温度应力资料
- 格式:ppt
- 大小:1.42 MB
- 文档页数:13
施工配合比(kg/m3)二.温度计算(1)绝热温升Tmax′=WQ/γC(1-e-mt) Tmax′---绝热温升Q-----水泥水化热Q=377x103J/KgC-----砼比热C=0.96X103J/(Kg.℃)γ-----砼重度γ=2400Kg/M3W-----每立方米水泥重量260 Kg/M3m-----热影响系数,m=0.43+0.0018QTmax′=260X377X103/0.96X103X2400(1-e-1.10X3) =44℃Tmax=8℃+44℃=52℃(12℃为入模温度)相应也可以建立绝热温度见公式:Tmax′=WQ/γCxε+F/50F-----粉煤灰用量ε――――不同浇筑块的热系数Tmax′=260X377X103/Tmax=8+55=63℃取Tmax=63℃三. 温应力计算1.将砼的收缩随时间的进程换算成当量温度计算:Ty(t)= εy(t)/αα=1x10-5砼线膨胀系数εy(t)=ε0M1M2M3······M10(1-e0.01t)Ty(t)------当量温度εy(t)----任意时间的收缩(mm/mm)M1-----水泥品种为普通水泥,取1.0M2-----水泥细度为4000孔,取1.35M3-----骨料为石灰石,取1.00M4-----水灰比为0.52,取1.64M5-----水泥浆量为0.2,取1.00M6------自然养护30天,取0.93M7------环境相对湿度为50%,取0.54M8------水里半径倒数为0.4,取1.2M9------机械振捣,取1.00M10------含筋率为8%,取0.9ε0--ε∞---最终收缩,在标准状态下ε0=3.24X10-4εy(30)=1.01x10-4Ty(30)=10.1℃εy(27)=0.92 x10-4Ty(27)=9.2℃εy(24)=0.83 x10-4Ty(24)=8.3℃εy(21)=0.73 x10-4 Ty(21)=7.3℃εy(18)=0.64 x10-4Ty(18)=6.4℃εy(15)=0.54 x10-4Ty(15)=5.4℃εy(12)=0.439 x10-4 Ty(12)=4.39℃εy(9)=0.335 x10-4 Ty(9)=3.35℃εy(6)=0.226 x10-4 Ty(6)=2.26℃εy(3)=0.114 x10-4 Ty(3)=1.14℃计算中心温度当量温差:△T6=2.26-1.14=1.12℃△T9=3.35-2.26=1.09℃△T12=4.39-3.35=1.04℃△T15=5.4-4.39=1.01℃△T18=6.4-5.4=1.0℃△T21=7.3-6.4=0.9℃△T24=8.3-7.3=1.0℃△T27=9.2-8.3=0.9℃△T30=10.1-9.2=0.9℃2.计算中心温度砼基础施工时处于散热条件,考虑上下表面及侧面的散热条件,当体积厚达3m时,,散热影响系数取0.97;当中心浇筑完第四天后,水化热达峰值。
温度应力计算应注意以下几个问题:1. 应定义弹性板6或弹性膜,不能应用刚性楼板假定,否则温度效应不能真实反映。
2.pmsap等程序计算温度应力均为瞬态弹性计算,所以温度应力参与组合、配筋,应进行折减,折减系数通常可以取到0.3,以考虑长期效应、微裂纹释放。
如不折减,配筋可能增大太多,与实际不符合。
3.温度应力计算更重要的是了解温度应力集中的部位,以便有的放矢地采取构造措施。
4.楼上的问题一般是由忽略了第一条引起的,你可以查查看温度应力2010-06-30 11:121、构筑物抗震规范,钢结构设计手册(沈祖炎等编写),烟囱设计规范等都把温度荷载作为可变荷载。
2、温度荷载效应的分项系数等于1.0,组合系数取1.0。
钢筋及混凝土材料特性有所改变(常温下基本上没变);钢结构设计手册特别说明,当温度荷载与其他荷载组合时,钢材的强度设计值可提高25%。
烟囱设计规范限制混凝土最高温度不大于150度。
3、仅考虑大气温度变化的计算温度差值(摘自钢结构设计手册)1)采暖房屋25~35度2)非采暖房屋:北方地区35~45度;中部地区25~35度;南方地区20~25度3)热加工车间约40度4)露天结构:北方地区55~60度;南方地区45~50度4、详细的温度差可参考《民用建筑热工设计规范》GB50176-93该工程是一个非常大的平面尺寸了,建议至少设后浇带三道以上才行。
1、 现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
PMSAP采用有限元计算温度应力,构件的温度变化对结构的变形、内力的影响将等效为某种荷载的影响。
具体的技术分析和操作功能参见PMSAP手册。
但是,这些计算都是在我们用户自定义温度场的基础上进行的,所以我们要首先了解以下的一些基本概念。
2、 温度对结构的作用首先是个热传导问题,只有当构件变形受约束,温度作用才以力的形式表现出来,才产生结构设计问题。
所以,第 1 页导热状况不同,约束内力计算结果差异明显,要特别注意导热计算正确与否将直接影响结构计算及结构设计的正确性。
3.2 温度应力计算在热力管线的高温作用下,衬砌和围岩都会有应力和位移的产生,因此可以分开进行分析,然后再根据接触面上的变形连续条件求出接触面上的约束力,即围岩和衬砌之间的约束作用力。
衬砌的总温度应力等于衬砌自身的应力加上衬砌与围岩的约束力。
3.2.1 衬砌自身应力根据弹性力学的平面应变问题,可以求出衬砌自身的弹性温度应力:在衬砌与围岩接触面上的衬砌径向位移为:3.2.2 弹性约束应力上面计算衬砌的自身应力时没有考虑接触面上的约束力,但是由于围岩和衬砌变形不一致,存在压应力,可以假定为P。
根据著名的拉梅公式,在外力作用下,衬砌的径向应力计算如下:则总的温度应力为:3.3 徐变温度应力计算徐变温度应力的计算思路与温度应力的计算思路一致,先计算混凝土自身的徐变温度应力,然后计算接触面的约束力,最后将力进行叠加得到衬砌的徐变温度应力。
3.3.1 衬砌自身徐变温度应力根据朱伯芳的推导,圆形隧道衬砌自身弹性徐变温度应力的计算公式如下:3.3.2徐变约束应力衬砌徐变约束应力的计算公式如下:隧道衬砌温度应力的有限元分析由于隧道内二次衬砌表面温度及二次衬砌背后一定深度的围岩体温度差的存在,在混凝土衬砌内部会产生压应力,表面会产生拉应力。
而大温度梯度会引起较大的表面拉应力或者收缩应力,可能会在混凝土表面产生表面裂缝或收缩裂缝,对衬砌结构带来严重的危害。
因此,在隧道衬砌设计与施工中有必要对考虑温度影响下的隧道衬砌受力规律进行分析研究。
利用平面应变假定、变分法和最小势能原理,分析围岩和衬砌在其自重以及衬砌内外温差作用下的变形和应力分布。
隧道的温度应力及由其引起的裂缝开展规律的研究1.1 单孔矩形或圆形截面隧道隧道衬砌早期温度应力场模拟及可靠度分析综合国内外对混凝土结构温度应力分析的方法可分为理论解法、实用算法和数值方法。
1.理论解法由于隧道桥梁等大体积混凝土边界和材料的复杂性,要求解满足所有条件的温度应力解答几乎是不可能的,所以现在一般不用理论解法来求解实际工程问题。
Construction & Decoration建筑与装饰2023年12月下 169超长混凝土结构温度应力影响分析聂行中铁上海设计院集团有限公司南昌院 江西 南昌 330000摘 要 温度应力是超长结构设计中重点探讨的问题之一。
本文介绍了某体育馆超长框架结构温度应力分析及设计,探讨了温度荷载的确定,并通过YJK建模计算,分析了温度应力下结构变形及楼板应力分布,根据分析结果提出来相关控制温度应力的措施,为今后类似工程设计提供一定的借鉴作用。
关键词 温度应力;超长结构;温度荷载Analysis on Influence of Temperature Stress of Ultra-Long Concrete StructuresNie XingChina Railway Shanghai Design Institute Group Co. Ltd. Nanchang Institute, Nanchang 330000, Jiangxi Province, ChinaAbstract Temperature stress is one of the key problems in the design of ultra-long structures. In this paper, the analysis and design of temperature stress of ultra-long frame structure of a gymnasium are introduced, the determination of temperature load is discussed, and the structural deformation and floor stress distribution under temperature stress are analyzed through YJK modeling calculation, and relevant measures to control temperature stress are proposed according to the analysis results, which provides a certain reference for similar engineering design in the future.Key words temperature stress; ultra-long structure; temperature load引言近20年来,我国经济实力的不断增长逐步推动着现代城市的高速发展,我国建筑行业也取得了长足的发展,人们对建筑使用功能、建筑美感也提出了更高的要求,大空间、大跨度的体育场馆、会展中心、城市枢纽中心等建筑应运而生。
混凝土结构的温度应力分析方法一、概述混凝土结构在使用过程中会受到温度的影响,温度变化会引起混凝土内部的应力变化,进而影响结构的稳定性和安全性。
因此,在混凝土结构的设计和施工中,需要考虑温度应力的影响。
本文将介绍混凝土结构的温度应力分析方法。
二、温度应力产生原因温度变化会引起混凝土内部的温度变化,从而引起混凝土内部的体积变化。
当混凝土受到约束时,体积变化会引起内部应力的变化,从而产生温度应力。
温度应力的大小与混凝土的线膨胀系数、温度变化量、混凝土的约束程度等因素有关。
三、温度应力分析方法1. 温度应力计算公式根据基本力学原理,可以得到混凝土结构的温度应力计算公式:σ = αΔT E其中,σ为温度应力,α为混凝土的线膨胀系数,ΔT为温度变化量,E为混凝土的弹性模量。
2. 温度应力分析步骤(1)确定温度变化量在进行温度应力分析前,首先需要确定温度变化量。
通常情况下,可以根据气象资料和历史数据来确定设计温度范围。
(2)确定混凝土的线膨胀系数混凝土的线膨胀系数是影响温度应力大小的关键因素之一。
一般情况下,可以根据混凝土的配比和试验数据来确定混凝土的线膨胀系数。
(3)确定混凝土的约束程度混凝土的约束程度也是影响温度应力大小的关键因素之一。
混凝土的约束程度越大,温度应力就越大。
一般情况下,可以根据混凝土的结构形式和施工方式来确定混凝土的约束程度。
(4)计算温度应力根据上述公式和确定的参数,可以计算出混凝土结构在温度变化下的应力分布情况。
四、温度应力分析案例以下是一个混凝土结构的温度应力分析案例:假设某混凝土结构的线膨胀系数为1.2×10^-5/℃,设计温度范围为-10℃~30℃,混凝土的约束程度为中等程度。
根据上述参数,可以计算出该混凝土结构在温度变化下的应力分布情况。
(1)确定温度变化量根据设计温度范围,温度变化量为40℃。
(2)确定混凝土的线膨胀系数已知混凝土的线膨胀系数为1.2×10^-5/℃。
第十章 温度应力前面几章讨论了弹性体在外荷载或边界位移(基础沉降)作用下引起的应力及变形,本章将讨论弹性体由于温度的改变而引起的应力与变形。
当弹性体的温度改变时,它的每一部分都将由于温度的升高或降低而趋于膨胀或收缩,但是,由于弹性体所受到的外在约束,以及弹性体自身各个部分之间的相互约束,使得弹性体的膨胀或收缩并不能自由地发生,于是就产生了应力,这种由于温度改变所产生的应力称之为温度应力。
温度应力是混凝土结构产生裂缝的主要原因之一,温度裂缝对结构造成严重的危害,对结构的安全性与耐久性产生重要影响。
为了确定弹性体内的温度应力,需进行两方面的计算:(1)按照热传导理论,根据弹性体的热学性质、内部热源、初始条件和边界条件,计算弹性体内各点在各瞬时的温度,即确定温度场,前后两个时刻的温度场之差就是弹性体的温度改变。
(2)按照“热弹性力学”,根据弹性体的温度改变来求出体内各点的温度应力,即确定应力场。
关于温度场的计算,在传热学中已有详细讨论,本章仅介绍传热学的基本方程及初始、边界条件。
本章将主要讨论温度应力的计算,暂不考虑荷载或边界位移对应力的影响,对于实际既有荷载作用、边界位移作用以及温度改变作用的弹性力学问题,可分别单独计算单个作用因素下的应力结果,然后应用叠加原理,将单个作用因素下的应力结果叠加起来,即可得到实际问题的解答。
§10-1温度场和热传导方程(1)温度场一般情况下,在热传导的过程中,弹性体内各点的温度随位置和时间而变化,因而温度T 是位置坐标和时间t 的函数:(,,,)T T x y z t = (10.1)在任一瞬时,所有各点的温度值的总体称为温度场。
一个温度场,如果它的温度随时间而变化,如式(10.1)所示,就称为不稳定温度场;如果温度场不随时间而变化,即有:0T t∂=∂,就称为稳定温度场。
在稳定温度场中,温度只是位置坐标的函数,即:(,,)T T x y z = (a )如果稳定温度场只随着两个位置坐标而变化,即平面稳定温度场为:(,)T T x y = (b )温度场的等温线可以表示为:(,)T x y C = (c )式中:C 为常数,平面温度场的等温线如图10-1所示。
温度应力
一、概述
温度应力是指受热场作用下物体产生的内部应力,是由于温度变化引起的张力和压应力的总和。
温度应力是一种常见的工程问题,在材料工程、结构工程、航空航天等领域都有广泛的应用。
二、温度应力的形成原因
1. 材料的热膨胀性质
材料在受热或冷却时会发生体积变化,导致内部应力的产生。
不同材料的热膨胀系数不同,会影响温度应力的大小。
2. 材料的结构特性
材料的结构特性,如晶体结构、晶粒取向等,也会影响温度应力的形成。
不同的结构特性会导致不同的热膨胀行为,进而产生不同的温度应力。
三、温度应力的影响
1. 对材料性能的影响
温度应力会导致材料的变形、破裂等问题,对材料的力学性能和使用寿命造成影响。
2. 对结构安全的影响
在工程结构中,温度应力可能导致结构的破坏,影响结构的安全性和稳定性。
四、减缓温度应力的方法
1. 选择合适的材料
通过选择具有较小热膨胀系数的材料可以减少温度应力的产生。
2. 设计合理的结构
在工程设计中,可以通过合理的结构设计来减少温度应力的影响,如增加局部支撑、缓冲器等。
五、结语
温度应力是一种常见的工程问题,需要在设计和使用过程中引起足够的重视。
通过合理的材料选择和结构设计,可以有效减缓温度应力的影响,提高工程结构的安全性和稳定性。