第七章----沸腾换热
- 格式:ppt
- 大小:10.81 MB
- 文档页数:70
第七章 凝结与沸腾换热(Condensation and Boiling Heat Transfer )本章重点:① 凝结与沸腾换热机理及其特点;② 大空间饱和核态沸腾及临界热流密度。
第一节 凝结换热现象(condensation heat transfer phenomena )1-1 基本概念1.凝结换热现象蒸汽与低于饱和温度 (saturated temperature) 的壁面接触时,蒸气会在壁面上凝结成液体并向壁面放出凝结潜热,这种现象称为凝结换热现象。
有两种凝结形式。
2.凝结换热的分类根据凝结液与壁面浸润能力不同分两种 :(1)膜状凝结(film-wise condensation )① 定义:凝结液体能很好地湿润壁面,并能在壁面上均匀铺展成膜的凝结形式。
② 特点:壁面上有一层液膜,凝结放出的相变热(潜热)须穿过液膜才能传到冷却壁面上, 此时液膜成为主要的换热热阻。
(2)珠状凝结(drop-wise condensation )① 定义:凝结液体不能很好地湿润壁面,凝结液体在壁面上形成小液珠的凝结形式。
② 特点:凝结放出的潜热不须穿过液膜的阻力即可传到冷却壁面上。
问:在其它条件相同时,珠状凝结和膜状凝结,哪个换热系数高?为什么?答:实验证明,同种蒸气珠状凝结时的表面传热系数比膜状凝结的高一个数量级。
例如,大气压下水蒸气珠状凝结时的表面传热系数约为)/(10~104254K m W ⋅⨯,膜状凝结约为)/(10~106243K m W ⋅⨯。
珠状凝凝结中,蒸汽与壁面直接接触,而膜状凝结时,蒸汽要通过凝结液膜与壁面传热,所以珠状凝结比膜状凝结的换热系数高。
如图,θ小则液体湿润能力强,就会铺展开来。
一般情况下,工业冷凝器,形成膜状凝结,珠状凝结的形成比较困难且不持久。
3、凝结产生的条件:固体壁面温度w t 必须低于蒸气的饱和温度s t ,即 s w t t <。
1-2 膜状凝结一、层流膜状凝结分析解 努谢尔抓住液体膜层的导热热阻是凝结过程的主要热阻,忽略次要因素,从理论上揭示了有关物理参数对凝结换热的影响。
沸腾换热对流换热现象
沸腾换热是指两个物质在彼此之间通过温度和压力耦合的动力学过程
而进行热传递的一种特殊热传递形式。
它是指当其中一个物质处于沸点时,由于其蒸汽压力较大,蒸汽中的能量可以穿过低温的另一个物质,从而使
它的温度上升,从而达到换热的目的。
传统的沸腾换热,典型的热源只有
液体,如水,而物质汇热只有气体,如汽水。
例如在一个真空环境下,水
在沸点时,沸气会通过物质层,把热量传给气体层,起到换热的作用,从
而使得低温的气体温度上升。
沸腾换热是一种高效换热方式,具有很高的换热系数,可以大大减少
换热所需的时间,从而提高整个换热系统的整体性能,同时也可以一定程
度上降低能耗。
然而,沸腾换热的温差也比较高,它的换热效率也会随着
温差的增大而降低,因此沸腾换热只适用于温差较大的情况。
对流换热是指一种热传递方式,即由于热源和物质汇热之间的温度差,彼此之间的空气层形成热对流,使热量从高温物质向低温物质传递,从而
达到换热的目的。
对流换热的特点是其换热效率较高、所需温差较小,换
热过程中涉及体积和能量变化较小,不需要利用任何额外的机械装置即可
实现换热。
1Chapter 7 Condensation and BoilingHeat Transfer(凝结与沸腾换热)本章主要内容1 Condensation Heat Transfer 凝结换热2 Boiling Heat Transfer 沸腾换热3 Heat Pipe 热管学习本章的基本要求了解凝结换热的Nusselt理论解、相似准则意义,理解主要影响因素及掌握凝结换热关联式的应用。
理解沸腾换热机理、沸腾曲线。
了解主要影响因素及沸腾换热的计算方法,了解热管工作原理及其主要特点。
2§1Condensation Heat Transfer工质在饱和温度下由气态转变为液态的过程称为凝结或冷凝(condensation),而在饱和温度下,由液态转变为气态的过程称为沸腾(boiling)。
1-1 Introduction1、The process of condensationIf the temperature of the wall is bellow the saturation temperature of the vapor, condensate will form on the surface. (壁温低于蒸汽饱和温度时)(1)Film condensation 膜状凝结If the liquid wets the surface, a smooth film is formed, and the process is called film condensation 膜状凝结。
这是最常见的凝结形式。
例如,水蒸气在洁净无油的表面上凝结。
膜状凝结时,壁面总是被一层液膜覆盖着,凝结放出的相变热(潜热)要穿过液膜才能传到冷却壁面上去,且蒸气凝结只能在膜的表面进行,潜热以导热和对流方式通过液膜传到壁。
液膜层是换热的主要热阻,故液膜的厚薄及其运动状态(层流或紊流)对换热的影响很大。
这些又取决于壁的高度(液膜流程长度)以及蒸气与壁的温差。
沸腾换热进展当液体与高于其饱和温度的壁面接触时,液体被加热汽化而产生大量汽泡的现象称为沸腾。
液体在加热面上沸腾时的换热过程,是具有相变点的两相流换热。
当加热壁面温度TW 超过液体的饱和温度 TS并达到一定数值时,液体即在加热面的某些点上形成汽泡。
这些点称为汽化核心,通常出现在加热表面的凹坑上。
汽泡形成后不断长大、脱离、上浮。
汽泡在成长大过程中吸收大量汽化潜热,汽泡的脱离和上升动又产生剧烈扰动,所以沸腾换热比单相流体的对流换热强烈得多。
一.沸腾换热1.沸腾换热分类沸腾有多种形式。
如果液体的主体温度低于饱和温度,汽泡在固体壁面上生成、长大,脱离壁面后又会在液体中凝结消失,这样的沸腾称为过冷沸腾;若液体的主体温度达到或超过饱和温度,汽泡脱离壁面后会在液体中继续长大,直至冲出液体表面,这样的沸腾称为饱和沸腾。
如果液体具有自由表面,不存在外力作用下的整体运动,这样的沸腾又称为大容器沸腾(或池沸腾);如果液体沸腾时处于强迫对流运动状态,则称之为强迫对流沸腾,如大型锅炉和制冷机蒸发器的管内沸腾。
(1)大空间沸腾与有限空间沸腾高于饱和温度的热壁面沉浸在具有自由表面的液体中所进行的沸腾,称为大空间沸腾,又称池沸腾;沸腾过程受到沸腾空间的限制,沸腾产生的蒸汽和液体混合在一起,构成汽液两相混合物(两相流),称为有限空间沸腾,又称受迫对流沸腾或管内沸腾。
图1 加热表面(2)过冷沸腾与饱和沸腾流体处于末饱和状态即流体温度低于饱和温度的沸腾现象,称为过冷沸腾;而液体温度始终保持大于液体的饱和温度,则称为饱和沸腾。
2. 沸腾换热机理(1)气泡的成长过程实验表明,沸腾只发生在加热面的某些点,而不是整个加热面,这些产生气泡的点称为汽化核心,一般认为,壁面的凹穴和裂缝易残留气体,是最好的汽化核心。
图2 气泡的成长过程(2)气泡存在的条件气泡半径R 必须满足下列条件(克拉贝龙方程)才能存在:()min 2s v w s T R R r t t σρ≥=-其中: v w s r t t σρ--表面张力--汽化潜热--蒸气密度--壁面温度--对应压力下的饱和温度可见,随过热度w s t t -增加,min R 减少,于是在同一加热面上min R R >的凹坑数将增多,即汽化核心数增加,产生气泡的密度增加。