的年销量逐年增加B .该产品各年的月销量高峰期大致都在8月C .该产品2019年1月至12月的月销量逐月增加D .该产品各年1月至6月的月销量相对于7月至12月波动性更小、变化更平稳10.已知函数()f x 的图象的对称轴方程为3x =,则函数()f x 的解析式可以是( )三、填空题15.如图,已知台体ABCD16.在空间直角坐标系下,由方程椭球面(或称椭圆面).如果用坐标平面椭圆(如图所示),这三个截面的方程分别为四、解答题17.已知()sin()0,|f x A x ωϕω⎛=+> ⎝16f π⎛⎫= ⎪⎝⎭;②()sin()f x A x ωϕ⎛=+ ⎝(1)若从这8个村中随机抽取2个进行调查,求抽取的率;(2)现有一技术人员在这8个村中随机选取3个进行技术指导,记境空气等级为尚清洁的个数,求ξ的分布列和数学期望19.已知数列{}n a ,{}n b 满足(1122n n a b a b a b ++⋅⋅⋅+=(1)若直线l ⊂平面PAB ,求证:(2)若//PQ AC ,ABP DAC ∠=∠的余弦值.21.在平面直角坐标系xOy 中,已知双曲线线:1l y x =-与双曲线C 交于A参考答案:设ABC 的面积为1,1A MN ∴三棱台1ABC A MN -的体积又三棱柱111ABC A B C -的体积()213h S S h ∴=++⋅,解得:1A MN ∽111A B C △,1S ⎛∴= ⎝设OE h =,则14OE h =-,在11Rt OB E 和Rt OBE 中,()()22224442h h ⎧-+=⎪⎨+=⎪⎩∴2设1AB =,则1AP =,2AD CD AB ==//PQ AC ,//PA CQ ,∴四边形ACQP 则()1,0,0B ,()0,0,1P ,()2,2,1Q ,∴设平面BPQ 的法向量(),,n x y z =,。
高考数学精品复习资料2019.5高三年级数学试卷(文科)答案一、选择:DABAC BDDBC AC 二、填空:32x y =21;]12,5[+ ①② -8046 三、解答: 17.解:A ={1,4},()1,1012-==⇒=-+-a x x a ax x ,由A ∪B =A ⇒B ⊆A∅≠B ,∴B ={1},或B ={1,4},从而a -1=1,或a -1=4,故a =2,或a =5.又A ∩C =C ⇒C ⊆A .考虑042=+-mx x .当440162<<<m m -⇒-=∆时, C =∅⊆A ;当440162≥-≤⇒≥-=∆m m m 或时,∅≠C ,此时由C ⊆A 只能有C ={1,4}.此时m =5.综上可得:a =2,或a =5.-4<m <4,或m =5. 18.解:(1)因为函数()f x 是定义在()1,1-上的奇函数,所以当0=x 时,()f x =0; 当-1<x <0时,0<-x <1,所以f (x )=-f (-x )=-2-x ;所以()⎪⎩⎪⎨⎧=--=-1020001,2<<,,<<x x x x f x x(2)当0<x <1时,1<f (x )<2;当-1<x <0时,-2<f (x )<-1;当x =0时,f (x )=0;所以f (x )<2;因为f (x )≤2a 恒成立,所以2a ≥2即a ≥119.解:函数定义域为(0,+∞),……1分()xax x a x f 1222'++-= ………………3分因为x =1是函数y =f (x )的极值点,所以f ′(1)=1+a -2a 2=0 解得121=-=a a 或经检验,121=-=a a 或时,x =1是函数y =f (x )的极值点, 又因为a >0所以a =1……6分20.解:设AN 的长为x 米(82≤<x )∵||||||||DN DC AN AM =,∴|AM |=32xx -所以函数f (x )的单调递增区间为(0,+∞);……8分 若a ≠0,令()()()0112=---='xax ax x f ,解得ax a x1,2121=-=……9分 当a >0时,()()x f x f ,'的变化情况如下表∴函数y =f (x )的单调递增区间是⎪⎭⎫ ⎝⎛a 10,,单调递减区间是⎪⎭⎫⎝⎛+∞,1a ……11分 ∴S AMPN =|AN |•|AM |=232x x - 4分(1)由S AMPN >32得32232>-x x , ∴3x 2-32x +64>0,即(3x -8)(x -8)>0 ∴382<<x 或x >8 又2<x ≤8,∴382<<x 即AN 长的取值范围是⎪⎭⎫ ⎝⎛382,……8分(2)令232-=x x y ,则()()()()2222432326--=---='x x x x x x x y ……10分∵当[)43,∈x ,y '<0,∴函数232-=x x y 在[)43,上为单调递减函数, ∴当x =3时,232-=x x y 取得最大值,即(S AMPN )max =27(平方米)此时|AN |=3米,|AM |=92333=-⨯米……13分 21.(1)2()3f x x x =--,0x 是()f x 的不动点,则2000()3f x x x x =--=,得01x =-或03x =,函数()f x 的不动点为1-和3.……………………………3分 (2)∵函数()f x 恒有两个相异的不动点,∴2()(1)0f x x ax bx b -=++-=恒有两个不等的实根,Δ=b 2-4a (b -1)=b 2-4ab +4a >0对b ∈R 恒成立,∴(4a )2-16a <0,得a 的取值范围为(0,1).……7分 (3)由ax 2+bx +(b -1)=0得a bx x 2221-=+,由题知12112++-=-=a x y k ,, 设A ,B 中点为E ,则E 的横坐标为⎪⎭⎫ ⎝⎛++-121222a a ba b ,,∴121222++=-a a b a b∴42121122-≥+-=+-=aa a ab ,当且仅当()1012<<a aa =, 即22=a 时等号成立,∴b 的最小值为42-.……12分 22.解:(Ⅰ)当1,0a b ==时,32()3f x x x =- 所以(1)2f =- 即切点为(1,2)P -因为2()36f x x x '=-所以(1)363f '=-=-. 所以切线方程为23(1)y x +=-- 即31y x =-+ (Ⅱ)22()363,f x x ax b '=-+由于0<a <b ,所以()()036363622<b a b a b a -+=-=∆所以函数f (x )在R 上递增 所以不等式()k x x x x k x x x k f x x f >>>1ln 11ln 11ln 1-+⇔-+⇔⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛-+ 对()+∞∈,1x 恒成立 构造()()()()()()()()2212ln 1ln 1ln 21ln 1---=-+--+='-+=x x x x x x x x x x h x x x x h构造()2ln --=x x x g ()xx x x g 111-=-=' 对()+∞∈,1x ,()01'>xx x g -=所以()2ln --=x x x g 在()+∞∈,1x 递增 ()()()()04ln 2403ln 13,2ln 2,11>,<-=-=-=-=g g g g所以0(3,4)x ∃∈,000()ln 20g x x x =--= 所以0(1,),()0,()0x x g x h x ∈<<,所以(1ln )()1x xh x x +=-在0(1,)x 递减0(,),()0,()0x x g x h x '∈+∞>>,所以(1ln )()1x xh x x +=-在0(,)x +∞递增所以,00min 00(1ln )()()1x x h x h x x +==-结合000()ln 20g x x x =--=得到()()()()4,31ln 100000min ∈=-+==x x x x x h x h所以()1ln 1-+x x x k <对()+∞∈,1x 恒成立()min x h k <⇔,所以3≤k ,整数k 的最大值为3。
4 衡水中学 2018~2019 学年度高三年级上学期一调考试数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分。
考试时间 120 分钟。
第Ⅰ卷(选择题 共 60 分)注意事项: 1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.答卷Ⅰ前,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
一、选择题(每小题 5 分,共 60 分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设集合 A = {1, 2, 4} , B = {x x 2- 4x + m = 0},若 A ⋂ B = {1} ,则 B =A.{1, -3}B. {1, 0}C.{1, 3}D.{1, 5}2. 下列函数中,在其定义域上既是奇函数又是减函数的是A. y = 2- xB. y = x-3C.y =sin xxD. y = lg (2 - x ) - lg (2 + x )3.命题 p : ∃x 0 ∈ R , f (x 0 ) ≥ 2, 则⌝p 为A. ∀x ∈ R , f (x ) ≥ 2 C. ∃x 0 ∈ R , f (x 0 ) ≤ 2B. ∀x ∈ R , f (x ) < 2 D. ∃x 0 ∈ R , f (x 0 ) < 24. 下列函数中,其图象与函数 y = ln x 的图象关于直线 x = 1 对称的是A. y = ln (1- x )B. y = ln (2 - x )C. y = ln (1+ x )D. y = ln (2 + x )5. 函数 y = 2xsin 2x 的图象可能是右边的6. 已知实数 a > 1, 若函数 f( x ) = log a x + x - m 的零点所在区间为(0,1) ,则 m 的取值范围是 A. (-∞,1)B. (-∞, 2)C. (0,1)D. (1, 2)7. 已知 a = log 1 7 ,b = ⎛ 1 ⎫3, c = log1 ,则 a , b , c 的大小关系为32A. a > b > c⎪ ⎝ ⎭ B. b > a > c1 3C. c > b > aD. c > a > b8. 已知函数 f( x ) = ( x -1)(ax + b ) 为偶函数,且在(0, +∞) 上单调递减,则 f (3 - x ) < 0 的解集为A. (2, 4)B. (-∞, 2) ⋃ (4, +∞)C. (-1,1)D. (-∞, -1) ⋃ (1, +∞ )50 0 0 0 0 0 09. 已 知 f (x ) 是 定 义 域 为 (-∞, +∞)的 奇 函 数 , 满 足 f (1- x ) = f (1+ x ) . 若 f (1) = 2 , 则f (1) + f (2) + f (3) + + f (2018 ) =A. -2018B. 0C. 2D. 5010. 如右图, 可导函数 y = f ( x ) 在点 P (x 0 , f ( x 0 ))处的切线为l : y = g ( x ) ,设 h ( x ) = f (x ) - g (x ) ,则下列说法正确的是A. h '( x ) = 0, x = x 是 h ( x ) 的 极 大 值 点 B. h '( x ) = 0, x = x 是 h( x )的 极 小 值 点C. h ' ( x ) ≠ 0, x = x 不是h ( x ) 的极值点 D. h '( x ) ≠ 0, x = x 是h ( x ) 的极值点 11. 已知函数 f( x ) = ax 2 - 4ax - ln x , 则 f ( x ) 在(1, 3) 上不单调的一个充分不必要条件是A. a ∈⎛ -∞,1 ⎫B. a ∈⎛ - 1 , +∞ ⎫C. a ∈⎛ 1 , +∞ ⎫D. a ∈⎛ - 1 ,1 ⎫6 ⎪ 2 ⎪ 2 ⎪ 2 6 ⎪ ⎝⎭⎝⎭⎝ ⎭⎝ ⎭12. 已 知f '( x )是 函 数f ( x ) 的 导 函 数 , 且 对 任 意 的 实 数 x 都 有f ' ( x ) = e x (2x - 2) + f (x )(e 是自然对数的底数) , f (0) = 1,则A. f ( x ) = ex(x +1)C. f ( x ) = e x (x +1)2B. f ( x ) = ex(x -1)D. f ( x ) = e x (x -1)2第Ⅱ卷(非选择题 共 90 分)二、填空题(每题 5 分,共 20 分。
2019-2020学年河北省衡水中学高三(上)一调数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合P={x|log2x<﹣1},Q={x||x|<1},则P∩Q=()A. B. C.(0,1) D.2.(5分)已知i为虚数单位,复数z满足(1+i)2z=1﹣i3,则|z|为()A.B.C.D.3.(5分)如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.8 B.12 C.18 D.244.(5分)已知命题p:方程x2﹣2ax﹣1=0有两个实数根;命题q:函数f(x)=x+的最小值为4.给出下列命题:①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.则其中真命题的个数为()A.1 B.2 C.3 D.45.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.66.(5分)函数f(x)=(﹣1)cosx的图象的大致形状是()A.B.C.D.7.(5分)阅读程序框图,运行相应的程序,输出的结果为()A.B.C.D.8.(5分)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)9.(5分)若实数a,b,c,d满足(b+a2﹣3lna)2+(c﹣d+2)2=0,则(a﹣c)2+(b﹣d)2的最小值为()A.B.2 C.2 D.810.(5分)已知f(x)=,存在x2>x1≥0使得f(x1)=f (x2),则x1?f(x2)的取值范围()A.[,2)B.[,2)C.[,)D.[,2)11.(5分)设函数f(x)=x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12个不同的根,则实数t的取值范围为()A.(﹣,﹣2)B.(﹣∞,﹣2)C.﹣<t<﹣2 D.(﹣1,2)12.(5分)设曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在曲线g(x)=3ax+2cosx上某点处的切线l2,使得l1⊥l2,则实数a的取值范围为()A.[﹣1,2]B.(3,+∞)C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设m>1,在约束条件下,目标函数z=x+my的最大值等于2,则m=.14.(5分)函数y=e x﹣mx在区间(0,3]上有两个零点,则m的取值范围是.15.(5分)已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=.16.(5分)定义在R上的函数f(x)满足:f(﹣x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+≥f(1﹣x)+x的解集为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,a,b,c分别为角A,B,C所对的边,且==.(1)求角A的大小;(2)若△ABC的面积为3,求a的值.18.(12分)函数f(x)=lnx﹣ax2﹣2x.(Ⅰ)当a=3时,求f(x)的单调区间;(Ⅱ)若?a∈(﹣1,+∞),?x∈(1,e),有f(x)﹣b<0,求实数b的取值范围.19.(12分)在△ABC中,角A、B、C的对边分别为a,b,c,且4bsinA=a.(Ⅰ)求sinB的值;(Ⅱ)若a,b,c成等差数列,且公差大于0,求cosA﹣cosC的值.20.(12分)已知函数f(x)=ax2﹣4bx+2alnx(a,b∈R)(Ⅰ)若函数y=f(x)存在极大值和极小值,求的取值范围;(Ⅱ)设m,n分别为f(x)的极大值和极小值,若存在实数,b∈(a,a),使得m﹣n=1,求a的取值范围.(e为自然对数的底)21.(12分)已知函数f(x)=xlnx,g(x)=.(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.[选修4-1:几何证明选讲]22.(10分)如图,AE是圆O的切线,A是切点,AD⊥OE于D,割线EC交圆O 于B、C两点.(Ⅰ)证明:O,D,B,C四点共圆;(Ⅱ)设∠DBC=50°,∠ODC=30°,求∠OEC的大小.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴+2=0.的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣4ρsinθ(Ⅰ)把圆C的极坐标方程化为直角坐标方程;(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a,a∈R,g(x)=|2x﹣1|.(Ⅰ)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(Ⅱ)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.2019-2020学年河北省衡水中学高三(上)一调数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2019秋?龙泉驿区校级期中)已知集合P={x|log2x<﹣1},Q={x||x|<1},则P∩Q=()A. B. C.(0,1) D.【分析】利用绝对值表达式的解法求出集合Q,对数不等式的解法求出P,然后求解交集.【解答】解:log2x<﹣1,即log2x<log2,解得0<x<,即P=(0,),Q={x||x|<1}=(﹣1,1)则P∩Q=(0,),故选:A.2.(5分)(2019?衡阳校级模拟)已知i为虚数单位,复数z满足(1+i)2z=1﹣i3,则|z|为()A.B.C.D.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(1+i)2z=1﹣i3,∴z=,∴|z|===.故选:C.3.(5分)(2019秋?衡水校级月考)如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.8 B.12 C.18 D.24【分析】由已知中的三视图,可知该几何体是一个底面为矩形的斜四棱柱,切去看一半.求出底面面积,代入棱柱体积公式,可得几何体的体积.【解答】解:由已知中的三视图,可知该几何体是一个底面为矩形的斜四棱,切去看一半,底面为矩形长为4,宽为3,斜四棱柱的高是2,棱柱体积公式:V=Sh可得:V=×4×3×2=12故选B.4.(5分)(2019秋?新华区校级月考)已知命题p:方程x2﹣2ax﹣1=0有两个实数根;命题q:函数f(x)=x+的最小值为4.给出下列命题:①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.则其中真命题的个数为()A.1 B.2 C.3 D.4【分析】先判定命题p,q的真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:方程x2﹣2ax﹣1=0有两个实数根,?a∈R,可得△≥0,因此是真命题.命题q:x<0时,函数f(x)=x+<0,因此是假命题.下列命题:①p∧q是假命题;②p∨q是真命题;③p∧¬q是真命题;④¬p∨¬q是真命题.则其中真命题的个数为3.故选:C.5.(5分)(2011?新课标)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.6.(5分)(2019秋?湖南月考)函数f(x)=(﹣1)cosx的图象的大致形状是()A.B.C.D.【分析】分析函数奇偶性和x∈(0,)时函数图象的位置,排除错误答案,可得结论.【解答】解:∵f(x)=(﹣1)cosx,∴f(﹣x)=(﹣1)cos(﹣x)=(﹣1)cosx=﹣(﹣1)cosx=﹣f(x),故函数f(x)为奇函数,故函数图象关于原点对称,可排除A,C,又由当x∈(0,),f(x)<0,函数图象位于第四象限,可排除D,故选:B7.(5分)(2013?济南一模)阅读程序框图,运行相应的程序,输出的结果为()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量x,y的值,最后输出的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环x y z循环前/1 1 2第一圈是 1 2 3第二圈是 2 3 5第三圈是 3 5 8第四圈是 5 8 13第五圈是8 13 21第六圈否此时=故答案为:8.(5分)(2019?兴安盟一模)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.9.(5分)(2014?淄博三模)若实数a,b,c,d满足(b+a2﹣3lna)2+(c﹣d+2)2=0,则(a﹣c)2+(b﹣d)2的最小值为()A.B.2 C.2 D.8【分析】由题设b+a2﹣3lna=0,设b=y,a=x,得到y=3lnx﹣x2;c﹣d+2=0,设c=x,d=y,得到y=x+2,所以(a﹣c)2+(b﹣d)2就是曲线y=3lnx﹣x2与直线y=x+2之间的最小距离的平方值,由此能求出(a﹣c)2+(b﹣d)2的最小值.【解答】解解:∵实数a、b、c、d满足:(b+a2﹣3lna)2+(c﹣d+2)2=0,∴b+a2﹣3lna=0,设b=y,a=x,则有:y=3lnx﹣x2,且c﹣d+2=0,设c=x,d=y,则有:y=x+2,∴(a﹣c)2+(b﹣d)2就是曲线y=3lnx﹣x2与直线y=x+2之间的最小距离的平方值,对曲线y=3lnx﹣x2求导:y′(x)=﹣2x,与y=x+2平行的切线斜率k=1=﹣2x,解得:x=1或x=﹣(舍),把x=1代入y=3lnx﹣x2,得:y=﹣1,即切点为(1,﹣1),切点到直线y=x+2的距离:=2,∴(a﹣c)2+(b﹣d)2的最小值就是8.故选:D.10.(5分)(2014?济南二模)已知f(x)=,存在x2>x1≥0使得f(x1)=f(x2),则x1?f(x2)的取值范围()A.[,2)B.[,2)C.[,)D.[,2)【分析】根据函数的解析式画出函数的图象,根据题意数形结合求得x1?f(x2)的取值范围.【解答】解:①当0≤x<1时,1≤f(x)<2,②当x>1时,f(x)≥1.5,当x=时,f(x)=2,如图所示,若存在x2>x1≥0使得f(x1)=f(x2)=k,则≤x1<1≤x2<,则1.5≤f(x2)≤2,∴≤x1?f(x2)<1×2,即≤x1?f(x2)<2,故x1?f(x2)的取值范围为[,2),故选:A.11.(5分)(2019?衡阳校级模拟)设函数f(x)=x3+x2﹣3x,若方程|f(x)|2+t|f (x)|+1=0有12个不同的根,则实数t的取值范围为()A.(﹣,﹣2)B.(﹣∞,﹣2)C.﹣<t<﹣2 D.(﹣1,2)【分析】求出函数f(x)的导数,判断函数的单调性和极值,利用换元法设|f (x)|=m,转化为一元二次函数根的分布进行求解即可.【解答】解:,得x=﹣3,x=1,由f′(x)>0得x>1或x<﹣3,即函数在(﹣∞,﹣3),(1,+∞)单调递增,由f′(x)<0得﹣3<x<1,则函数在(﹣3,1)单调递减,则函数的极大值为f(﹣3)=9,函数的极小值为,根据函数的图象可知,设|f(x)|=m,可知m2+tm+1=0,原方程有12个不同的根,则m2+tm+1=0方程应在内有两个不同的根,设h(m)=m2+tm+1,则,所以取值的范围.故选:C12.(5分)(2019秋?衡水校级月考)设曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在曲线g(x)=3ax+2cosx上某点处的切线l2,使得l1⊥l2,则实数a的取值范围为()A.[﹣1,2]B.(3,+∞)C.D.【分析】求出函数f(x)=﹣e x﹣x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=3ax+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.【解答】解:由f(x)=﹣e x﹣x,得f′(x)=﹣e x﹣1,∵e x+1>1,∴∈(0,1),由g(x)=3ax+2cosx,得g′(x)=3a﹣2sinx,又﹣2sinx∈[﹣2,2],∴3a﹣2sinx∈[﹣2+3a,2+3a],要使过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=3ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得﹣≤a≤.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)(2015?南昌校级二模)设m>1,在约束条件下,目标函数z=x+my的最大值等于2,则m=.【分析】根据m>1,可以判断直线y=mx的倾斜角位于区间()上,由此判断出满足约束条件件的平面区域的形状,再根据目标函数z=x+my对应的直线与直线y=mx垂直,且在直线y=mx与直线x+y=1交点处取得最大值,由此可得关于m的方程,从而求得m值.【解答】解:∵m>1,由约束条件作出可行域如图,直线y=mx与直线x+y=1交于(),目标函数z=x+my对应的直线与直线y=mx垂直,且在()处取得最大值,由题意可知,又∵m>1,解得m=1+.故答案为:1+.14.(5分)(2019秋?袁州区校级期中)函数y=e x﹣mx在区间(0,3]上有两个零点,则m的取值范围是e<m≤.【分析】由y=e x﹣mx=0得m=,构造函数f(x)=,利用导数求出函数的取值情况,即可求出m的取值范围.【解答】解:由y=e x﹣mx=0得m=,设f(x)=,则f'(x)=,由f'(x)>0,解得1<x≤3,此时函数单调递增,由f'(x)<0,解得0<x<1,此时函数单调递减,∴当x=1时,函数f(x)取得极小值,同时也是最小值f(1)=e,∵当x→0时,f(x)→+∞,当x=3时,f(3)=,∴要使函数y=e x﹣mx在区间(0,3]上有两个零点,则e<m≤,故答案为:e<m≤.15.(5分)(2015春?保定校级期末)已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=11.【分析】对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可【解答】解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得联立可得当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:1116.(5分)(2014?唐山一模)定义在R上的函数f(x)满足:f(﹣x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+≥f(1﹣x)+x的解集为(﹣∞,] .【分析】可先对f(﹣x)+f(x)=x2,两边对x取导数,根据x<0时,f′(x)<x,推出x>0时,f′(x)<x,求出f(0)=0,且f′(0)≤0,得到x∈R,都有f′(x)<x.构造函数F(x)=f(x)+﹣f(1﹣x)﹣x,求导并推出F′(x)<0,且F()=0,运用函数的单调性即可解出不等式.【解答】解:∵定义在R上的函数f(x)满足:f(﹣x)+f(x)=x2,两边对x求导,得﹣f′(﹣x)+f′(x)=2x,∴f′(x)=f′(﹣x)+2x,令x>0,则﹣x<0,∵当x<0时,f′(x)<x,∴f′(﹣x)<﹣x,∴f′(x)<2x﹣x,即f′(x)<x,又f(0)=0,直线y=x过原点,∴f′(0)≤0,∴x∈R,都有f′(x)≤x,令F(x)=f(x)+﹣f(1﹣x)﹣x,则F′(x)=f′(x)+f′(1﹣x)﹣1<x+1﹣x﹣1=0,即F(x)是R上的单调减函数,且F()=0,∴不等式f(x)+≥f(1﹣x)+x,即F(x)≥0,即F(x)≥F(),∴x.∴原不等式的解集为(﹣∞,].故答案为:(﹣∞,].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2019秋?新华区校级月考)在△ABC中,a,b,c分别为角A,B,C所对的边,且==.(1)求角A的大小;(2)若△ABC的面积为3,求a的值.【分析】(Ⅰ)利用正弦定理把已知等式中的边转化成角的正弦,化简整理可用tanA分别表示出tanB和tanC,进而利用两角和公式求得tanA,进而求得A.(Ⅱ)利用tanA,求得tanB和tanC的值,利用同角三角函数关系取得sinB和sinC,进而根据正弦定理求得b和a的关系式,代入面积公式求得a.【解答】解:(Ⅰ)∵.∴==,即tanA=tanB=tanC,tanB=2tanA,tanC=3tanA,∵tanA=﹣tan(B+C)=﹣,∴tanA=﹣,整理求得tan2A=1,tanA=±1,当tanA=﹣1时,tanB=﹣2,则A,B均为钝角,与A+B+C=π矛盾,故舍去,∴tanA=1,A=.(Ⅱ)∵tanA=1,tanB=2tanA,tanC=3tanA,∴tanB=2,tanC=3,∴sinB=,sinC=,∴cosB=,cosC=sinA=sin(π﹣(B+C))=sin(B+C)=sinBcosC+cosBsinC=×+×=∵=,∴b==a,∵S△ABC=absinC=a??a×==3,∴a2=5,a=.18.(12分)(2019春?桂林校级期中)函数f(x)=lnx﹣ax2﹣2x.(Ⅰ)当a=3时,求f(x)的单调区间;(Ⅱ)若?a∈(﹣1,+∞),?x∈(1,e),有f(x)﹣b<0,求实数b的取值范围.【分析】(Ⅰ)当a=3时,求得f(x)的解析式,令f′(x)>0,求得函数的单调递增区间,f′(x)<0,求得f(x)的单调递减区间;(2)将原不等式转化成b>f(x)的最小值,由函数性质可知h(a)=﹣ax2﹣2x+lnx在(﹣1,+∞)上是减函数,可知b≥x2﹣2x+lnx,构造辅助函数g(x)=x2﹣2x+lnx,求导,根据函数的单调性,求得g(x)的最小值,即可求得实数b的取值范围.(x)=﹣【解答】解:(Ⅰ)由当a=3时,f(x)=lnx﹣x2﹣2x.求导f′(x>0),令f′(x)=0,解得:x=,∴x∈(0,)时,f′(x)>0,f(x)单调递增,x∈(,+∞)时,f′(x)<0,f(x)单调递减,∴f(x)的单调递增区间(0,),单调递减区间为(,+∞);..…(6分)(Ⅱ)由?a∈(﹣1,+∞),lnx﹣ax2﹣2x<b恒成立,则b>f(x)的最小值,…(7分)由函数h(a)=lnx﹣ax2﹣2x=﹣ax2﹣2x+lnx在(﹣1,+∞)上是减函数,∴h(a)<h(﹣1)=x2﹣2x+lnx,∴b≥x2﹣2x+lnx,..…(8分)由?x∈(1,e),使不等式b≥x2﹣2x+lnx成立,∴.…(10分)令g(x)=x2﹣2x+lnx,求导g′(x)=x﹣2﹣≥0,∴函数g(x)在(1,e)上是增函数,于是,故,即b的取值范围是…(12分)19.(12分)(2014?新余二模)在△ABC中,角A、B、C的对边分别为a,b,c,且4bsinA=a.(Ⅰ)求sinB的值;(Ⅱ)若a,b,c成等差数列,且公差大于0,求cosA﹣cosC的值.【分析】(I)已知等式利用正弦定理化简,求出sinB的值即可;(Ⅱ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简得到①,设设cosA﹣cosC=x,②,①2+②2,得到③,由a,b,c的大小判断出A,B,C的大小,确定出cosA大于cosC,利用诱导公式求出cos(A+C)的值,代入③求出x的值,即可确定出cosA﹣cosC的值.【解答】解:(Ⅰ)由4bsinA=a,根据正弦定理得4sinBsinA=sinA,∵sinA≠0,∴sinB=;(Ⅱ)∵a,b,c成等差数列,∴2b=a+c,由正弦定理化简得:2sinB=sinA+sinC,即sinA+sinC=,①设cosA﹣cosC=x,②①2+②2,得2﹣2cos(A+C)=+x2,③又a<b<c,A<B<C,∴0<B<90°,cosA>cosC,∴cos(A+C)=﹣cosB=﹣,代入③式得x2=,则cosA﹣cosC=.20.(12分)(2014?东昌区校级二模)已知函数f(x)=ax2﹣4bx+2alnx(a,b∈R)(Ⅰ)若函数y=f(x)存在极大值和极小值,求的取值范围;(Ⅱ)设m,n分别为f(x)的极大值和极小值,若存在实数,b∈(a,a),使得m﹣n=1,求a的取值范围.(e为自然对数的底)【分析】(I)由于定义域为(0,+∞)且y=f(x)存在极大值、极小值,所以f′(x)=0有两个不等的正实数根,从而可转化为二次方程根的分布问题,借助判别式、韦达定理可得不等式组,由此可得的取值范围;(II)由b∈(a,a)得a>0,且(,),由(I)知f(x)存在极大值和极小值,设f′(x)=0的两根为x1,x2(0<x1<x2),则f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,所以m=f(x1),n=f(x2),根据x1x2=1可把m﹣n表示为关于x1,a的表达式,且表达式为1,借助x1范围可得a的范围;【解答】解:(I)f′(x)=2ax﹣4b+=,其中x>0,由于函数y=f(x)存在极大值和极小值,故方程f′(x)=0有两个不等的正实数根,即2ax2﹣4bx+2a=0有两个不等的正实数根,记为x1,x2,显然a≠0,所以,解得;(II)由b∈(a,a)得a>0,且(,),由(I)知f(x)存在极大值和极小值,设f′(x)=0的两根为x1,x2(0<x1<x2),则f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,所以m=f(x1),n=f(x2),因为x1x2=1,所以0<x1<1<x2,而且=∈(,),由于函数y=x+在(0,1)上递减,所以,又由于,所以,所以m﹣n=f(x1)﹣f(x2)=﹣+4bx2﹣2alnx2=+2a(lnx1﹣lnx2)=﹣a()+2aln,令t=,则m﹣n=﹣a(t﹣)+2alnt,令h(t)=﹣(t﹣)+2lnt(),所以h′(t)=﹣1﹣+=﹣≤0,所以h(t)在()上单调递减,所以e﹣e﹣1﹣2<h(t)<e2﹣e﹣2﹣4,由m﹣n=ah(t)=1,知a=,所以.21.(12分)(2019?高安市校级模拟)已知函数f(x)=xlnx,g(x)=.(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.【分析】(Ⅰ)对F(x)求导,利用x∈(1,2)判定导函数的符号,进而得到函数的单调性,在利用零点存在定理进行证明.(Ⅱ)先由x的范围讨论f(x),g(x)的大小,确定之间的关系式m(x),在判断x1+x2与2x0的大小,可以利用分析法对其进行证明.【解答】解:由题意:F(x)=f(x)﹣g(x),那么:F(x)=xlnx﹣.定义域为(0,+∞)F′(x)=1+lnx+,由题设x∈(1,2),故F′(x)>0,即F(x)在区间(1,2)上是增函数.(1,2)是单调增区间.那么:F(1)=ln1﹣=<0,F(2)=2ln2﹣>0,并且F(x)在(1,2)上连续的,故根据零点定理,有F(x)在区间(1,2)有且仅有唯一实根,即一个零点.(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,由f(x)=xlnx,当0<x ≤1时,f(x)≤0,而g(x)=>0,故f(x)<g(x);由(Ⅰ)可知F′(x)=1+lnx+,当x>1时,F′(x)>0,存在零点x0∈(1,2),不然有:F(x0)=f(x0)﹣g(x0)=0,故1<x<x0时,f(x)<g(x);当x >x0时,f(x)>g(x);而此得到m(x)=,显然:当1<x<x0时,m′(x)=1+lnx恒大于0,m(x)是单增函数.当x>x0时,m′(x)=恒小于0,m(x)是单减函数.m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),则x1∈(1,x0),x2∈(x0,+∞),显然:当x2→+∞时,x1+x2>2x0.要证明x1+x2>2x0,即可证明x2>2x0﹣x1>x0,而m(x)在x>x0时是单减函数.故证m(x2)<m(2x0﹣x1).又由m(x1)=m(x2),即可证:m(x1)<m(2x0﹣x1).即x1lnx1<,(构造思想)令h(x)=xlnx﹣,由(1<x<x0).其中h(x0)=0,那么:h′(x)=1+lnx+﹣,记φ(t)=,则φ′(t)=,当t∈(0,1)时,φ′(t)>0;当t>1时,φ′(t)<0;故φ(t)max=;而φ(t)>0;故>φ(t)>0,而2x0﹣x>0,从而有:<0;因此:h′(x)=1+lnx+﹣>0,即h(x)单增,从而1<x<x0时,h(x)<h(x0)=0.即x1lnx1<成立.故得:x1+x2>2x0.[选修4-1:几何证明选讲]22.(10分)(2014?唐山一模)如图,AE是圆O的切线,A是切点,AD⊥OE于D,割线EC交圆O于B、C两点.(Ⅰ)证明:O,D,B,C四点共圆;(Ⅱ)设∠DBC=50°,∠ODC=30°,求∠OEC的大小.【分析】(Ⅰ)连结OA,则OA⊥EA.由已知条件利用射影定理和切割线定理推导出=,由此能够证明O,D,B,C四点共圆.(Ⅱ)连结OB.∠OEC+∠OCB+∠COE=180°,能求出∠OEC的大小.【解答】(Ⅰ)证明:连结OA,则OA⊥EA.由射影定理得EA2=ED?EO.由切割线定理得EA2=EB?EC,∴ED?EO=EB?EC,即=,又∠OEC=∠OEC,∴△BDE∽△OCE,∴∠EDB=∠OCE.∴O,D,B,C四点共圆.…(6分)(Ⅱ)解:连结OB.因为∠OEC+∠OCB+∠COE=180°,结合(Ⅰ)得:∠OEC=180°﹣∠OCB﹣∠COE=180°﹣∠OBC﹣∠DBE=180°﹣∠OBC﹣(180°﹣∠DBC)=∠DBC﹣∠ODC=20°.∴∠OEC的大小为20°.…(10分)[选修4-4:坐标系与参数方程]23.(2019?衡水模拟)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣+2=0.4ρsinθ(Ⅰ)把圆C的极坐标方程化为直角坐标方程;(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.,可把圆C的极坐标方程化为直角坐标方【分析】(Ⅰ)利用ρ2=x2+y2,y=ρsinθ程;(Ⅱ)将直线l向右平移h个单位,所得直线l′(t为参数),代入圆的方程,利用直线l′与圆C相切,建立方程,即可求h.+2=0,【解答】解:(Ⅰ)∵ρ2﹣4ρsinθ∴x2+y2﹣4y+2=0;(Ⅱ)将直线l向右平移h个单位,所得直线l′(t为参数),代入圆的方程可得2t2+2(h﹣12)t+(h﹣10)2+2=0,∵直线l′与圆C相切,∴△=4(h﹣12)2﹣8[(h﹣10)2+2]=0,即h2﹣16h+60=0,∴h=6或h=10.[选修4-5:不等式选讲]24.(2014?唐山一模)已知函数f(x)=|2x﹣a|+a,a∈R,g(x)=|2x﹣1|.(Ⅰ)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(Ⅱ)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.【分析】(Ⅰ)由g(x)≤5求得﹣2≤x≤3;由f(x)≤6可得a﹣3≤x≤3.根据题意可得,a﹣3≤﹣2,求得a≤1,得出结论.(Ⅱ)根据题意可得f(x)+g(x)≥|a﹣1|+a,f(x)+g(x)≥3恒成立,可得|a﹣1|+a≥3 由此求得所求的a的范围.【解答】解:(Ⅰ)当g(x)≤5时,|2x﹣1|≤5,求得﹣5≤2x﹣1≤5,即﹣2≤x≤3.由f(x)≤6可得|2x﹣a|≤6﹣a,即a﹣6≤2x﹣a≤6﹣a,即a﹣3≤x≤3.根据题意可得,a﹣3≤﹣2,求得a≤1,故a的最大值为1.(Ⅱ)∵当x∈R时,f(x)+g(x)=|2x﹣a|+|2x﹣1|+a≥|2x﹣a﹣2x+1|+a≥|a ﹣1|+a,f(x)+g(x)≥3恒成立,∴|a﹣1|+a≥3,∴a≥3,或.求得a≥3,或2≤a<3,即所求的a的范围是[2,+∞).。
河北省衡水中学2025届高三上学期第一次综合素养测评数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知不等式x2−2x−3<0的解集为A,不等式x+3x−2<0的解集为B,则A∩B为( )A. [−3,3]B. (−3,3)C. [−1,2]D. (−1,2)2.已知|a|=63,|b|=1,a⋅b=−9,则向量a与b的夹角为( )A. 2π3B. 5π6C. π3D. π63.如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角∠MAN= 30∘,C点的仰角∠CAB=45∘以及∠MAC=75∘,从C点测得∠MCA=60∘,已知山高BC=100m,则山高MN=( )A. 120mB. 150mC. 503mD. 160m4.已知等差数列{a n}和{b n}的前n项和分别为S n、T n,若S nT n =3n+4n+2,则a3+a7+a8b2+b10=( )A. 11113B. 3713C. 11126D. 37265.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,P是双曲线C的一条渐近线上的点,且线段PF1的中点N在另一条渐近线上.若cos∠PF2F1=35,则双曲线C的离心率为( )A. 53B. 54C. 2D. 56.点P(−2,−1)到直线l:(1+3λ)x+(1+λ)y−2−4λ=0(λ∈R)的距离最大时,其最大值以及此时的直线方程分别为( )A. 13;3x+2y−5=0B. 11;3x+2y−5=0C. 13;2x−3y+1=0D. 11;2x−3y+1=07.已知函数f(x)的定义域为(−3,3),且f(x)={lg 3−x 3+x +2x−3,−3<x <0,lg 3+x 3−x−2x +3,0⩽x <3.若3f[x(x−2)]+2>0,则x 的取值范围为( )A. (−3,2) B. (−3,0)∪(0,1)∪(1,2)C. (−1,3)D. (−1,0)∪(0,2)∪(2,3)8.已知x x−1≥ln x +ax 对∀x >0恒成立,则a 的最大值为( )A. 0B. 1eC. eD. 1二、多选题:本题共3小题,共15分。
数学试卷〔理科〕第一卷〔共60分〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项 是符合题目要求的.1. 集合{}2log 1P x x =<-,{}1Q x x =<,那么P Q =〔 〕A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .()0,1D .11,2⎛⎫- ⎪⎝⎭2. i 为虚数单位,复数z 满足()2313i1i z +=-,那么z 为〔 〕A .12B .22 C .24D .2163. 如,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视,该几何体的体积为〔 〕A .8B .12C .18D .244. 命题p :方程2210x ax --=有两个实数根;命题q :函数()4f x x x=+的最小值为4.给出以下命题: ①p q ∧;②p q ∨;③p q ∧⌝;④p q ⌝∨⌝. 那么其中真命题的个数为〔 〕 A .1 B .2C .3D .45. 由曲线y x =2y x =-及y 轴所围成的形的面积为〔 〕A .103 B .4C .163D .66. 函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的象的大致形状是〔 〕A .B .C .D .7. 阅读下面的程序框,运行相应的程序,输出的结果为〔 〕A .1321B .2113C .813D .1388. 定义在R 上的函数()f x 满足()()1f x f x '+>,()04f =,那么不等式()e e 3x x f x >+〔其中e 为自然对数的底数〕的解集为〔 〕 A .()0,+∞B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞9. 假设实数a ,b ,c ,d 满足()()2223ln 20b a a c d +-+-+=,那么()()22a cb d -+-的最小值为〔 〕 A 2B .2C .22D .810. ()21,01,3log ,1,2x x f x x x +≤<⎧⎪=⎨+≥⎪⎩存在210x x >≥,使得()()12f x f x =,那么()12x f x 的取值范围为〔 〕 A .3,24⎡⎫⎪⎢⎣⎭B .3,22⎡⎫⎪⎢⎣⎭C .34,43⎡⎫⎪⎢⎣⎭D .2,23⎡⎫⎪⎢⎣⎭11. 设函数()32133f x x x x =+-,假设方程()()210f x t f x ++=有12个不同的根,那么实数t 的取值范围为〔 〕 A .10,23⎛⎫-- ⎪⎝⎭B .(),2-∞-C .34,215⎛⎫-- ⎪⎝⎭D .()1,2-12. 设曲线()e x f x x =--〔e 为自然对数的底数〕上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,那么实数a 的取值范围为〔 〕A .[]1,2-B .()3,+∞C .21,33⎡⎤-⎢⎥⎣⎦ D .12,33⎡⎤-⎢⎥⎣⎦第二卷〔共90分〕二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13. 设1m >,变量x ,y 在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目的函数z x my =+的最大值为2,那么m =_________.14. 函数e x y mx =-在区间(]0,3上有两个零点,那么m 的取值范围是_________. 15. 函数()3223f x x mx nx m =+++在1x =-时有极值0,那么m n +=_________. 16. 定义在R 上的函数()f x 满足:()()2f x f x x -+=,当0x <时,()f x x '<,那么不等式()()112f x f x x +≥-+的解集为_________. 三、解答题 〔本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔本小题总分值12分〕在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且cos 2cos 3cos a b cA B C==. 〔1〕求角A 的大小;〔2〕假设ABC ∆的面积为3,求a 的值. 18.〔本小题总分值12分〕 函数21()ln 22f x x ax x =--. 〔1〕当3a =时,求()f x 的单调区间;〔2〕假设()1,a ∀∈-+∞,()1,e x ∃∈,有()0f x b -<,务实数b 的取值范围. 19.〔本小题总分值12分〕在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且4sin 7b A a =. 〔1〕求sin B 的值;〔2〕假设a ,b ,c 成等差数列,且公差大于0,求cos cos A C -的值. 20.〔本小题总分值12分〕函数()242ln f x ax bx a x =-+〔,a b ∈R 〕. 〔1〕假设函数()y f x =存在极大值和极小值,求ba的取值范围; 〔2〕设m ,n 分别为()f x 的极大值和极小值,假设存在实数2e 1e 1,2e 2eb a a ⎛⎫++∈ ⎪⎝⎭,使得1m n -=,求a的取值范围.21.〔本小题总分值12分〕 函数()ln f x x x =,()e xxg x =. 〔1〕记()()()F x f x g x =-,判断()F x 在区间()1,2内的零点个数并说明理由;〔2〕记()F x 在()1,2内的零点为0x ,()()(){}min ,m x f x g x =,假设()m x n =〔n ∈R 〕在()1,+∞内有两个不等实根1x ,2x 〔12x x <〕,判断12x x +与02x 的大小,并给出对应的证明.请考生在22、23、24三题中任选一题作答,假如多做,那么按所做的第一题记分.22.〔本小题总分值10分〕选修4-1:几何证明选讲如,AE 是圆O 的切线,A 是切点,AD OE ⊥于D ,割线EC 交圆O 于B ,C 两点.〔1〕证明:O ,D ,B ,C 四点共圆;〔2〕设50DBC ∠=︒,30ODC ∠=︒,求OEC ∠的大小. 23.〔本小题总分值10分〕选修4-4:坐标系与参数方程 直线l 的参数方程为10,x t y t =-+⎧⎨=⎩〔t 为参数〕,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24sin 20ρρθ-+=.〔1〕把圆C 的极坐标方程化为直角坐标方程;〔2〕将直线l 向右平移h 个单位,所得直线l '与圆C 相切,求h . 24.〔本小题总分值10分〕选修4-5:不等式选讲 函数()2f x x a a =-+,a ∈R ,()21g x x =-. 〔1〕假设当()5g x ≤时,恒有()6f x ≤,求a 的最大值; 〔2〕假设当x ∈R 时,恒有()()3f x g x +≥,求a 的取值范围.试卷答案一、选择题1.A2.C3. B4.C5.C6.B7.D8.A9.D 10.A 11.C 12.D11.解析:()32133f x x x x =+-,()2230f x x x '=+-=,3x =-,1x =,函数在(),3-∞-,()1,+∞单调递增,且在()3,1-单调递减,函数的极大值为()39f -=,函数的极小值为()513f =-,根据函数的象可知,设()f x m =,可知210m tm ++=,原方程有12个不同的根,那么210m tm ++=方程应在50,3⎛⎫⎪⎝⎭内有两个不同的根,设()21h m m tm =++那么250353402231540h t t t ⎧⎛⎫> ⎪⎪⎝⎭⎪⎪<-<⇒-<<-⎨⎪⎪∆=->⎪⎩,所以取值的范围34215t -<<-. 二、填空题13. 1m =+3e e,3⎛⎤ ⎥⎝⎦15. 11 16. 12x ≤三、解答题 17.解〔1〕cos 2cos 3cos a b cA B C==, sin sin sin cos 2cos 3cos A B CA B C∴==, 即tan tan tan 23B CA ==,那么tan 2tan B A =,tan 3tan C A =. 又在ABC ∆中,()tan tan tan tan 1tan tan B CA B C B C+=-+=--.那么22tan 3tan tan 16tan A A A A+=-,解得2tan 1A =, tan 1A ∴=-或tan 1A =,sin 5B =,sin 10C =. 在ABC ∆中有sin sin a bA B=, 那么sin 2105sin 2B b a A ===,那么2112103sin 322510ABCa S ab C a ∆====. 得25a =,所以5a =18.〔Ⅰ〕增区间10,3⎛⎫ ⎪⎝⎭是,减区间1,3⎛⎫+∞ ⎪⎝⎭;〔Ⅱ〕3,2⎛⎫-+∞ ⎪⎝⎭. 试题解析:〔Ⅰ〕()2321x x f x x +-'=-〔0x >〕,10,3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单增1,3x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单减。
衡水中学20xx —20xx 学年度上学期第一次调研考试高三年级数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,第Ⅱ卷共2页. 共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分.每小题所给选项只有一项符合题意,请将正确答案的选项填涂在答题卡上) 1.集合}032|{2<--=x x x M ,}|{a x x N >=,若N M ⊆,则实数a 的取值范围是( ) A .),3[+∞B .),3(+∞C .]1,(--∞D .)1,(--∞2.已知()f x 在R 上是奇函数,且)()2(x f x f -=+.2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则( )A .-2B .2C .-98D .983.已知函数⎩⎨⎧≤->-=)0(1)0(log )(22x x x x x f ,则不等式0)(>x f 的解集为( ) A .}10|{<<x x B .}01|{≤<-x x C .}11|{<<-x xD .}1|{->x x4.“0<a ”是“方程0122=++x ax 至少有一个负根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.π2π2(1cos )x dx -+=⎰( )A .πB .2C .π2-D .π2+6.已知“命题p :x ∃∈R ,使得0122<++x ax 成立”为真命题,则实数a 满足( )A .[0,1)B .)1,(-∞C .[1,+∞)D .]1,(-∞7.已知函数)3(log )(25.0a ax x x f +-=在),2[+∞单调递减,则a 的取值范围( ) A .]4,(-∞B .),4[+∞C .]4,4[-D .]4,4(-8.有下面四个判断:其中正确的个数是( )①命题:“设a 、b R ∈,若6a b +≠,则33a b ≠≠或”是一个真命题 ②若“p 或q ”为真命题,则p 、q 均为真命题③命题“a ∀、22,2(1)b R a b a b ∈+≥--”的否定是: “a ∃、22,2(1)b R a b a b ∈+≤--” A .0B .1C .2D .39.设函数x x x f )41(log )(4-=,xx x g ⎪⎭⎫⎝⎛-=41log )(41的零点分别为21x x 、,则( ) A .121=x xB .0<21x x <1C .1<21x x <2D .21x x 2≥10.已知abc x x x x f -+-=96)(23,c b a <<,且0)()()(===c f b f a f .现给出如下结论: ①0)1()0(>f f ; ②0)1()0(<f f ; ③0)3()0(>f f ;④0)3()0(<f f ; ⑤4<abc ;⑥4>abc 其中正确结论的序号是( ) A .①③⑤ B .①④⑥C .②③⑤D .②④⑥11.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的取值范围是( )A .)3log ,(a -∞B .),3(log +∞aC .),0(+∞D .)0,(-∞12.已知函数2010sin π(01)()log (1)x x f x x x ≤≤⎧=⎨>⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是( )A .(1,2010)B .(1,2011)C .(2,2011)D .[2,2011]卷Ⅱ(非选择题 共90分)二、填空题: (每小题5分,共20分,把答案填写在答题纸的相应位置上)13.已知函数x x x f 3)(3+=对任意的0)()2(],2,2[<+--∈x f mx f m 恒成立,则∈x ______.14.已知函数),2()(322N k k n x x f n n∈==++-的图像在),0[+∞上单调递增,则=n ________.15.若函数b x a x a x x f +-+-=||)3(2||31)(23有六个不同的单调区间,则实数a 的取值范围是___________.16.已知函数)0()(23≠+++=a d cx bx ax x f 的对称中心为M ),(00y x ,记函数)(x f 的导函数为)(/x f ,)(/x f 的导函数为)(//x f,则有0)(0//=x f .若函数()323f x x x =-,则可求得:1220122012f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭4022...2012f ⎛⎫+ ⎪⎝⎭40232012f ⎛⎫+= ⎪⎝⎭________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤 17.(本题10分)已知关于x 的不等式052<--ax ax 的解集为M . (1)当1=a 时,求集合M ;(2)当M M ∉∈53且时,求实数a 的范围.18.(本题12分)某海滨浴场的岸边可以近似的看成直线,位于岸边A 处的救生员发现海中B 处有人求救,救生员没有直接从A 处游向B 处,而是沿岸边自A 跑到距离B 最近的D 处,然后游向B 处.若救生员在岸边的行进速度是6米/秒,在海中的行进速度是2米/秒.(不考虑水流速度等因素)(1)请分析救生员的选择是否正确;(2)在AD 上找一点C ,使救生员从A 到B 的时间最短,并求出最短时间.19.(本题12分)将函数)1(log )(2+=x x f 的图像向左平移1个单位,再将图像上的所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数)(x g y =的图像. (1)求函数)(x g y =的解析式和定义域;(2)求函数)()1()(x g x f x F y --==的最大值.20.(本题12分)对于函数()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个"不动点".已知二次函数2()(1)(1)(0)f x ax b x b a =+++-≠ (1)当1,2a b ==-时,求函数()f x 的不动点;(2)对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若()y f x =的图象上,A B 两点的横坐标是()f x 的不动点,且,A B 两点关于直线2121y kx a =++对称,求b 的最小值.21.(本题12分)已知函数32213()(3)2.32a f x x x a a x a -=++-- (Ⅰ)如果对任意2[1,2],()x f x a '∈>恒成立,求实数a 的取值范围; (Ⅱ)设函数()f x 的两个极值点分别为12,x x 判断下列三个代数式:①12,x x a ++②22212,x x a ++③33312x x a ++中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数(),g a 并求出()g a 的最小值.22.(本题12分)已知偶函数)(x f y =满足:当2≥x 时,R a x a x x f ∈--=),)(2()(,当)2,0[∈x 时,)2()(x x x f -= (1)求当2-≤x 时,)(x f 的表达式;(2)试讨论:当实数m a ,满足什么条件时,函数m x f x g -=)()(有4个零点,且这4个零点从小到大依次构成等差数列.。