一次回归正交设计
- 格式:doc
- 大小:624.00 KB
- 文档页数:32
回归正交试验设计一、概述(1)回归分析与正交试验设计的主要优缺点回归分析的主要优点是可以由试验数据求出经验公式,用于描述自变量与因变量之间的函数关系。
它的主要缺点是毫不关心试验数据如何取得,这样,不仅盲目地增加了试验次数,而且试验数据还往往不能提供充分的信息。
因此,有些工作者将经典的回归分析方法描述成:“这是撒大网,捉小鱼,有时还捉不到鱼”。
所以说,回归分析只是被动地处理试验数据,并且回归系数之间存在相关关系,若从回归方程中剔除某个不显著因素时,需重新计算回归系数,耗费大量的时间。
正交试验设计的主要优点是科学地安排试验过程,用最少的试验次数获得最全面的试验信息,并对试验结果进行科学分析(如方差分析),从而得到最佳试验条件,但是它的主要缺点是试验结果无法用一个经验公式来表达,从而不便于考察试验条件改变后,试验指标将作如何变化。
(2)回归正交试验设计回归正交试验设计,实际上就是将线性回归分析与正交试验设计两者有机地结合起来而发展出的一种试验设计方法,它利用正交试验设计法的“正交性”特点,有计划、有目的、科学合理地在正交表上安排试验,并将试验结果用一个明确的函数表达式即回归方程来表示,从而达到既减少试验次数、又能迅速地建立经验公式的目的。
根据回归模型的次数,回归正交试验设计又分为一次回归试验设计和二次回归试验设计。
二、一次回归正交试验设计(一)一次回归正交试验设计的概念一次回归设计研究的是一个因素z (或多个因素z 1,z 2,……)与试验指标y 之间的线性关系。
当只研究一个因素时,其线性回归模型:y =β0+β1z +e (1)其回归方程为:z y ∧∧∧+=10ββ (2)式中∧0β、∧1β称为回归系数,e 是随机误差,是一组相互独立、且服从正态分布N(0,σ2)的随机变量。
可以证明,∧0β、∧1β和∧y 是β0、β1和y 的无偏估计,即E(∧0β)=β0,E(∧1β)=β1,E(∧y )=y一次回归正交试验设计是通过编码公式x =f(z) −− 即变量变换,将式(2)变为:x b b y 10+=∧(3)且使试验方案具有正交性,即使得编码因素X的各水平之和为零:∑==mi ix1(4)式中m 是因素x 的水平数。
EXCEL和SPSS在回归分析正交试验设计和判别分析中的应用一、回归分析回归分析是一种统计方法,通过对自变量和因变量之间关系进行建模,预测因变量的值。
EXCEL和SPSS都可以进行回归分析,并提供了丰富的功能和工具。
在EXCEL中,可以使用内置的回归分析工具实现回归分析。
首先,需要将数据输入到工作表中,然后选择“数据”选项卡的“数据分析”,再选择“回归”选项。
接下来,填写变量范围和输出范围,并选择相关的统计信息和图表。
最后,点击“确定”即可得到回归分析的结果。
在SPSS中,进行回归分析的步骤稍有不同。
首先,需要导入数据文件,并选择“回归”选项。
然后,选择因变量和自变量,并设置统计选项。
最后,点击“运行”即可得到回归分析的结果。
二、正交试验设计正交试验设计是一种多因素实验设计方法,可以用于确定影响实验结果的因素及其相互作用关系。
使用正交试验设计可以减少实验次数,提高实验效率。
EXCEL和SPSS都提供了工具支持正交试验设计。
在EXCEL中,可以使用内置的“正交表生成器”来实现正交试验设计。
首先,选择“数据”选项卡的“数据分析”,再选择“正交设计表”。
接下来,填写因素数和水平数,并选择生成正交表的方式。
最后,点击“确定”即可生成正交试验设计的表格。
在SPSS中,进行正交试验设计的步骤稍有不同。
首先,需要定义因素和水平,并选择因素的类型和因素间交互作用。
然后,可以选择“生成”选项卡的“正交表”来生成正交试验设计的表格。
三、判别分析判别分析是一种统计方法,用于确定分类变量与一组预测变量之间的关系。
它可以用于预测一个事物属于哪个类别。
EXCEL和SPSS都可以进行判别分析,并提供了相应的功能和工具。
在EXCEL中,可以使用内置的“数据分析工具包”来实现判别分析。
首先,选择“数据”选项卡的“数据分析”,再选择“判别分析”。
接下来,填写变量范围和输出范围,并选择分类变量和预测变量。
最后,点击“确定”即可得到判别分析的结果。
试验设计与数据处理复习要点1、引言20世纪20年代,英国生物统计学家及数学家费歇提出了方差分析20世纪50年代,日本统计学家田口玄一将正交设计表格化。
数学家华罗庚的“优选法”。
我国数学家王元和方开泰于1978年首先提出了均匀设计。
常用的统计软件:SAS,SPSS,Origin,Excel等。
试验设计与数据处理的意义。
试验设计的目的:合理地安排试验,力求用较少的试验次数获得较好结果数据处理的目的:通过误差分析,评判试验数据的可靠性;确定影响试验结果的因素主次,抓住主要矛盾,提高试验效率;确定试验因素与试验结果之间存在的近似函数关系,并能对试验结果进行预测和优化;获得试验因素对试验结果的影响规律,为控制试验提供思路;确定最优试验方案或配方。
加权平均值:如果某组试验值用不同的方法获得,或由不同的试验人员得到的,则这组数据中不同的精度或可靠性不一致,为了突出可靠性高的数值,则可采用加权平均值。
绝对误差:试验值与真值之差误差根据其性质或产生原因分为:系统误差,随机误差,过失误差1. 随机误差:以不可预知的规律变化着的误差,绝对误差时正时负,时大时小产生的原因:偶然因素(气温的微小变2.仪器的轻微振动等)2. 系统误差:一定试验条件下,由某个或某些因素按照某一确定的规律起作用而形成的误差产生的原因:多方面(仪器不准或操作者观察终点方法不对)3.过失误差:一种显然与事实不符的误差产生的原因:实验人员粗心大意造成精密度、正确度和准确度的含义与区别。
1.精密度:反映了随机误差大小的程度,在一定的试验条件下,多次试验值的彼此符合程度2.正确度:反映系统误差的大小,精密度高并不意味着正确度也高精密度不好,但当试验次数相当多时,有时也会得到好的正确度3.准确度:反映了系统误差和随机误差的综合,表示了试验结果与真值或标准值的一致程度关于权的选择和绝对误差的选择。
权不是任意给定的,除了依据实验者的经验外,还可以按如下方法给予。
一次回归正交设计、二次回归正交设计、二次回归旋转设计说
明
一次回归正交设计是一种广泛应用于实验设计中的设计方式,该设计最基本的特点是每一个自变量只考虑一次。
这种设计方法可以通过排列组合的方式得到各种不同的设计方案,使得实验者可以通过设计来达到用最少的实验次数获取尽可能多的信息的目的。
一次回归正交设计在实验设计中被广泛使用,尤其在化学制药、工业生产等领域得到了广泛运用。
二次回归正交设计是一种基于一次回归正交设计的设计方式,这种设计方式可以进一步增加实验信息的获取。
在二次回归正交设计中,依然按照一次正交设计的方式来设计实验,但是在每个单独的自变量上,提高对其的测量次数,使得对这些自变量的测量更加准确。
同时,在某些需要深入探究的因素上,可以通过将这些因素的实验次数进一步提高,来获取相关信息。
二次回归旋转设计是一种在二次回归正交设计的基础上发展而来的设计方式。
在二次回归旋转设计中,实验者可以通过旋转矩阵来达到实验变量间的协方差为0的目的。
这样可以在保证基本信息获取的同时,增加获取高阶信息的可能性。
旋转设计特别适合于需要同时考虑多个变量的实验设计,可以使各个变量之间更加独立,减少不必要的干扰。
总的来说,在实验设计领域中,三种设计方法各自有着各自的优势。
对于需要更精准的信息获取的实验,应该选择更高阶的设计方法,在更基础的实验中则可以选择更为简单的设计方法。
另外,在选择设计方法的过程中,还应该根据实验具体情况灵活选择,使得实验设计更加科学合理。
《质量管理统计》试卷 1卷系别班级学号姓名题号一二三四五六总分分数一、单选每题1分共10分1、钢材的强度属于()A 计量数据;B 记数数据C 控制数据D 频率2、如果一批产品的批量很大,其不合格率为p(0<p<1),从中抽查n个产品,发现有X个产品不合格,则X的分布为()A泊松分布;B二项分布;C0—1分布;D正态分布。
3、为实施抽样检验的需要而划分的产品的基本单位是()。
A产品批;B批量;C单位产品;D样本。
4下面那一个条件是判断生产过程处于统计控制状态的()。
A连续7点或更多点呈上升或下降趋势;B各个点均匀分布在中心线的两侧;C连续三点中有两点落在二倍与三倍标准差控制界限内;D连续七点中至少有三点落在二倍与三倍标准差控制界限内。
5、选用三水平正交表,考察三因子的实验条件有()。
A9个;B12个;C16个;D18个。
6、产品的质量特性y是连续量且不为负,取值越大越好,这样的质量特性称之为()。
A望目特性;B望小特性;C望大特性;D信噪比。
7、产品的最好的工作时期是()。
A早期失效期;B偶然失效期;C损耗失效期;D产品试生产期。
8、由不同操作者,采用相同量具,测量同一零件的同一特性所得重复测量的均值的变差称为()。
A再现性;B重复性;C波动性;D随机性。
9、产品设计的第一阶段是()。
A市场需求;B系统设计;C参数设计;D容差设计。
10、在调整型抽样检验系统中,如果连续五批产品中有两批不合格,那么应该采用()。
A正常抽样方案;B加严抽样方案;C放宽抽样方案;D暂停抽样方案二、多选题每题2分共10分。
1、过程能力指数计算的基本假定包括()。
A过程的稳定性;B产品的规格限能准确反映顾客的要求;C公差要大;D要分等级。
E 采用加严抽样方案。
2、决定计数一次抽样方案的因素有()A批量;B样本容量;C合格判定数;D不合格判定数;E检验框图。
3、下面属于计量值控制图的有()。
A均值—标准差控制图;B中位数—极差控制图;C单值—移动极差控制图;D缺陷数控制图;E不合格品率控制图。
一次回归正交设计某产品的产量与时间、温度、压力和溶液浓度有关。
实际生产中,时间控制在30~40min,温度控制在50~600C,压力控制在2*105~6*105Pa,溶液浓度控制在20%~40%,考察Z1~Z2的一级交互作用。
因素编码Z j(x j) Z1/min Z2/o C Z3/*105Pa Z4/%下水平Z1j(-1)30 50 2 20上水平Z2j(+1)40 60 6 40零水平Z0j(0)35 55 4 30变化间距 5 5 2 10编码公式X1=(Z1-35)/5 X2=(Z2-55)/5X3=(Z3-4)/2 X4=(Z4-30)/1选择L8(27)正交表因素x1,x1,x3,x4依次安排在第1、2、4、7列,交互项安排在第3列。
试验号X0 X1(Z1) X2(Z2) X3(Z3) X4(Z4) X1X2 Yi1 1 1 1 1 1 1 9.72 1 1 1 -1 -1 1 4.63 1 1 -1 1 -1 -1 10.04 1 1 -1 -1 1 -1 11.05 1 -1 1 1 -1 -1 9.06 1 -1 1 -1 1 -1 10.07 1 -1 -1 1 1 1 7.38 1 -1 -1 -1 -1 1 2.49 1 0 0 0 0 0 7.910 1 0 0 0 0 0 8.111 1 0 0 0 0 0 7.4 Bj=∑xjy 87.4 6.6 2.6 8.0 12.0 -16.0aj=∑xj2 11 8 8 8 8 8bj = Bj7.945 0.825 0.325 1.000 1.500 -2.00/aj393 5.445 0.845 8.000 18.000 32.000Qj =Bj2 /aj可建立如下的回归方程。
Y=7.945+0.825x1+0.325x2+x3+1.5x4-2x1x2显著性检验:1、回归系数检验回归关系的方差分析表变异来源SS平方和Df自由度MS均方F显著水平x1 5.4451 5.44576.250.01 x20.84510.84511.830.05 x38.00018.000112.040.01 x4 18.000118.000252.100.01 x1x2 32.000132.000448.180.01 回归64.29 5 12.858180.080.01 剩余0.357 5 0.0714失拟0.097 3 0.0323 0.25 <1 误差e 0.2620.13总和64.64710经F检验不显著的因素或交互作用直接从回归方程中剔掉,不必再重新进行回归分析。