坐标系与参数方程和不等式选讲练习
- 格式:doc
- 大小:75.00 KB
- 文档页数:2
十四、选做题【题组一】1、选修44-:坐标系与参数方程已知曲线C 的极坐标方程为2229cos 9sin ρθθ=+,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求曲线C 的普通方程;(2)已知A B 、为曲线C 上的两个点,若OA OB ⊥,求2211+OAOB的值.2、选修45-:不等式选讲已知函数()121f x x x =+--.(1)求()f x 的图象与x 轴围成的三角形面积;(2)设24()x ax g x x-+=,若对,(0,)s t ∀∈+∞,恒有()()g s f t ≥成立,求实数a 的取值范围.【题组二】1、选修44-:坐标系与参数方程在直角坐标系xOy 中,将曲线1cos :()1sin 2x t C t y t =+⎧⎪⎨=⎪⎩为参数上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线1C ;以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos()6πρθ-=(1)求曲线1C 的极坐标方程;(2)已知点(1,0)M ,直线l 的极坐标方程为3πθ=,它与曲线1C 的交点为,O P ,与曲线2C 的交点为Q ,求MPQ 的面积.2、选修45-:不等式选讲已知函数()21f x x a x =-+-,a R ∈.(1)若不等式()21f x x ≤--有解,求实数a 的取值范围; (2)当2a <时,函数()f x 的最小值为3,求实数a 的值.【题组三】1、选修44-:坐标系与参数方程在直角坐标系xOy 中,倾斜角为α的直线l的参数方程为2cos ()sin x t t y t αα=+⎧⎪⎨=⎪⎩为参数,曲线C 的参数方程为2cos ()sin x y θθθ=⎧⎨=⎩为参数.(1)若3πα=,求曲线C 上的点到直线l 的距离的最大值;(2)若直线l 与曲线C 交于不同的两点,A B ,且点P ,满足2PA PB OP =,求直线l 的斜率.2、选修45-:不等式选讲已知函数()1f x x =-.(1)求不等式1()()2f x f x+>的解集;(2)若,,a b c 均为正实数,且满足(2)a b c f ++=-,求证:2223b c a a b c++≥.十四、选做题(答案解析)【题组一】1、选修44-:坐标系与参数方程已知曲线C 的极坐标方程为2229cos 9sin ρθθ=+,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求曲线C 的普通方程;(2)已知A B 、为曲线C 上的两个点,若OA OB ⊥,求2211+OAOB的值.解:(1)解:2229:cos 9sin C ρθθ=+22(cos )9(sin )9ρθρθ∴+=又cos ,sin x y ρθρθ==∴曲线C 的普通方程为2299x y +=,即2219x y +=.(2)设1(,)A ρα,2(,)2B πρα±由已知,得222221cos 9sin cos sin 99θθθθρ+==+ 2222222212cos ()1111cos 2sin sin ()992OA OBπααπααρρ±∴+=+=+++± 2222110(cos sin )(sin cos )99αααα=+++=. 2、选修45-:不等式选讲已知函数()121f x x x =+--.(1)求()f x 的图象与x 轴围成的三角形面积;(2)设24()x ax g x x-+=,若对,(0,)s t ∀∈+∞,恒有()()g s f t ≥成立,求实数a 的取值范围.解:(1)由已知,得3,1()31,113,1x x f x x x x x -<-⎧⎪=--≤≤⎨⎪-+>⎩()f x ∴的图象与x 轴围成的三角形的三个顶点分别为1(,0),(3,0),(1,2)3A B C118(3)2233ABC S ∆∴=⨯-⨯=(2),(0,)s t ∀∈+∞,恒有()()g s f t ≥成立 min max ()()g x f x ∴≥由(1)知,max ()(1)2f x f ==0x > 4()4g x x a x a a x x∴=+-≥-=- 当且仅当4x x=,即2x =时等号成立 min ()4g x a ∴=- 422a a ∴-≥⇒≤ ∴实数a 的取值范围为(,2]-∞.【题组二】1、选修44-:坐标系与参数方程在直角坐标系xOy 中,将曲线1cos :()1sin 2x t C t y t =+⎧⎪⎨=⎪⎩为参数上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线1C ;以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos()6πρθ-=(1)求曲线1C 的极坐标方程;(2)已知点(1,0)M ,直线l 的极坐标方程为3πθ=,它与曲线1C 的交点为,O P ,与曲线2C 的交点为Q ,求MPQ 的面积.解:(1)由已知,得11cos :()sin x tC t y t =+⎧⎨=⎩为参数又22cos sin 1t t +=22(1)1x y ∴-+=,即2220x y x +-=又222,cos x y x ρρθ+==∴曲线1C 的极坐标方程为22cos 0ρρθ-=,即2cos ρθ=.(2)设11(,)P ρθ,22(,)Q ρθ由11132cos πθρθ⎧=⎪⎨⎪=⎩得(1,)3P π由22232cos()6πθπρθ⎧=⎪⎪⎨⎪-=⎪⎩得(3,)3Q π12132PQ ρρ∴=-=-=又点(1,0)M 到直线l的距离为sin 602d OM ︒==1122222MPQ S PQ d ∆∴==⨯⨯=. 2、选修45-:不等式选讲已知函数()21f x x a x =-+-,a R ∈.(1)若不等式()21f x x ≤--有解,求实数a 的取值范围; (2)当2a <时,函数()f x 的最小值为3,求实数a 的值. 解:(1)2121x a x x -+-≤--有解2222x a x ∴-+-≤有解222(2)(22)2x a x x a x a -+-≥---=-当且仅当(2)(22)0x a x --≤时等号成立min (222)2x a x a ∴-+-=- 2204a a ∴-≤⇒≤≤∴实数a 的取值范围为[]0,4.(2)()11222a a a f x x x x x x =-+-+-≥-+-()(1)122a a x x ≥---=- 当且仅当2ax =时等号成立. min ()13482af x a a ∴=-=⇒=-=或. 又2a < 4a ∴=-. 【题组三】1、选修44-:坐标系与参数方程在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为2cos ()sin x t t y t αα=+⎧⎪⎨=⎪⎩为参数,曲线C 的参数方程为2cos ()sin x y θθθ=⎧⎨=⎩为参数.(1)若3πα=,求曲线C 上的点到直线l 的距离的最大值;(2)若直线l 与曲线C 交于不同的两点,A B ,且点P ,满足2PA PB OP =,求直线l 的斜率. 1、 解:(1)设曲线C 上任一点为(2cos ,sin )Qθθ当3πα=时,122:()x t l t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数消去t ,得2(2)y x =-=,即0l y -= ∴点P 到直线l的距离为d=ϕ==-∴当sin()1θϕ+=-时,max 2d =.∴曲线C 上的点到直线l. (2)由2cos :()sin x C y θθθ=⎧⎨=⎩为参数及22cos sin 1θθ+=得22()12x y +=,即22:14x C y +=将2cos :()sin x t l t y t αα=+⎧⎪⎨=⎪⎩为参数代入上式,得222(cos 4sin )4cos )120t t αααα++++=2224cos )48(cos 4sin )0tan ααααα∴∆=+-+>⇒>设点,A B 对应的参数分别为12,t t 122212cos 4sin t t αα∴=+又22227OP=+=22127tan tan )cos 4sin 44αααα∴=⇒==-+或舍去∴直线l 2、选修45-:不等式选讲已知函数()1f x x =-.(1)求不等式1()()2f x f x+>的解集;(2)若,,a b c 均为正实数,且满足(2)a b c f ++=-,求证:2223b c a a b c++≥. 解:(1)1112x x-+->可化为: 001(1)(1)2x x x x <⎧⎪⇒<⎨---->⎪⎩① 01011(1)(1)2x x x x <≤⎧⎪⇒<<⎨--+->⎪⎩②111(1)(1)2x x x x >⎧⎪⇒>⎨--->⎪⎩③ 综上所述,原不等式的解集为(,0)(0,21)(21,)-∞-++∞.(2)证明:(2)3a b c f ++=-=222222()()()()b c a b c a a b c a b c a b c a b c∴+++++=+++++ 22222()c a a b c a b c a b c≥++=++当且仅当1a b c ===时等号成立222b c a a b c a b c ∴++≥++,即2223b c a a b c++≥.。
坐标系与参数方程知识点总结及练习题1.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP AM =,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y +=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),C 与1C 没有公共点.【分析】(1)将曲线C 的极坐标方程化为2cos ρθ=,将cos ,sin x y ρθρθ==代入可得;(2)设(),P x y ,设)Mθθ,根据向量关系即可求得P 的轨迹1C 的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C 的极坐标方程ρθ=可得2cos ρθ=,将cos ,sin x y ρθρθ==代入可得22x y +=,即(222x y -+=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)Mθθ+ AP =,())()1,22cos 2sin x y θθθθ∴-=-=+,则122cos 2sin x y θθ⎧-=+-⎪⎨=⎪⎩32cos 2sin x y θθ⎧=-+⎪⎨=⎪⎩,故P 的轨迹1C 的参数方程为32cos 2sin x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数)曲线C 的圆心为),曲线1C 的圆心为()3,半径为2,则圆心距为3-,32-<- ,∴两圆内含,故曲线C 与1C 没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M 的参数坐标,利用向量关系求解.1.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程(1)直线过极点:θ=α;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ρsin θ=b .2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程(1)圆心位于极点,半径为r :ρ=r ;(2)圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)圆心位于r :ρ=2r sin θ.3.常见曲线的参数方程(1)圆x 2+y 2=r 2=r cos θ,=r sin θ(θ为参数).(2)圆(x -x 0)2+(y -y 0)2=r 2的参数方程为x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1的参数方程为x =a cos θ,y =b sin θ(θ为参数).(4)抛物线y 2=2px 的参数方程为x =2pt 2,y =2pt(t 为参数).(5)过定点P (x 0,y 0)的倾斜角为α的直线的参数方程为x =x 0+t cos α,y =y 0+t sin α(t 为参数).4.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则x =ρcos θy =ρsin θ,ρ2=x 2+y 2tan θ=yx(x ≠0).1.曲线C 的方程为22 341x y +=,曲线C 经过伸缩变换3{4x xy y='='得到新曲线的方程为()A .2227641xy +=B .2264271xy +=C .22134x y +=D .221916x y +=2.直线l 的方程为10x y +-=,则极坐标为32,4π⎛⎫⎪⎝⎭的点A 到直线l 的距离为A 2B .22C .222-D .222+3.在边长为1的正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值是A .3B .22C .23D .44.椭圆的参数方程为53x cos y sin θθ=⎧⎨=⎩(θ为参数),则它的两个焦点坐标是()A .()4,0±B .()0,4±C .()5,0±D .()0,3±5.已知抛物线2:2C y x =,过定点(,0)M a 的直线与抛物线C 交于,A B 两点,若2211||||MA MB +常数,则常数a 的值是()A .1B .2C .3D .46.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为()A .1cos 2ρθ=B .sin 2ρθ=C .cos 2ρθ=D .1sin 2ρθ=7.在平面直角坐标系中,参数方程2211x ty t⎧=-⎪⎨=+⎪⎩(t 是参数)表示的曲线是()A .一条直线B .一个圆C .一条线段D .一条射线8.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为()A.24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B.24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b9.已知实数满足,则的最小值是()A .55-B .C .D .10.在直角坐标系xoy 中,直线l 的参数方程为212222x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的方程为2y x =.若直线l 与曲线C 交于A ,B 两点,(1,2)P -,则PA PB +=()AB .10CD .211.当t R ∈时,参数方程2228444t x t t y t -⎧=⎪⎪+⎨-⎪=⎪+⎩(t 为参数)表示的图形是()A .双曲线的一部分B .椭圆(去掉一个点)C .抛物线的一部分D .圆(去掉一个点)12.已知直线:60l x y -+=与圆12cos :12sin x C y θθ=+⎧⎨=+⎩,则C 上各点到l 的距离的最小值为()A.2-B.C.D.2+13.P 是直线:40l x y +-=上的动点,Q 是曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是()A.2B.2CD.214.直线2413x t y t =-+⎧⎨=--⎩(t 为参数)被圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为()A .6B .5C .8D .715.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.16.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.17.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.18.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.19.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2π⎡⎤θ∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.20.将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.1.C 【分析】先将34x x y y ''=⎧⎨=⎩反解为34x x y y ⎧=⎪⎪⎨''⎪=⎪⎩,再代入22 341x y +=,最后得到新曲线的方程即可.【详解】解:因为伸缩变换34x x y y ''=⎧⎨=⎩,所以34x x y y ⎧=⎪⎪⎨''⎪=⎪⎩,代入22 341x y +=,所以得到的新曲线的方程为:22134x y +=,故选:C 【点睛】本题考查函数的伸缩变换,是基础题.2.B 【分析】将点432,A π⎛⎫⎪⎝⎭的极坐标化为直角坐标(2,2-,再利用点到直线的距离公式,即可得答案;【详解】点432,A π⎛⎫ ⎪⎝⎭的直角坐标为(2,2,则由点到直线的距离公式得222212211d -+-==+.故选:B.【点睛】本题考查极坐标化为直角坐标、点到直线距离公式的应用,考查运算求解能力.3.A 【分析】以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为2cos 12θ+,2sin 1)2θ+,根据AP AB AD λμ=+ ,求出λ,μ,根据三角函数的性质即可求出最值【详解】如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则()0,0A ,()1,0B ,()0,1D ,()1,1C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,1BC =,1CD =,22BD r ∴===,∴圆的方程为()()221112x y -+-=,设点P 的坐标为2cos 12θ+,2sin 1)2θ+,AP AB AD λμ=+,即2cos 12θ+2sin 1)2θ+=(1λ,0)(0μ+,1)(λ=,)μ,2cos 12θλ∴+=2sin 12θμ+=,22cos 11sin 21sin 12244ππλμθθθθ⎛⎫⎛⎫∴+=+++=++-+ ⎪ ⎪⎝⎭⎝⎭ ,13λμ∴+,故λμ+的最大值为3,故选:A.【点睛】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.4.A 【解析】消去参数可得椭圆的标准方程221259x y +=,所以椭圆的半焦距4c =,两个焦点坐标为(40)±,,故填(±4,0).5.A 【分析】设直线AB 的标准参数方程cos sin x a t y t αα=+⎧⎨=⎩(t 为参数,α是直线的倾斜角),代入抛物线方程应用韦达定理,利用12,MA t MB t ==计算可求解.【详解】设直线AB 的方程为cos sin x a t y t αα=+⎧⎨=⎩(t 为参数,α是直线的倾斜角),代入抛物线方程得22sin 2cos 20t t a αα--=,224cos 8sin 0a αα∆=+>,1222cos sin t t αα+=,1222sin a t t α=-,2221212122222222121212()21111()t t t t t t t t t t t t MA MB++-+=+==242244cos 4sin sin 4sin aa αααα+=222cos sin a a αα+=221(1)sin a aα+-=,此值与α的取值无关,则10a -=,即1a =.故选:A .【点睛】关键点点睛:本题考查直线与抛物线相交问题的定值问题.解题关键是利用直线的参数方程,利用参数的几何意义求解.即设直线AB 的方程为cos sin x a t y t αα=+⎧⎨=⎩(t 为参数,α是直线的倾斜角),代入抛物线方程后应用韦达定理得1212,t t t t +,而12,MA t MB t ==,由此易计算2211||||MA MB +.6.C 【分析】把极坐标方程化为直角坐标方程,再判断是否相切.【详解】由题意圆的直角坐标方程为224x y y +=,即22(2)4x y +-=,圆心上(0,2)C ,半径为2r =,A 中直线方程是12x =,B 中直线方程是2y =,C 中直线方程是2x =,D 中直线方程是12y =,只有直线2x =与圆相切.故选:C .【点睛】方法点睛:本题考查极坐标方程与直角坐标方程的互化,考查直线与圆的位置关系.在极坐标系中两者位置关系的差别是不方便的,解题方法是把极坐标方程化为直角坐标方程,在直角坐标系中判断直线与圆的位置关系.7.D 【分析】参数方程2211x t y t⎧=-⎨=+⎩,消去参数t ,由于20t ≥,得到方程20x y +-=,1,1x y ≤≥,故表示的曲线是射线.【详解】将参数方程2211x t y t⎧=-⎨=+⎩,消去参数t ,由于20t ≥,得到方程20x y +-=,其中1,1x y ≤≥,又点(1,1)在直线上,故表示的曲线是以(1,1)为起点的一条射线故选:D.【点睛】易错点睛:本题考查参数方程与普通方程的互化,但互化时一定要注意消去参数,得到的普通方程中x,y 的范围,本题中20t ≥,所以消去参数得到的方程为一条射线,考查学生的转化能力与运算求解能力,属于基础题.8.A 【分析】用参数表示出,x y ,由此化简22x y +,结合三角函数、二次函数的性质,求得22x y +的最大值.【详解】记2cos x θ=,sin y b θ=,2224cos 2sin ()x y b f θθθ+=+=,222()4sin 2sin 44(sin )444b b f b θθθθ=-++=--++,[]sin 1,1θ∈-.若01044b b <⇒<,则当sin 4b θ=时()f θ取得最大值244b +;若144bb >⇒>,则当sin 1θ=时()f θ取得最大值2b .故选:A 【点睛】本题考查的是椭圆的性质及椭圆的参数方程,可以从不同角度寻求方法求解,本题用了椭圆的参数方程结合三角函数的最值进行求解.9.A 【分析】先由2246120x y x y +-++=化为圆的参数方程2{3x cos y sin αα+-==,将()22255x y cos sin αααθ--=-+=++()5555αθ⎡++∈-+⎣,求解.【详解】∵实数x ,y 满足2246120x y x y +-++=,∴2{3x cos y sin αα+-==,所以()22255x y cos sin αααθ--=-+=++,()55αθ⎡++∈⎣,min22[5225x y x y∴--∈-+∴--=-,故选A.10.A【分析】将直线的参数方程代入曲线C的直角坐标方程,得到关于t的二次方程,根据直线参数方程中t的几何意义可知,12PA PB t t+=+,然后利用韦达定理代值求解.【详解】设在直线l的参数方程中,点A和点B所对应的参数分别为1t和2t,将直线的参数方程代入曲线C 的直角坐标方程得:2222122t t⎛⎫+=--⎪⎪⎝⎭,整理得:220t-=,则12t t+=,122t t⋅=-,故1212PA PB t t t t+=+=-==故选:A.【点睛】本题考查直线参数方程中t的几何意义,考查弦长问题的求解,难度一般.11.B【分析】由t R∈,令2tan,(,)22tππαα=∈-结合三角恒等变换即有sin22cos2xyαα⎧-=⎪⎨⎪=⎩即知2214x y+=,不过点(0,1)-,可确定选项;【详解】t R∈时,可令2tan,()22tππαα=∈-,即有:2224tan1tan1tan1tanxyαααα-⎧=⎪⎪+⎨-⎪=⎪+⎩,即sin22cos2xyαα⎧-=⎪⎨⎪=⎩,∴2214x y +=,不过点(0,1)-,故选:B 【点睛】本题考查了根据参数方程确定曲线,利用等价换元,并结合三角恒等变换将参数方程转化为普通方程,注意取值范围;12.A 【分析】将圆的参数方程化为直角坐标系方程,计算圆心到直线的距离,判断直线与圆的位置关系为相离,最近距离为d r -.【详解】将圆12cos :12sin x C y θθ=+⎧⎨=+⎩化成在平面直角坐标系下的形式,圆22:(1)(1)4C x y -+-=,圆心C 为(1,1),半径2r =.已知直线:60l x y -+=,那么,圆心C 到直线l的距离为d r ==>,故直线l 与圆C相离,所以C 上各点到l的距离的最小值为2d r -=-.故选:A.【点睛】本题主要考查了参数方程,直线与圆的位置关系,综合性较强,是常考题型.13.C 【分析】设点,sin )Q θθ,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数,设点,sin )Q θθ,则点Q 到直线:40l x y +-=的距离为d ==当2,6k k Z πθπ=+∈时,min d ==.故选:C.【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.14.A 【分析】把直线和圆的参数方程化为普通方程,结合点到直线的距离公式和利用圆的弦长公式,即可求解.【详解】由题意,直线2413x ty t=-+⎧⎨=--⎩(t 为参数)可得直线的方程为34100x y ++=,圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的普通方程为22(2)(1)25x y -+-=,可得圆心(2,1)C ,半径为=5r ,所以圆心到直线34100x y ++=的距离为4d ==,由圆的弦长公式可得,弦长6L ===.故选:A.【点睛】本题主要考查了参数方程与普通方程的互化,以及直线与圆的位置关系的应用,其中解答中把参数方程化为普通方程,结合圆的弦长公式求解是解答的关键,着重考查推理与运算能力.15.(1)(2)3cos sin 120ρθρθ-+=【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==;(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.16.(1)(2)2.【分析】(1)由题意,在OAB 中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin(242ππ⨯-=.【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.17.(1)0ρ=l 的极坐标方程为sin()26πρθ+=;(2)4cos ()42ππρθθ=≤≤【分析】(1)先由题意,将0=3θπ代入4sin ρθ=即可求出0ρ;根据题意求出直线l 的直角坐标方程,再化为极坐标方程即可;(2)先由题意得到P 点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.【详解】(1)因为点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,所以004sin 4sin3πρθ===;即3M π,所以tan 3OM k π==,因为直线l 过点(4,0)A 且与OM 垂直,所以直线l 的直角坐标方程为3(4)3y x =--,即40x -=;因此,其极坐标方程为cos sin 4ρθθ=,即l 的极坐标方程为sin()26πρθ+=;(2)设(,)P x y ,则OP y k x =,4AP y k x =-,由题意,OP AP ⊥,所以1OP APk k =-,故2214y x x=--,整理得2240x y x +-=,因为P 在线段OM 上,M 在C 上运动,所以02,02x y ≤≤≤≤,所以,P 点轨迹的极坐标方程为24cos 0ρρθ-=,即4cos ()42ππρθθ=≤≤.【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.18.(1)22:1,(1,1]4y C x x +=∈-;:2110l x ++=;(2【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈-又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d ==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d =【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.19.(1)[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数;(2)3(,22【分析】(1)先求出半圆C 的直角坐标方程,由此能求出半圆C 的参数方程;(2)设点D 对应的参数为α,则点D 的坐标为()1+cos ,sin αα,且[]0,απ∈,半圆C 的圆心是()1,0C因半圆C 在D 处的切线与直线l 垂直,故直线DC 的斜率与直线l 的斜率相等,由此能求出点D 的坐标.【详解】(1)由ρ2cosθ=,得[]2220,01x y x y +-=∈,,所以C 的参数方程为[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数(2)[]sin 0πtan 0,,,1+cos 12332D αααπαα⎛⎫-=⇒=∈∴= ⎪-⎝⎭【点睛】本题主要考查参数方程与极坐标方程,熟记直角坐标方程与参数方程的互化以及普通方程与参数方程的互化即可,属于常考题型.20.(1)cos {2sin x t y t==(t 为参数);(2)34sin 2cos ρθθ=-.【详解】试题分析:(1)设11(,)x y 为圆上的点,在曲线C 上任意取一点(x ,y ),再根据11{2x x y y ==,由于点11(,)x y 在圆221x y +=上,求出C 的方程,化为参数方程.(2)解方程组求得12P P 、的坐标,可得线段12PP 的中点坐标.再根据与l 垂直的直线的斜率为12,用点斜式求得所求的直线的方程,再根据x cos y sin ρθρθ==、可得所求的直线的极坐标方程.(1)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得11{2x x y y ==由22111x y +=得22)12(y x =+,即曲线C 的方程为2214y x +=.,故C 得参数方程为cos {2sin x t y t ==(t 为参数).(2)由221{4220y x x y +=+-=解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩.不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.考点:1.参数方程化成普通方程;2.点的极坐标和直角坐标的互化.。
专题十一 不等式选讲、坐标系与参数方程1、若点A 的极坐标2(2,)3π,则点A 的直角坐标为( )A.B. 1,(C. (-D. (1,-2、在极坐标系中,圆πcos 3ρθ⎛⎫=+ ⎪⎝⎭的圆心的极坐标为( ) A.1π,23⎛⎫- ⎪⎝⎭ B.1π,23⎛⎫ ⎪⎝⎭ C.π1,3⎛⎫- ⎪⎝⎭ D.π1,3⎛⎫ ⎪⎝⎭3、化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A.220x y +=或1y = B. 1x = C. 220x y +=或1x = D. 1y =4、若直线的参数方程为12{23x ty t =+=- (t 为参数),则直线的斜率为( ) A. 23 B. 23- C. 32 D. 3-25、不等式136x x -++≤的解集为( ) A.[4,2]- B.[)2,+∞ C.(],4-∞- D.(][),42,-∞-+∞6、若不等式|2|6ax +<的解集为()1,2-,则实数a 等于( )A .8B .2C .-4D .-87、过抛物线22(x t t y ⎧=⎪⎨=⎪⎩为参数)的焦点的弦长为2,则弦长所在直线的倾斜角为( )A. π3B. π3或2π3C. π6D. π6或5π68、参数方程x t y t ⎧=⎪⎨=⎪⎩为参数)化成普通方程为( )A.2y x =B.2(0)y x x =≥C.2y x =D.2(0)y x x =≥ 9、已知点(1,P ,则它的极坐标是 .(0,02πρθ>≤<)10、在极坐标系中,点π(2,)6到直线πsin()16ρθ-=的距离是___________11、曲线cos :sin x C y θθ=⎧⎨=⎩(θ为参数)上的任意一点P 到直线:4l x y +=的最短距离为______.12、不等式21210x x +-->的解集为_______.13、已知函数21()|||1|(0)a f x x x a a +=-+->,g()4|1|x x =-+。
高三数学不等式选讲试题1.设函数(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.【答案】(1)见解析;(2)(0,1)∪(,+∞)【解析】(1)利用绝对值基本性质:|x-a|+|x-b|≥|a-b|及基本不等式可得;(2)分类写出f(2)关于m的解析式,解相关分式不等式即可试题解析:(Ⅰ)由m>0,有f(x)=|x-|+|x+m|≥|-(x-)+x+m|=+m≥4,当且仅当=m,即m=2时取“=”.所以f(x)≥4. 4分(Ⅱ)f(2)=|2-|+|2+m|.当<2,即m>2时,f(2)=m-+4,由f(2)>5,得m>.当≥2,即0<m≤2时,f(2)=+m,由f(2)>5,0<m<1.综上,m的取值范围是(0,1)∪(,+∞). 10分考点:绝对值不等式2.设,且满足:,,求证:.【答案】详见解析【解析】根据题中所给条件:,,结合柯西不等式可得出:,由此可推出:,即可得出三者的关系:,问题即可求解.,,,又,,. 10分【考点】不等式的证明3.已知关于x的不等式(其中),若不等式有解,则实数a的取值范围是()A.B.C.D.【答案】C【解析】∵设故,即的最小值为,所以有解,则解得,即的取值范围是,选C.4.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.[-2,+∞)B.(-∞,-2)C.[-2,2]D.[0,+∞)【答案】A【解析】由题意a|x|≥-x2-1,∴a≥=(x≠0).∵≤-2,∴a≥-2.当x=0时,a∈R,综上,a≥-2,选A5.设函数,其中。
(1)当时,求不等式的解集;(2)若不等式的解集为,求a的值。
【答案】(1)或(2)【解析】(1)当时,可化为。
由此可得或。
故不等式的解集为或。
(2)由得此不等式化为不等式组或即或因为,所以不等式组的解集为由题设可得= ,故6.不等式x2﹣4x+a<0存在小于1的实数解,则实数a的取值范围是()A.(﹣∞,4)B.(﹣∞,4]C.(﹣∞,3)D.(﹣∞,3]【答案】C【解析】不等式x2﹣4x+a<0可化为:x2﹣4x<﹣a,设y=x2﹣4x,y=﹣a,分别画出这两个函数的图象,如图,由图可知,不等式x2﹣4x+a<0存在小于1的实数解,则有:﹣a>﹣3.故a<3.故选C.7.已知,,,.求证.【答案】详见解析【解析】利用分析法或作差法证明不等式. 即,而显然成立,【证明】因为,,所以,所以要证,即证.即证, 5分即证,而显然成立,故. 10分【考点】不等式相关知识8.若不等式的解集为,则的取值范围为________;【答案】【解析】令,则;若不等式的解集为,则的取值范围为.【考点】绝对值不等式的解法、恒成立问题.9.已知,且,求的最小值.【答案】1.【解析】观察已知条件与所求式子,考虑到柯西不等式,可先将条件化为,此时,由柯西不等式得,即,当且仅当,即,或时,等号成立,从而可得的最小值为1.试题解析:, ,,,当且仅当,或时的最小值是1.【考点】柯西不等式.10.若a,b,c∈R,a>b,则下列不等式成立的是(填上正确的序号).①<;②a2>b2;③>;④a|c|>b|c|.【答案】③【解析】①,当a是正数,b是负数时,不等式<不成立,②当a=-1,b=-2时,a>b成立,a2>b2不成立;当a=1,b=-2时,a>b成立,a2>b2也不成立,当a,b是负数时,不等式a2>b2不成立.③在a>b两边同时除以c2+1,不等号的方向不变,故③正确,④当c=0时,不等式a|c|>b|c|不成立.综上可知③正确.11.已知-1<a+b<3,且2<a-b<4,求2a+3b的取值范围.【答案】-<2a+3b<【解析】设2a+3b=x(a+b)+y(a-b)=(x+y)a+(x-y)b.则解得所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1.所以--2<2a+3b<-1,即-<2a+3b<.12.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.13.已知等比数列{an}的各项均为正数,公比q≠1,设P=,Q=,则P与Q的大小关系是()A.P>Q B.P<QC.P=Q D.无法确定【答案】A【解析】选A.由等比知识,得Q==,而P=,且a3>0,a9>0,q≠1,a 3≠a9,所以>,即P>Q.14.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.15.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.16.当0≤x≤时,函数y=x2(1-5x)的最大值为()A.B.C.D.无最大值【答案】C【解析】选C.y=x2(1-5x)=x2=x·x·.因为0≤x≤,所以-2x≥0,所以y≤=,=.当且仅当x=-2x,即x=时,ymax17.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不能比较大小【答案】B【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.18.若关于x的不等式|x-2|+|x+3|<a的解集为,则实数a的取值范围为()A.(-∞,1]B.(-∞,1)C.(-∞,5]D.(-∞,5)【答案】C【解析】选C.因为|x-2|+|x+3|≥|x-2-x-3|=5,又关于x的不等式|x-2|+|x+3|<a的解集为,所以a≤5.19.已知函数f(x)=x2-x+13,|x-a|<1.求证:|f(x)-f(a)|<2(|a|+1).【答案】见解析【解析】证明:|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),所以|f(x)-f(a)|<2(|a|+1).20.若关于实数x的不等式|x-5|+|x+3|<a无解,求实数a的取值范围.【答案】(-∞,8]【解析】因为不等式|x-5|+|x+3|的最小值为8,所以要使不等式|x-5|+|x+3|<a无解,则a≤8,即实数a的取值范围是(-∞,8].21.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.22.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.23.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.24.已知正数x,y,z满足5x+4y+3z=10.(1)求证:++≥5.(2)求+的最小值.【答案】(1)见解析 (2) 18【解析】(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)](++)≥(5x+4y+3z)2,当且仅当==,即x=,y=,z=时取等号.因为5x+4y+3z=10,所以++≥=5.(2)根据平均值不等式,得+≥2=2·,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即x2+y2+z2≥2,当且仅当==时,等号成立.综上,+≥2·32=18.当且仅当x=1,y=,z=时,等号成立.所以+的最小值为18.25.设n∈N*,求证:++…+<.【答案】见解析【解析】证明:由=<=(-)可知<(1-),<(-),…,<(-),从而得++…+<(1-)<.26.设0< a,b,c <1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于.【答案】见解析【解析】证明:假设(1-a)b >,(1-b)c >,(1-c)a>,则三式相乘:(1-a)b·(1-b)c·(1-c)a>①.又∵0< a,b,c <1,∴0<(1-a)a≤[]2=.同理:(1-b)b≤,(1-c)c≤,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤,与①矛盾,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于.27.设函数f(x)=|x+1|+|x-a|(a>0).若不等式f(x)≥5的解集为(-∞,-2]∪(3,+∞),则a的值为________.【答案】a=2【解析】由题意知,f(-2)=f(3)=5,即1+|2+a|=4+|3-a|=5,解得a=2.28.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.29.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥30.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.【答案】2【解析】由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时“=”成立,得(am+bn)(bm+an)≥=mn(a+b)2=2.31.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.32.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】(Ⅱ)【解析】解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x-1)2+y2=1.∴直线与圆相交的弦长=解:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,∵f(x)的最小值为3,∴|a-4|=3,∴a=1或7,∵a>1,∴a=7,∴f(x)=|x-4|+|x-7|≤5,①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;综上3≤x≤8,故答案为:3≤x≤8.【考点】坐标系与参数方程,不等式选讲点评:主要是考查了不等式选讲以及坐标系与参数方程的运用,属于基础题。
压轴题12极坐标与参数方程和不等式选讲压轴题题型/考向一:极坐标与参数方程题型/考向二:不等式选讲○热○点○题○型一极坐标与参数方程1.极坐标系:极径OM =ρ,即M 点与极点O 间的距离极角=θ∠XOM ,即以极轴OX 为始边,OM 为终边的角2.极坐标与直角坐标的互化例如()1-3-,,则()()33=3-1-=2=1-+3-=22θρtan ,又()1-3-, 在第三象限,所以πθ34=,⎪⎭⎫⎝⎛342∴π,3.常见曲线的极坐标方程4.常见曲线的参数方程①圆222()()x a y b r -+-=的参数方程是:cos sin ()x a r y b r θθθ=+⎧⎨=+⎩为参数②椭圆22221(0,0,)x y a b a b a b +=>>≠的参数方程是:cos ,()sin x a y b θθθ=⎧⎨=⎩为参数③过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数5:直线的标准参数方程中t的几何意义过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数00(,)P x y 点所对应的参数为0t =0,记直线l 与任意曲线相交于,A B 两点所对应的参数分别为12,t t ,则①线段AB 的中点O 所对应的参数为t =2+21t t ,如果线段AB 的中点恰好是P ,则有0=+21t t ②12AB t t =-=,③1212121212,0t t t t PA PB t t t t t t ⎧+⋅>⎪+=+=⎨-=⋅<⎪⎩,④1212121212,00t t t t PA PB t t t t t t ⎧+⋅<⎪-=-=⎨-=⋅>⎪⎩⑤1212PA PB t t t t ⋅=⋅=⋅注:①将直线的参数方程代入曲线的方程得到关于t 的二次方程,则由韦达定理得出:abt t -=+21、ac t t =216、直线一般式:过定点00(,)P x y 斜率αtan =k =ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 为参数)①若1=+22b a ,即为标准式,此时参数t 具备几何意义②若1≠+22b a ,参数t 不具备标准式中t 的几何意义.标准式与一般式的联系与互化:直线的普通参数方程⎩⎨⎧+=+=bt y y atx x 00(t 为参数)化为直线的标准参数方程的方法是将直线的方向向量化为直线的单位向量,即是化为参数方程⎪⎪⎩⎪⎪⎨⎧++=++=220220t b a b y y t b a a x x (t 为参数)7、经过极点或原点的三种直线方程:①普通方程:②极坐标方程:③参数方程:1.在平面直角坐标系xOy 中,已知直线l 的参数方程为41,535x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),抛物线C的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 和抛物线C 的直角坐标方程;(2)求直线l 被抛物线C 截得的弦长.2.在平面直角标系xOy 中,曲M 的参数方程为2sin y α⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πsin 4ρθ⎛⎫+= ⎪⎝⎭(1)求曲线M 的普通方程;(2)若D 为曲线M 上一动点,求D 到l 距离的取值范围.3.在直角坐标系xOy 中,曲线C 的参数方程为y α=⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 4ρθ⎛⎫+= ⎪⎝⎭(1)求直线l 的一般方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,直线l 与x 轴相交于点P ,求PA PB ⋅的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为22sin y ϕ⎨=+⎩(其中ϕ为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,直线l πcos 44θ⎛⎫-= ⎪⎝⎭.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于A ,B 两点,点P 是曲线C 上的一动点,求PAB 面积的最大值.5.在平面直角坐标系xOy 中,直线l 过点()1,0M ,且倾斜角为π4,以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,曲线C 的参数方程是为2cos ,sin x y θθ=⎧⎨=⎩(θ参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)已知曲线C 与直线l 相交于A ,B 两点,则AB 的值.6.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+ ⎪⎝⎭(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.1sin ,2APO ∴∠≥∴在Rt OAP △中,||2||22OP OA ∴≤=,22(323)22x x ∴+-≤,两边平方得解得353522x -+≤≤,3⎡-2240x y x +-=,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)设直线l 交曲线C 于两点A ,B ,求AOB ∠的大小.直线l 的参数方程为1cos ,1sin .x t y t ϕϕ=-+⎧⎨=+⎩(t 为参数).(1)若π4ϕ=,求直线l 的普通方程和曲线C 的直角坐标方程;(2)过点()0,3P -向直线l 作垂线,垂足为Q ,说明点Q 的轨迹为何种曲线.9.在平面直角坐标系xOy 中,曲线1C 的参数方程为1sin y ϕ⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρθ=.(1)求曲线1C 的极坐标方程与曲线2C 的直角坐标方程;(2)直线l :()6πθρ=∈R 与曲线1C ,2C 分别交于M 、N 两点(异于极点O ),P 为2C 上的动点,求△PMN 面积的最大值.y =⎪⎩极点,x 轴为正半轴建立极坐标,椭圆C 的极坐标方程为2222cos 2sin 4ρθρθ+=,其右焦点为F ,直线l 与椭圆C 交于,A B 两点.(1)求||||FA FB +的值;(2)若点P 是椭圆上任意一点,求PAB 的面积最大值.83○热○点○题○型二不等式选讲【考点1】基本不等式基本不等式的常见结论:(1)222a b ab +≥(,a b R ∈),当且仅当a b =时,等号成立;(2)2a b ab +≥(,0a b >),当且仅当a b =时,等号成立;(3)33a b c abc ++≥a b c ==时,等号成立(4)2b a a b+≥(,a b 同号,a b =时取等号。
数学选修 4-4坐标系与参数方程[ 基础训练 A 组]一、选择题1.若直线的参数方程为x 1 2t (t 为参数 ) ,则直线的斜率为( )y 2 3t A .2B .2 3 D .333C .222.以下在曲线x sin 2( 为参数 ) 上的点是()ycossinA .(1,2)B . (3,1)C . (2, 3)D . (1,3)24 23.将参数方程x 2 sin 2为参数 ) 化为一般方程为(y sin2( )A . y x2B . y x 2C . y x 2(2 x 3)D . yx 2(0 y 1)4.化极坐标方程2cos0 为直角坐标方程为()A . x 2y 20或 y 1B . x 1C . x 2 y 20或 x 1D . y 15.点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为()A . (2,) B . (2,) C . (2,2)D . (2,2 k),( k Z )33336.极坐标方程cos 2sin 2 表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线x 3 4t (t 为参数 ) 的斜率为 ______________________。
y 4 5t2.参数方程x e te t) (t 为参数) 的一般方程为 __________________。
y2(e te t3.已知直线 l 1 :x 1 3ty 2 (t 为参数 ) 与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,4t则 AB_______________。
x 2 1 t4.直线2(t 为参数 ) 被圆 x 2 y 2 4 截得的弦长为 ______________。
y1 1t25.直线 x cos y sin 0 的极坐标方程为 ____________________ 。
三、解答题1.已知点 P(x, y) 是圆 x 2y 2 2y 上的动点,( 1)求 2xy 的取值范围;( 2)若 xy a 0恒建立,务实数 a 的取值范围。
高三数学不等式选讲试题1.已知函数.(Ⅰ)解不等式: ;(Ⅱ)当时, 不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于,可以转化为,所以分3种情况,,进行讨论去掉绝对值符号解不等式;第二问,,所以利用不等式的性质得到最大值代入上式,解不等式,得到a的取值范围.试题解析:(Ⅰ)原不等式等价于:当时, ,即;当时, ,即;当时, ,即.综上所述,原不等式的解集为. (5分)(Ⅱ)当时,=所以(10分)【考点】绝对值不等式的解法、不等式的性质.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.若不等式|x-a|-|x|<2-a2对x∈R恒成立,则实数a的取值范围是。
【答案】【解析】,所以原式恒成立,即,即,解得【考点】不等式恒成立问题4.对于,当非零实数a,b满足,且使最大时,的最小值为 .【答案】【解析】法一:判别式法:令,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,法二:柯西不等式:由可得:,当且仅当时取等号,即时,取等号,这时或当时,,当时,,综上可知当时,【考点】柯西不等式.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.不等式的解集为 .【答案】.【解析】解不等式,得,解得,故不等式的解集为.【考点】绝对值不等式的求解7.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.8.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1), 2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.9.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为10.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.11.设a>1>b>-1,则下列不等式中恒成立的是()A.<B.>C.a>b2D.a2>2b【答案】C【解析】选C.令a=2,b=-,验证可得选项A不正确,令a=2,b=,则B不正确,若a=1.1,b=0.9,则D 不正确,对选项C,由-1<b<1得:0≤b2<1,又a>1,故b2<a,故C项正确.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.14.已知点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值为()A.2B.4C.16D.不存在【答案】B【解析】选B.过A,B两点的直线方程为y=-(x-3),所以x=3-2y,所以2x+4y=+4y≥4,当且仅当=4y时,等号成立.,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b.15.已知a,b,x,y∈R+【答案】或【解析】因为x+y=(x+y)=a+b++≥a+b+2=(+)2,=(+)2=18,当且仅当=时取等号.又(x+y)min即a+b+2=18,①又a+b=10,②由①②可得或16.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是.【答案】(-∞,-3]∪[3,+∞)【解析】因为f (x)=|x+1|+|x-2|=所以f(x)≥3,要使|a|≥|x+1|+|x-2|有解,故|a|≥3,即a≤-3或a≥3.17.已知a、b、m、n均为正数,且a+b=1,mn=2,求(am+bn)(bm+an)的最小值.【答案】2【解析】利用柯西不等式求解,(am+bn)(an+bm)≥()2=mn·(a+b)2=2·1=2,且仅当即m=n时取最小值2.18.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.19.若对恒成立,则实数的取值范围是___________.【答案】【解析】当为偶数时,,而;当为奇数时,,而.所以的取值范围是.【考点】不等式.20.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.21.已知函数,m∈R,且的解集为.(1)求的值;(2)若,且,求的最小值.+【答案】(1).(2)的最小值为9.【解析】(1)由已知,得到所以根据的解集是,得到.(2)由(1)知,,由柯西不等式即得所求.试题解析:(1)因为,所以.所以又的解集是,故. 5分(2)由(1)知,,由柯西不等式得∴的最小值为9 10分【考点】绝对值不等式解法,柯西不等式.22.已知a,b,c,d均为正实数,且a+b+c+d=1,求证:+++≥.【答案】见解析【解析】证明:因为[(1+a)+(1+b)+(1+c)+(1+d)]·(+++)≥(·+·+·+·)2=(a+b+c+d)2=1,当且仅当===即a=b=c=d=时取等号.又(1+a)+(1+b)+(1+c)+(1+d)=4+(a+b+c+d)=5,所以5(+++)≥1.所以+++≥.23.设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.【答案】(1)a=1(2)3.【解析】(1)因为∈A,且∉A,所以<a,且≥a,解得<a≤.又因为a∈N*,所以a=1.(2)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取到等号,所以f(x)的最小值为3.24. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.25.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.26.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.27.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.28.已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)+a3(x﹣1)3+…+an(x﹣1)n,(其中n∈N*)(1)求a及;(2)试比较Sn与(n﹣2)2n+2n2的大小,并说明理由.【答案】(1)Sn=3n﹣2n(2)当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2【解析】(1)令x=1,则a=2n,令x=2,则,∴Sn=3n﹣2n;(3分)(2)要比较Sn与(n﹣2)2n+2n2的大小,即比较:3n与(n﹣1)2n+2n2的大小,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n=4,5时,3n>(n﹣1)2n+2n2;(5分)猜想:当n≥4时n≥4时,3n>(n﹣1)2n+2n2,下面用数学归纳法证明:由上述过程可知,n=4n=4时结论成立,假设当n=k(k≥4)n=k,(k≥4)时结论成立,即3n>(n﹣1)2n+2n2,两边同乘以3 得:3k+1>3[(k﹣1)2k+2k2]=k2k+1+2(k+1)2+[(k﹣3)2k+4k2﹣4k﹣2]而(k﹣3)2k+4k2﹣4k﹣2=(k﹣3)2k+4(k2﹣k﹣2)+6=(k﹣2)2k+4(k﹣2)(k+1)+6>0∴3k+1>[(k+1)﹣1]2k+1+2(k+1)2即n=k+1时结论也成立,∴当n≥4时,3n>(n﹣1)2n+2n2成立.综上得,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2﹣﹣(10分)【考点】用数学归纳法证明不等式;数列的求和;二项式定理的应用点评:本题是中档题,考查与n有关的命题,通过赋值法解答固定项,前n项和,以及数学归纳法的应用,考查逻辑推理能力,计算能力,常考题型29.选修4—5:不等式选讲已知函数(1)若不等式的解集为,求实数a,m的值。
专题十一 坐标系参数方程与不等式选讲一、解答题1.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标. 【答案】(1)1242ρρ==,(2)(22,)4π【解析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为33y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由223340y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y ==⎧⎨⎩或31x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,3,1,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时22ρ= 当54πθ=时220ρ=-<,舍;即所求交点坐标为当2,),4π2.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)410(2)3cos sin 120ρθρθ-+= 【解析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可. 【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.22(04)(120)410AB ∴=++-=(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44. 【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C 的参数方程化为 22cos (sin x tt y t⎧⎪⎨=⎪⎩为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线 2C 化为直角坐标方程,联立12,C C 方程,即可求解.【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t=⎧⎨=⎩为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t ⎧=⎨=⎩为参数), 所以0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t⎧=⎪⎨=⎪⎩为参数), 两式相加得曲线1C 1x y +=,1y x =21,01,01y x x x y =-≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=, 曲线2C 直角坐标方程为41630x y -+=,联立12,C C 方程2141630y x x x y ⎧=-⎪⎨-+=⎪⎩,整理得1232130x x -+=12x =或 136x =(舍去), 11,44x y ∴==,12,C C ∴公共点的直角坐标为 11(,)44.4.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)()1:404C x y x +=≤≤;222:4C x y -=;(2)17cos 5ρθ=. 【解析】(1)分别消去参数θ和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程. 【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:()404x y x +=≤≤;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭; 设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 5.已知曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为2cos 3sin 12ρθρθ-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若点P 为直线l 上的动点,点Q 是曲线C 上的动点,求PQ 的最小值.【答案】(1)C 的普通方程是2214x y +=,l 的直角坐标方程是23120x y --=;(2713. 【解析】(1)由22cos sin 1θθ+=可将曲线C 的参数方程化为普通方程,利用极坐标方程与普通方程之间的转换关系可得出直线l 的直角坐标方程;(2)设点()2cos ,sin Q θθ,利用点到直线的距离公式、辅助角公式以及余弦函数的有界性可求得PQ 的最小值. 【详解】(1)由2cos sin x y θθ=⎧⎨=⎩得,2222cos sin 12x y θθ⎫⎛+=+= ⎪⎝⎭,即2214x y +=,故曲线C 的普通方程是2214x y +=.由2cos 3sin 12ρθρθ-=及公式cos sin xy ρθρθ=⎧⎨=⎩,得2312x y -=,故直线l 的直角坐标方程是23120x y --=;(2)直线l 的普通方程为23120x y --=,曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),设()2cos ,sin Q θθ,点Q 到直线23120x y --=距离为4cos 3sin 1213d θθ--=()5cos 12125cos 1313θϕθϕ+--+=(其中3tan 4ϕ=), 当()cos 1θϕ+=时,min 713d =min713PQ = 6.在直角坐标系xOy 中,曲线1C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的方程为2cos sin 10ρθρθ-+=. (1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知点()0,1P ,曲线2C 和曲线1C 交于A ,B 两点,求||||PA PB ⋅的值.【答案】(1)1C 的普通方程为:224y x -=,2C 的直角坐标方程为:210x y -+=;(2)5. 【解析】(1)由极坐标与直角的互化公式,求得曲线2C 的直角坐标方程,再由曲线1C 的参数方程,消去参数,即可得到曲线1C 的普通方程;(2)由点()0,1P 在直线l 上,得出曲线2C 的一个参数方程为5251x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线1C ,利用根与系数的关系,结合参数的几何意义,即可求解. 【详解】(1)曲线1C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数得224y x -=,故曲线1C 的普通方程为:224y x -=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线2C 的直角坐标方程为:210x y -+=; (2)由(1)得曲线2C 的参数方程为52515x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代人1C 的方程得2225514⎛⎫⎫-= ⎪⎪ ⎪⎪⎝⎭⎝⎭,整理得2345150t t +-=,设A ,B 两点所对应的参数分别为12t t ,,所以0∆>,125t t =-,∴由参数t 的几何意义知12||||5PA PB t t ⋅==.7.在平面直角坐标系xOy 中,曲线1C 的参数方程为2,2,x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin cos m ρθθ=+.(1)求1C 的普通方程和2C 的直角坐标方程;(2)若1C 与2C 交于P ,Q 两点,求证:11OQ OPk k +为定值. 【答案】(1)1C 的普通方程为212x y =,2C 的直角坐标方程为40x my +-=;(2)证明见解析.【解析】(1)消去参数t 后,得到曲线1C 的普通方程,利用极坐标与直角坐标的互化公式sin x ρθ=,sin y ρθ=,求曲线2C 的直角坐标方程;(2)首先判断2t 的几何意义是抛物线212x y =上的点(除原点外)与原点连线的斜率,再将曲线2,2,x t y t =⎧⎨=⎩代入40x my +-=, 转化为关于t 的一元二次方程,利用根与系数的关系表示11OQOP k k +. 【详解】(1)解:由2,2,x t y t =⎧⎨=⎩(t 为参数),消去参数t , 得212x y =, 即1C 的普通方程为212x y =. 由4sin cos m ρθθ=+,得sin cos 4m ρθρθ+=,将cos x ρθ=,sin y ρθ=代入,得40x my +-=, ∴2C 的直角坐标方程为40x my +-=.(2)证明:由2,2,x t y t =⎧⎨=⎩(t 为参数),得()20yt x x=≠, 故2t 的几何意义是抛物线212x y =上的点(除原点外)与原点连线的斜率. 由(1)知,当0m =时,2C :4x =, 则1C 与2C 只有一个交点,不合题意,故0m ≠.把2,2,x t y t =⎧⎨=⎩代入40x my +-=, 得2240mt t +-=,设P ,Q 两点所对应的参数分别为1t ,2t , 则1212t t m +=-,122t t m⋅=-, ∴1212121111112222282OP OQ t t m k k t t t t m -++=+===⎛⎫⨯- ⎪⎝⎭. 8.在平面直角坐标系xOy 中,曲线C 的参数方程为22x y αα⎧=⎪⎨=⎪⎩(α为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 32cos 14πρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的普通方程和直线l 的倾斜角;(2)已知点M 的直角坐标为()0,1,直线l 与曲线C 相交于不同的两点,A B ,求MA MB +的值. 【答案】(1)222x y +=,4π;(26 【解析】(1)根据参数方程与普通方程的转化可得曲线C 的普通方程;由极坐标与直角坐标的转化可得直线l 的直角坐标方程,即可得直线的倾斜角;(2)将直线l 的直角坐标方程化为标准参数方程,联立椭圆方程,结合参数方程的几何意义即可求解. 【详解】(1)曲线C 的参数方程为22x y αα⎧=⎪⎨=⎪⎩,则有cos 2sin 2αα=⎪⎪⎨⎪=⎪⎩,则2222cos sin 122x y αα+=+=,即曲线C 的普通方程为222x y +=.直线l 32cos 14πρθ⎛⎫-=⎪⎝⎭332cos cos sin sin144ππρθρθ⎫+=⎪⎭, 将cos sin x y ρθρθ=⎧⎨=⎩222122y x ⎫-=⎪⎪⎭,即1y x -=,即10x y -+=, 所以斜率1k =,则tan 1θ=,由[)0,θπ∈,可得4πθ=,所以直线l 的倾斜角为4π. (2)由(1)知,点()0,1M 在直线:10l x y -+=上,则直线l 的参数方程为22212x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数). 将直线l 的参数方程代入曲线C 的普通方程,得22221222⎛⎫⎛⎫++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭整理得:2210t t +-=,设点,A B 对应的参数分别为12,t t ,则12122,1t t t t +=-=-. 所以()()()221212121242416MA MB t t t t t t t t +=+=-=+---⨯-【点睛】方法点睛:本题考查了参数方程、极坐标方程与直角坐标方程的转化,参数方程几何意义求线段关系,利用直线的参数方程求直线与圆锥曲线相交的弦长,方法是:(1)将直线参数方程代入圆锥曲线方程,得到关于参数t 的一元二次方程; (2)利用韦达定理写出12t t +,12t t ; (3)利用弦长公式()21212124AB t t t t t t =-=+-.9.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线1C 的参数方程为sin ,cos 2,x y αα=⎧⎨=⎩(α为参数),直线2C 的极坐标方程为π6θ=-. (1)将1C 的参数方程化为普通方程,2C 的极坐标方程化为直角坐标方程; (2)求与直线2C 平行且与曲线1C 相切的直线l 的直角坐标方程. 【答案】(1)212y x =-()330,0x y x +=≥;(2)32524y x =+. 【解析】(1)将sin ,cos 2,x y αα=⎧⎨=⎩转化为2sin ,12sin ,x y αα=⎧⎨=-⎩消去α求解; (2)设切线方程为33yx b ,联立23312y x b y x ⎧=-+⎪⎨⎪=-⎩,由0∆=求解. 【详解】(1)因为曲线1C 的参数方程为sin ,cos 2,x y αα=⎧⎨=⎩(α为参数),所以2sin ,12sin ,x y αα=⎧⎨=-⎩消去α得212y x =-. 因为直线2C 的极坐标方程为π6θ=-, 所以πsin 3tan tan 6cos ρθθρθ⎛⎫=-== ⎪⎝⎭, 即33y x =-()330,0x y x +=≥. (2)设切线方程为33yx b ,由2312y x b y x ⎧=+⎪⎨⎪=-⎩, 得232103x x b -+-=, 所以()238103b ⎛⎫∆=--⨯-= ⎪ ⎪⎝⎭,解得2524b =, 所以切线方程是325324y x =-+, 10.在花语中,四叶草象征幸运.已知在极坐标系下,方程2sin 2ρθ=对应的曲线如图所示,我们把这条曲线形象地称为“四叶草”.(1)当“四叶草”中的π0,2θ⎡⎤∈⎢⎥⎣⎦时,求以极点为圆心的单位圆与“四叶草”交点的极坐标;(2)已知A 为“四叶草”上的点,求点A 到直线π:sin 34l ρθ⎫⎛+= ⎪⎝⎭距离的最小值以及此时点A 的极坐标. 【答案】(1)π1,12⎫⎛ ⎪⎝⎭和5π1,12⎫⎛ ⎪⎝⎭;(2)最小值为1,π2,4A ⎫⎛ ⎪⎝⎭.【解析】(1)直接利用单位圆1ρ=与方程2sin 2ρθ=联立即可求解; (2)将直线l 的极坐标方程化为直角坐标方程,观察发现点π2,4A ⎫⎛⎪⎝⎭到直线l 的距离即为最小值 【详解】(1)以极点为圆心的单位圆的极坐标方程为:1ρ=,所以联立12sin 2ρρθ=⎧⎨=⎩,π0,2θ⎡⎤∈⎢⎥⎣⎦得π12θ=或5π12θ=, 所以所求交点的极坐标为π1,12⎫⎛ ⎪⎝⎭和5π1,12⎫⎛ ⎪⎝⎭. (2)直线π:sin 34l ρθ⎫⎛+= ⎪⎝⎭的直角坐标方程为32x y += “四叶草”2sin 2ρθ=极径的最大值为2,且可于点π2,4A ⎫⎛ ⎪⎝⎭处取得, 连接OA 且与直线32x y +=π3,4M ⎫⎛ ⎪⎝⎭, 所以点A 与点M 的距离的最小值为1.11.在直角坐标系xOy 中,曲线C 的参数方程为33cos 3sin x y αα=+⎧⎨=⎩(α为参数),点P 的坐标为()0m ,.(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)若直线l :123x m t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与曲线C 交于A ,B 两点,若2PA PB ⋅≥,求26m m -的取值范围.【答案】(1)6cos ρθ=;(2)[][)9,22,3--⋃. 【解析】(1)先消去参数得到C 的直角坐标方程,再利用cos ,sin x y ρθρθ==代入即得C 的极坐标方程;(2)将直线的参数方程代入曲线C 的直角坐标方程得到关于t 的二次方程,再根据判别式大于零和122PA PB t t ⋅=≥,即解得 26m m -的取值范围.【详解】解:(1)因为C 的参数方程为33cos 3sin x y αα=+⎧⎨=⎩( α为参数),所以C 的直角坐标方程为()2239x y -+=,即 226x y x +=,故C 的极坐标方程为6cos ρθ=;(2)将直线l :123x m t y ⎧=+⎪⎪⎨⎪=⎪⎩( t 为参数)代入226x y x +=,可得:()22360t m t m m +-+-=,则()()223460m m m ∆=--->,即263m m -<,因为21262PA PB t t m m ⋅==-≥,所以 2962m m -≤-≤-或2263m m ≤-<,故26m m -的取值范围为[][)9,22,3--⋃. 12.在直角坐标系xOy 中,曲线1C 的参数方程为2cos sin k kx ty t ⎧=⎨=⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin 120ρθρθ--=. (1)当2k =时,求出1C 的普通方程,并说明该曲线的图形形状.(2)当1k =时,P 是曲线1C 上一点,Q 是曲线2C 上一点,求PQ 的最小值.【答案】(1)22,02x y x +=≤≤,是以(2,0)A ,(0,1)B 为端点的线段;(2713【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当1k =时,曲线得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线 2C 化为直角坐标方程,利用点到直线的距离公式可求解. 【详解】(1)当2k =时,消t 得22,0,0x y x y +=≥≥, 是以(2,0)A ,(0,1)B 为端点的线段.(2)当1k =时,曲线1C 的普通方程为椭圆:2214x y +=;由cos ,sin x y ρθρθ==得曲线2C 的普通方程为直线:23120x y --=;由221423120x y x y ⎧+=⎪⎨⎪--=⎩得272128250y y ++=, 2518412807210080120=-∆-⨯<=,可知直线与椭圆相离,则PQ 的最小值为P 到直线的距离最小值, 则131313d ===,当sin()1t ϕ-=时,713 13.(Ⅰ)求21234x +x --<的解集M ;(Ⅱ)在(Ⅰ)的条件下,设a ,b ,c M ∈,证明:(2)a b -,(2)b c -,(2)c a -不能都大于1. 【答案】(Ⅰ){|02}x x <<;(Ⅱ)证明见解析. 【解析】 (Ⅰ)讨论12x <、1322x ≤≤、32x >分别求得解集,取并即为所求解集M .(Ⅱ)根据基本不等式有0(2)1a a <-≤,0(2)1b b <-≤,0(2)1c c <-≤,结合反证法即可证明结论. 【详解】(Ⅰ)由题设,13222x +x --<,∴当12x <时,1322222x x x -+-=-<,得102x <<;当1322x ≤≤时,131222x x -+-=<恒成立; 当32x >时,1322222x x x -+-=-<,得322x <<;∴综上,得{|02}M x x =<<.(Ⅱ)由(Ⅰ)知:a ,b ,(0,2)c ∈, ∴220(2)()12a a a a -+<-≤=,220(2)()12b b b b -+<-≤=,220(2)()12c c c c -+<-≤=,其中等号成立的条件为,,1a b c =.∴0(2)(2)(2)1a b b c c a <-⋅⋅-⋅⋅-⋅≤,假设(2)a b -,(2)b c -,(2)c a -都大于1,即(2)(2)(2)1a b b c c a -⋅⋅-⋅⋅-⋅>显然与结论矛盾. ∴(2)a b -,(2)b c -,(2)c a -不能都大于1,得证. 14.已知()|2||1|f x x x =+-- (Ⅰ)解不等式()f x x ≤;(Ⅱ)设()f x 的最大值为t ,如果正实数m ,n 满足2m n t +=,求21m n+的最小值. 【答案】(Ⅰ)[3,1][3,)--⋃+∞;(Ⅱ)83. 【解析】(Ⅰ)利用零点分解法解不等式即可.(Ⅱ)去绝对值,写出分段函数()f x 的解析式,根据函数的单调性求出函数的最大值3t =,从而可得23m n +=,再利用基本不等式即可求解.【详解】解:(Ⅰ)()|2||1|f x x x =+--①当2x -≤时,()2(1)3f x x x x =--+-=-≤,3x ∴≥-,2x ≤-,32x ∴-≤≤-②当21x -<<时,()2(1)21f x x x x x =++-=+≤,21x ∴-<≤-; ③当1≥x 时,()2(1)3f x x x x =+--=≤,Q 3x ≥ 综上知不等式()f x x ≤的解集为[3,1][3,)--⋃+∞.(Ⅱ)由已知,3,2()21,213,1x f x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,在(2,1)-是增函数,所以max ()3f x =,23∴+=m n ,0m >,0n >则21121(2)3m n m n m n ⎫⎛+=⋅++ ⎪⎝⎭14148442333n m n m m n m n ⎛⎫⎛=++≥⨯+⋅= ⎪⎝⎭⎝. 当且仅当4n mm n =,即224=m n , 即322m n ==,34n =时,21m n +取得最小值83.15.已知函数()|33||2|f x x x =+++. (1)求不等式()10f x >的解集;(2)若方程()34f x a =-有实数解,求实数a 的取值范围. 【答案】(1)155,,44⎫⎫⎛⎛-∞-⋃+∞ ⎪ ⎪⎝⎝⎭⎭;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【解析】(1)分2x <-,21x -≤≤-,1x >-三种情况求解即可得答案.(2)结合(1)的结论首先确定函数()f x 的最小值,再解()min 34a f x -≥即可得答案. 【详解】(1)依题意,|33||2|10x x +++>.当2x <-时,33210x x ---->,解得154x <-; 当21x -≤≤-时,33210x x --++>,解得112x <-,无解;当1x >-时,33210x x +++>,则54x >,故54x >;故不等式()10f x >的解集为155,,44⎫⎫⎛⎛-∞-⋃+∞ ⎪ ⎪⎝⎝⎭⎭. (2)依题意,()|33||2|f x x x =+++45,221,2145,1x x x x x x --<-⎧⎪=---≤≤-⎨⎪+>-⎩,由一次函数的性质知,()f x 在(],1-∞-上单调递减,在()1,-+∞上单调递增, 所以()min ()11f x f =-=,即()f x 的值域为[1,)+∞, 因为方程()34f x a =-有实数解, 所以341a -≥,解得12a ≤, 故实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.16.已知函数()|1||24|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若存在x ∈R ,使不等式2()3|2|2f x x t t --≥-成立,求t 的取值范围. 【答案】(1)[]1,3-;(2)[]1,3-. 【解析】(1)分1,12,2x x x ≤--<<≥三种情况去掉绝对值后解不等式()6f x ≤即可;(2)令()()321|2|h x f x x x x =--=+--,求出其最大值,然后使其最大值大于等于22t t -,解关于t 的不等式即可得答案【详解】(1)|1||24|6x x ++-≤,1(1)(24)6x x x ≤-⎧∴⎨-+--≤⎩或12(1)(24)6x x x -<<⎧⎨+--≤⎩或2(1)(24)6x x x ≥⎧⎨++-≤⎩ 解得11x x ≤-⎧⎨≥-⎩或121x x -<<⎧⎨≥-⎩或23x x ≥⎧⎨≤⎩ 1x ∴=-或12x -<<或23x ≤≤13x ∴-≤≤∴原不等式的解集为[]1,3-(2)令()()321|2|h x f x x x x =--=+--则3,1()21,123,2x h x x x x -≤-⎧⎪=--<<⎨⎪≥⎩max ()3h x ∴=,存在x ∈R ,使得2()3|2|2f x x t t --≥-成立,232t t ∴≥-,13t ∴-≤≤故满足条件的t 的取值范围为[]1,3-17.已知()()220f x x m x m m =--+>的最小值为52-. (1)求m 的值;(2)已知0,0a b >>,且22a b m +=,求证:331b a a b+≥.【答案】(1)1m =;(2)证明见解析; 【解析】(1)去绝对值变成分段函数,根据分段函数的单调性可求出()f x 的最小值,与已知最小值相等列式可求出; (2)利用分析法结合基本不等式即可证明.【详解】解:(1)3,2()223,223,2x m x m m f x x m x m x m m x m x m x ⎧⎪-+-⎪⎪=--+=---<<⎨⎪⎪-⎪⎩,()0m >()f x ∴在区间(-∞,]2m上单调递减,在区间[2m ,)+∞上单调递增,5()()3222min m m f x f m ∴==-=-,1m ∴=;(2)由(1)0a >,0b >,且221a b +=,要证331b a a b+,只要证44b a ab +, 即证22222()2a b a b ab +-, 即证22210a b ab +-, 即证(21)(1)0ab ab -+, 即证21ab , 即证222ab a b +,显然2212a b ab =+,当且仅当22a b ==时取等号. ∴331b a a b+.18.数()1f x x x =-+. (1)求不等式()5f x ≥的解集;(2)已知函数()f x 的最小值为t ,正实数,,a b c 满足22,a b c t ++=证明:112.a c b c+≥++ 【答案】(1)(][,3)2,-∞-⋃+∞;(2)证明见解析. 【解析】(1)解含绝对值的不等式,先要去掉绝对值号,将函数写为分段函数,然后再在各个区间求解,取并集. (2)求出函数的最小值,即1,t =得出()()22a b c a c b c ++=+++=,结合所要证明的不等式,联想到基本不等式进行求解. 【详解】(1)解:由题可得()12,011,0121,1x x f x x x x x x -≤⎧⎪=-+=<<⎨⎪-≥⎩,所以()5,f x ≥即0125x x ≤⎧⎨-≥⎩或1115x <<⎧⎨≥⎩或1215x x ≥⎧⎨-≥⎩解得2x -≤或3,x ≥所以不等式()5f x ≥的解集为(][,3)2,-∞-⋃+∞.()2证明:()111f x x x x x =-+≥--=,则1,t =则()()22a b c a c b c ++=+++=,故()()1111112222b c a c a c b c a c b c a c b c a c b c ++⎛⎫⎛⎫+=++++=++≥⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭当且仅当1a c b c +=+=时取等号. 【点睛】(1)解双绝对值不等式的办法通常利用分段函数,在不同区间上求解,最后取并集.(2)利用a b a b a b -≤±≤+求出最小值,即1,t =特别要结合所证明的不等式的特点来进行变形,以应用基本不等式解决问题,抓住特点是核心.19.已知函数()216f x x a x =+-+-(1)当0a =时,解不等式()12f x >(2)记集合(){}20M x f x b =-=,若存在a R ∈使M,求实数b 的取值范围.【答案】(1)5{|2x x <-或19}2x >;(2)5,2⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)根据绝对值的定义分类讨论解不等式;(2)由绝对值三角不等式()f x 的最小值,得()f x 值域,2b 属于这个值域,从而得()2min25b a ≥+,解之可得结论. 【详解】解:(1)当0a =时有1612x x -->+; 当1x <时,1612,x x -+->则52x <-, 故52x <-; 当16x ≤≤时,1612x x -+->.则512>.无解﹔当6x >时,1612,x x -+->则192x >. 故192x >. 故不等式()12f x >的解集为5{|2x x <-或19}2x > (2)()()222||16165x f x x a x a x a +-≥=+-+---=+ 当且仅当()()2160x a x +--≤时取等号.则可知()2min 5f x a =+.即()f x 的值域为)25,a ⎡++∞⎣,因为存在a R ∈使M .故()2min255b a ≥+=.则故实数b 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭. 20.已知函数()3533f x x x =-++. (1)求不等式()40f x <的解集;(2)若不等式2()2log f x m m >+对任意x ∈R 恒成立,求m 的取值范围. 【答案】(1)19,73⎛⎫- ⎪⎝⎭;(2)()0,4. 【解析】(1)利用零点分段法,解不等式组即可得到结果.(2)由绝对值三角不等式可得35338x x -++≥,从而得到22log 8m m +<,然后解不等式可得m 的范围. 【详解】(1)()353340f x x x =-++<,∴536240x x ⎧≥⎪⎨⎪-<⎩ 或513840x ⎧-<<⎪⎨⎪<⎩ 或16240x x ≤-⎧⎨-+<⎩ , 解得:1973x -<<, 不等式()40f x <的解集为19,73⎛⎫-⎪⎝⎭; (2)因为()()()353335338f x x x x x =-++≥--+=,当513x -≤≤时可取到等号,所以22log 8m m +<,令()22log g m m m =+,则()g m 为()0,∞+上的增函数,且()48g =, 所以04m <<,故m 的取值范围为()0,4. 21.已知函数f (x )=|x -2|+|x +1|. (1)解不等式f (x )>x +2;(2)记f (x )的最小值为m ,正实数a ,b ,c 满足a +b +c =m 333222.33a b c a b c++++≥【答案】(1)()(),13,-∞⋃+∞;(2)证明见解析. 【解析】(1)利用“零点分段法”,分为2x ,12x -<<,1x -三种情形,解不等式即可; (2)根据绝对值三角不等式求出m 的值,可得()333333()3ab c a b c a b c++++++=,由柯西不等式可得结果. 【详解】(1)当2x 时,()21212f x x x x x =-++=->+,解得3x >,所以3x >;当12x -<<时,()2132,f x x x x =-++=>+解得1,x <所以11;x -<<当1x -时,()21122,f x x x x x =---=->+解得1,3x <-所以 1.x -综上,1x <或3,x >故不等式的解集是()(),13,-∞⋃+∞.(2)因为()21213,x x x x -++--+=当且仅当()()210x x -+时等号成立,所以 3.m =()222222333111222222333333()33a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦++==()2313131222222222233a ab bc c a b c ⎛⎫⋅+⋅+⋅ ⎪++⎝⎭=当且仅当333222111222,a b c abc==即a b c ==时等号成立,33322233a b c a b c ++++.22.已知函数()|2||1|f x x a x =--+. (1)当2a =时,求不等式()1f x <的解集;(2)若0a >,不等式()20f x +>恒成立,求实数a 的取值范围. 【答案】(1)()0,4;(2)()0,2. 【解析】(1)当2a =时,求得函数()f x 的解析式,分类讨论,即可求解;(2)当0a >,化简函数()f x 的解析式,利用一次函数的性质,求得min 12af =--,结合题意列出不等式,即可求解. 【详解】(1)当2a =时,函数()3,122113,113,1x x f x x x x x x x -≥⎧⎪=--+=--<<⎨⎪-+≤-⎩,当1≥x 时,由()1f x <,可得31x -<,解得14x ≤<;当11x -<<时,由()1f x <,可得131x -<,解得01x <<;当1x <-时,由()1f x <,可得31x -<,此时解集为空集, 综上所述:不等式()1f x <的解集为()0,4.(2)若0a >,函数()1,213,121,1a x a x a f x a x x a x x ⎧--≥⎪⎪⎪=---<<⎨⎪+-≤-⎪⎪⎩由一次函数性质可知()f x 在,2a ⎛⎫-∞ ⎪⎝⎭为减函数,在+2a ⎛⎫∞ ⎪⎝⎭,为增函数,所以min 122a a f f ⎛⎫==--⎪⎝⎭, 因为不等式()20f x +>恒成立,即min 2f >-,即122a-->-,解得2a < 又因为0a >,所以()0,2a ∈,即实数a 的取值范围()0,2. 23.已知函数()2|||2|f x x x =+-. (1)求不等式()4f x <的解集;(2)记()f x 的最小值为M ,a ,b ,c 为正实数且3a b c M ++=,求证:2226b c aa b c++≥.【答案】(1)2|23x x ⎧⎫-<<⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)对x 分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)根据函数的单调性求出()f x 的最小值2M =,则6a b c ++=,由基本不等式可得22ba b a+≥,22c b c b+≥,22a c a c +≥,相加后化简即可.【详解】(1)依题意得32,2()2,0223,0x x f x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩, 2324x x x ≥⎧⇒∈∅⎨-<⎩,020224x x x ≤<⎧⇒≤<⎨+<⎩,0202343x x x <⎧⇒-<<⎨-<⎩, 综上可得()4f x <的解集是2|23x x ⎧⎫-<<⎨⎬⎩⎭; (2)由32,2()2,0223,0x x f x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩可知 ()f x 在(),0-∞上递减,在()0,∞+上递增, ()f x 的最小值为(0)2f =,即2M =.所以6a b c ++=,由22b a b a +≥,22c b c b+≥,22a c a c +≥, 相加可得()2222b c a a b c a b c a b c+++++≥++, 即222612b c a a b c +++≥,2226b c a a b c++≥ 当且仅当2a b c ===时取等号.24.已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【答案】(1) 见解析(2) 见解析 【解析】(1)由柯西不等式即可证明,(2)由a 3+b 3=2转化为()()323a b a b +-=+ab ,再由均值不等式可得:()()323a b a b +-=+ab ≤2()2a b +,即可得到14(a +b )3≤2,问题得以证明. 【详解】证明:(1)由柯西不等式得:553324a b a b a b ++≥+()()()=,当且仅当ab 5=ba 5,即a =b =1时取等号;(2)∵a 3+b 3=2,∴(a +b )(a 2﹣ab +b 2)=2, ∴(a +b )[(a +b )2﹣3ab ]=2, ∴(a +b )3﹣3ab (a +b )=2,∴()()323a b a b +-=+ab ,由均值不等式可得:()()323a b a b +-=+ab ≤2()2a b +∴(a +b )3﹣2()334a b +≤,∴14(a +b )3≤2, ∴a +b ≤2,当且仅当a =b =1时等号成立. 25.已知,,a b c 为正数,且2a b c ++=,证明:(1)43ab bc ac ++≤; (2)2228a b cb c a---⋅⋅≥. 【答案】(1)见解析(2)见解析 【解析】(1)将a +b +c =2平方,然后将基本不等式2222222,2,2a b ab b c bc a c ac +≥+≥+≥三式相加,进行证明;(2)由22a b c bc b b -+=≥2222b a c ac c b a bac c c a a a-+-+=≥=≥,三式相乘进行证明. 【详解】(1)将a +b +c =2平方得:2222224a b c ab ab ac +++++=, 由基本不等式知:2222222,2,2a b ab b c bc a c ac +≥+≥+≥,三式相加得:222a b c ab bc ac ++≥++,则2224222333a b c ab bc ac ab bc ac =+++++≥++ 所以43ab bc ac ++≤,当且仅当a =b =c =23时等号成立(2)由22a b c bc b b b -+=≥2222b a c ac c b a ba c c c a a a-+-+=≥=≥则2222228a b c bc ac ba b c a ---⋅⋅≥=, 即2228a b c b c a ---⋅⋅≥当且仅当23a b c ===时等号成立 26.设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.【答案】(1)见解析 (2)5 【解析】(1)()13,,212,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5. 27.设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a ≥-. 【答案】(1) 43;(2)见详解. 【解析】(1) 22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++≥-++++=+++=故2224(1)(1)(1)3x y z -++++≥等号成立当且仅当111x y z -=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩时等号成立所以222(1)(1)(1)x y z -++++的最小值为43. (2)因为2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥. 根据柯西不等式等号成立条件,当21x y z a -=-=-,即22321323a x a y a z a +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a ≥-. 28.已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++. 【答案】(1)见解析;(2)见解析 【解析】(1)1abc =111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭ ()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥(2)()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又2a b ab +≥2b c bc +≥2a c ac +≥a b c ==时等号同时成立)()()()()3332322224a b b c c a ab bc ac abc ∴+++++≥⨯=又1abc = ()()()33324a b b c c a ∴+++++≥29.已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞ 【解析】(1)当1a =时,原不等式可化为|1||2|(1)0x x x x -+--<;当1x <时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(1)0x ->,显然成立, 此时解集为(,1)-∞;当12x ≤<时,原不等式可化为(1)(2)(1)0x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(10)x -<,显然不成立;此时解集为空集; 综上,原不等式的解集为(,1)-∞;(2)当1a ≥时,因为(,1)x ∈-∞,所以由()0f x <可得()(2)()0a x x x x a -+--<, 即()(1)0x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,2(),1()2()(1),x a a x f x x a x x a-≤<⎧=⎨--<⎩,因为1a x ≤<时, ()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[1,)+∞. 30.设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤恒成立,求a 的取值范围. 【答案】(1)[2,3]-;(2) ][(),62,-∞-⋃+∞. 【解析】 (1)当1a =时,()24,1,2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤.(2)()1f x ≤等价于24x a x ++-≥.而22x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是][(),62,-∞-⋃+∞. 31.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 【答案】(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥; 若0a >,11ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(]0,2. 32.在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 【答案】(1) 22(1)4x y ++=.(2) 423y x =-+. 【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为()2214x y ++=.(2)由(1)知2C 是圆心为()1,0A -,半径为2的圆.由题设知,1C 是过点()0,2B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22221k k -+=+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. 当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22221k k +=+,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+. 33.在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离. 【答案】(15 (2)2. 【解析】(1)设极点为O .在△OAB 中,A (3,4π),B 22π), 由余弦定理,得AB 223(2)232cos()524ππ+-⨯⨯⨯-=(2)因为直线l 的方程为sin()34ρθπ+=, 则直线l 过点(32,)2π,倾斜角为34π.又2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ⨯-=. 34.如图,在极坐标系Ox 中,(2,0)A ,2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =P 的极坐标.【答案】(1) 2cos ([0,])4πρθθ=∈,32sin ([,])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈, (2) 3,)6π,3,)3π,23,)3π,5(3,)6π. 【解析】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos 3([0,])4πθθ=∈得6πθ=,此时P 的极坐标为(3,)6π解方程32sin 3([,])44ππθθ=∈得3π=θ或23πθ=,此时P 的极坐标为3,)3π或23,)3π解方程32cos 3([,])4πθθπ-=∈得56πθ=,此时P 的极坐标为53,)6π故P 的极坐标为3,)6π,3,)3π,23,)3π,53,)6π. 35.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【答案】(1)023ρ=l 的极坐标方程为sin()26πρθ+=;(2)4cos ()42ππρθθ=≤≤【解析】(1)因为点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上, 所以004sin 4sin 233πρθ===即(23,)3M π,所以tan33OM k π==因为直线l 过点(4,0)A 且与OM 垂直, 所以直线l 的直角坐标方程为34)y x =-,即340x y -=; 因此,其极坐标方程为cos 3sin 4ρθρθ=,即l 的极坐标方程为sin()26πρθ+=;(2)设(,)P x y ,则OP y k x =, 4AP y k x =-, 由题意,OP AP ⊥,所以1OP APk k =-,故2214y x x=--,整理得2240x y x +-=,因为P 在线段OM 上,M 在C 上运动,所以02,02x y ≤≤≤≤, 所以,P 点轨迹的极坐标方程为24cos 0ρρθ-=,即4cos ()42ππρθθ=≤≤.。
高中数学选修4--4、选修4--5专项试题
21.(本小题满分14分)本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分。
作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(I )(本小题满分7分)选修4—2:矩阵与变换
已知矩阵10102,,:4000A B l x y a b ⎛⎫⎛⎫==-+= ⎪ ⎪⎝⎭⎝⎭
矩阵直线经矩阵A 所对应的变换得直线l 2,直线l 2又经矩阵B 所对应的变换得到直线3:40l x y ++=,求直线l 2的方程。
(II )(本小题满分7分)选修4—4:坐标系与参数方程
求直线12,14cos 2,14sin ,
x t x y t y θθ=-+=+⎧⎧⎨⎨=-=-+⎩⎩被曲线截得的弦长。
(III )(本小题满分7分)选修4—5:不等式选讲
已知正实数a b c 、、满足222
43a b c ++=,不等式|1||2|x x a b c ---≥++2恒成立,求实数x 的取值范围
21.本题有(1)(2)(3)三个选答题,每题7分,请考生任选2题作答,满分14分。
如果多做,则按所做的前两题记分。
(1)(本小题满分7分)选修4—2;矩阵与变换
已知13 2 022,0 131 22A B ⎡⎤-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦
,求1()AB -
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O 为极点,轴的正半轴为极轴,建立极坐标系。
曲线1C 的极坐标方程是cos()224πρθ+=,曲线2C 的参数方程是2cos 2sin x y αα
=⎧⎨=⎩(α为参数,02πα-
≤≤),求曲线1C 上的点的曲线2C 上的点之间距离的取值范围。
(3)(本小题满分7分)选修45-;不等是选讲
已知,,,a b c d 均为正实数,且1a b c d +++=,求证: 2222111115
a b c d a b c d +++≥++++。