热工原理·第10章凝结与沸腾换热
- 格式:ppt
- 大小:1.45 MB
- 文档页数:3
凝结换热名词解释
凝结换热是指将气体或蒸汽中的热量传递给冷却介质,使其凝结成液
体的过程,常用于蒸汽发生器、冷凝器、空调系统等领域。
下面详细
解释一下其中的一些名词。
1.凝结:凝结是指气态物体(如蒸汽、气体)经过冷却后,分子间的热运动减缓,原本分布在空间中的分子团逐渐聚集成为液态物质的过程。
凝结产生的热量被传递给冷却介质,从而使液态介质热量增加。
2.换热:换热是指热能从一个物体传递到另一个物体的过程。
在凝结换热中,热能从蒸汽传递到冷却介质中。
3.冷却介质:冷却介质是指用于吸收蒸汽或气体中的热能使其凝结成液态的物质。
常见的冷却介质包括空气、水、冷凝剂等。
4.蒸汽发生器:蒸汽发生器是利用各种能源(如电、煤、油气等)加热水或其他液体,使其蒸发为蒸汽的设备。
5.冷凝器:冷凝器是将气相物质中的热量传递给冷却介质,并使其冷却成液态的设备。
在凝结换热过程中,冷凝器用于将蒸汽中的热量传递
给冷却介质,使其凝结成液态。
6.空调系统:空调系统是指利用冷凝换热原理,将室内热量传递至室外,从而达到降温、升温、调节室内湿度等效果的设备。
其中,凝结换热
用于冷凝室内空气中的水蒸气,使其凝结成水,并释放热量,以达到
降温效果。
凝结换热是一种非常重要的热传递过程,广泛应用于工业生产、医疗、住宅等各个领域。
通过深入理解其中的关键名词,我们可以更好地掌
握凝结换热的原理和应用,为未来的工作和生活提供更好的解决方案。
沸腾与凝结换热液体的沸腾和蒸汽的凝结均伴随着相变,因此又称为相变传热。
这是一个很重要的传热领域,在许多工程中均有应用。
例如锅炉、蒸发器、再沸器、冷凝器、水冷核反应堆等的设备中均发生相交传热过程。
这些相变传热过程均与流体的流动有关,因而同属于对流传热范畴。
两者的共同特点是具有很高的换热系数,例如常压下水沸腾的换热系数可高速2500-25000W/(m2K),水蒸汽凝结时的亦可达5000-15000W /(m2K),可以以很小的温差来达到很高的传热速率。
但沸腾和凝结又是一种特殊的对流换热过程,有各自独特的特征。
凝结换热凝结是蒸气(气体)转变为液态或固态的过程。
实践中经常会遇到燕气的凝结。
在蒸汽涡轮的冷凝器里蒸汽在冷却管表面凝结。
蒸气的疑结在一些蒸发装置以及大量的热交换器设备中实现。
相变时热量的释放与蒸气凝结的换热过热密切相关。
1、凝结方式:凝结既可以在蒸气空间里,也可以在换热冷却表面上进行。
在第一种情况下,当蒸气相对于饱和温度明显过冷时,在蒸气内包含的冷的液体质点或固体质点上蒸气可自发地形成冷凝相。
在第二种情况下,当蒸气和低于该蒸气压力下饱和温度的壁面接触时,不管蒸气是饱和的或过热的,都会发生蒸气的凝结过程。
2、膜状凝结与珠状凝结如果凝结液体能润湿壁面,则它将在壁而上形成一层连续的液膜,这样的凝结过程称为膜状凝结,如果液体不能润湿壁面,那么将发生珠状凝结过程。
膜状凝结过程中,蒸气的显热和汽化潜热通过汽液分界面经液膜传纷冷却壁面。
在纯饱和蒸气凝结的情况下汽液分界面的温度恰好是它的饱和温度T s 。
凝结只能在膜表面进行,潜热以导热和对流方式通过液膜传递给固体壁面。
液膜形成凝结换热的主要热阻。
当蒸汽在壁面上凝成大小不等的许多液滴时,随着时间增加,由于继续凝结或与其它液滴合并,小液珠变成大浓珠,并在重力作用或蒸汽流动力的推动下往下掉落,在它往下掉落的过程中,会把一路上所遇到的液滴一起带走,在这些液珠被清扫掉的地方,蒸汽直接与壁面接触,随之又产生众多的小波滴。
热工基础第十章思考题答案1 何谓表面传热系数?写出其定义式并说明其物理意义。
答:q=h(t w-t f),牛顿冷却公式中的h为表面传热系数。
表面传热系数的大小反映对流换热的强弱。
2 用实例简要说明对流换热的主要影响因素。
答:(1)流动起因室内暖气片周围空气的流动是自然对流。
而风机中的流体由于受到外力的作用属于强迫对流。
强迫对流和自然对流的换热效果是不同的。
(2)流动的状态流动状态有层流和湍流,层流和湍流的对流换热强度不同,输水管路,水流速度不同,会导致水的流动状态由层流到湍流,那么这两种流动状态对流换热效果是不同的。
(3)流体有无相变水在对流换热过程中被加热变成水蒸气,蒸气在对流换热过程中被冷却变成水,这个过程会吸收和放出汽化潜热,两个换热过程的换热量不同。
(4)流体的物理性质流体的物理性质对对流换热影响很大,对流换热是导热和对流两种基本导热共同作用的结果。
因此,比如水和油,金属和非金属对流换热效果不同。
(5)换热表面的几何因素换热器管路叉排和顺排换热效果不同,换热管线直径大小对换热效果也有影响。
3 对流换热微分方程组有几个方程组组成,各自到处的理论依据是什么?答:(1)连续性微分方程(2)热量平衡方程(1)ρ∂u∂τ+u∂u∂x+v∂u∂y=Fx-∂p∂x+η(∂2u∂x2+∂2u∂y2)动量平衡方程连续性微分程的依据是根据质量守恒导出的热量平衡方程是根据能量守恒导出的动量平衡方程是根据动量守恒导出的4 何谓流动边界层和热边界层?它们的厚度是如何规定的。
∞处的y值作为边界层的厚度,用δ表示。
当温度均匀的流体与它所流过的固体壁面温度不同时,在壁面附近会形成一层温度变化较大的流体层,称为热边界层。
过于温度t-tw=0.99(t∞-tw)处到壁面的距离为热边界层的厚度。
5 简述边界层理论的基本内容。
答:(1)边界层的厚度与壁面特征长度L相比是很小的量。
(2)流场划分为边界层区和主流区。
流动边界层内存在较大的速度梯度,是发生动量扩散的主要区域。
凝结与沸腾传热知识点总结一、凝结传热1. 基本概念凝结传热是指气体或蒸汽在与冷凝器或凝析器接触时,由于在高温高压下从气态转变为液态而释放出的潜热,使得冷却表面获得热量,达到热交换的目的。
凝结传热广泛应用于蒸汽动力设备、空调制冷系统、核电站等领域。
2. 传热机理凝结传热的机理主要包括蒸汽在冷却表面附近冷凝成液态的过程。
蒸汽接触冷却表面后,从气态开始逐渐降温,当温度降至饱和温度时,蒸汽开始冷凝成液态,同时向冷凝器表面释放潜热。
这一过程中,冷凝器表面得到了传热,达到冷却的效果。
3. 影响因素凝结传热的影响因素主要包括冷凝器表面的特性、冷却介质的流动情况、冷凝器的结构设计等。
其中,冷凝器表面的特性对传热性能影响较大,如表面粗糙度、表面材质等都会对凝结传热产生影响。
二、沸腾传热1. 基本概念沸腾传热是指在液体受热时,液体表面发生气泡并从表面蒸发的过程,通过气泡与液体间传热的方式,将热量传递给液体。
沸腾传热广泛应用于锅炉、蒸馏器、冷却设备等领域。
2. 传热机理沸腾传热的机理主要包括液体受热后,液体表面产生气泡并从表面蒸发,同时气泡与液体之间发生传热。
气泡在液体中的形成、生长、脱离和再次形成的过程构成了沸腾传热的基本机理。
3. 影响因素沸腾传热的影响因素主要包括液体的性质、加热表面的特性、液体的流动情况等。
其中,液体的性质对沸腾传热产生较大影响,如液体的表面张力、黏度、温度等都会对沸腾传热产生影响。
三、凝结与沸腾传热的比较凝结传热与沸腾传热在传热机理、应用领域等方面存在显著差异。
凝结传热是气体或蒸汽在冷却表面附近冷凝成液态,释放潜热的过程,适用于蒸汽动力设备、空调制冷系统等领域。
而沸腾传热是液体受热后,液体表面产生气泡并从表面蒸发,通过气泡与液体间传热的方式,适用于锅炉、蒸馏器等领域。
在传热特性上,沸腾传热的传热系数通常比凝结传热高,因此在某些情况下,沸腾传热更适于热交换。
此外,在应用领域上,凝结传热主要应用于蒸汽动力设备、空调制冷系统等领域,而沸腾传热主要应用于锅炉、蒸馏器、冷却设备等领域。