福州市华伦中学数学旋转几何综合达标检测(Word版 含解析)
- 格式:doc
- 大小:1.13 MB
- 文档页数:28
福州市华伦中学小升初数学期末试卷达标检测(Word版含解析)一、选择题1.在21:00时,钟面上的时针和分针成()。
A.锐角B.直角C.钝角D.平角2.菜市场有黄瓜150千克,黄瓜重量和西红柿重量的比是3:5,黄瓜重量比西红柿少多少千克?正确的算式是()A.150÷3×5 B.150÷3×5﹣150 C.150÷3×(5﹣3)3.若一个三角形三个内角度数的比是1∶1∶a(a>0),则这个三角形一定是()。
A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形4.m+=n+,m和n比较大小,结果是().A.m>n B.m<n C.m=n D.无法比较5.如图,是一个正方体展开图,把它折成正方体后与6相对的面是()。
A.1 B.2 C.3 D.46.便民水果店购进了8千克樱桃,卖掉了45。
下列说法中,错误的是()。
A.还剩15B.还剩1千克的85C.剩下与卖掉比是4∶1 D.剩下1.6千克7.一个圆柱和一个圆锥等底等高,它们的体积相差28立方厘米,圆锥的体积是()立方厘米。
A.14 B.28 C.42 D.848.一种商品提价20%后,又降价20%,现价()原价.A.大于 B.小于 C.等于9.将0.1毫米的纸对折再对折,反复对折,量出每次对折后的厚度,其厚度不可能是()毫米。
A.0.4 B.0.6 C.0.8 D.1.6二、填空题10.5.09升=________毫升 4时30分=________时11.419的分数单位是(________),再添上(________)个这样的分数单位就是最小的质数。
12.比80m多12是(________)m,12kg比15kg少(________)%;30t是(________)t的56。
13.公园里有一个半径为4米的圆形水池,水池周边修了一条宽为1米的环形石子路,石子路的面积为(________)平方米。
2024届福建省福州市华伦中学数学九年级第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图是二次函数y =ax 2+bx +c 的图象,其对称轴为x =1,下列结论:①abc >0;②2a +b =0;③4a +2b +c <0;④若(-,y 1),(,y 2)是抛物线上两点,则y 1<y 2,其中结论正确的是( )A .①②B .②③C .②④D .①③④2.已知二次函数23y ax bx =++自变量x 的部分取值和对应函数值y 如表:x… -2 -1 0 1 2 3 … y…-5343…则在实数范围内能使得50y +>成立的x 取值范围是( ) A .2x >-B .2x <-C .24x -<<D .2x >-或4x <3.二次函数y =ax 2+bx+c 的部分对应值如表:利用该二次函数的图象判断,当函数值y >0时,x 的取值范围是( ) A .0<x <8B .x <0或x >8C .﹣2<x <4D .x <﹣2或x >44.如图,在圆心角为45°的扇形内有一正方形CDEF ,其中点C 、D 在半径OA 上,点F 在半径OB 上,点E 在弧AB 上,则扇形与正方形的面积比是( )A .π:8B .5π:8C .3π:4D .5π:45.已知反比例函数y=kx的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( ) A .(﹣6,1)B .(1,6)C .(2,﹣3)D .(3,﹣2)6.如图,ABC ∆中,50ABC ∠=︒,60ACB ∠=︒,点O 是ABC ∆的外心.则BOC ∠=( )A .110︒B .117.5︒C .140︒D .125︒7.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是( ) A .B .C .D .8.若(),a b a b <是方程()()()2x m n x m n --=<的两根,则实数,,,a b m n 的大小关系是( ) A .m a b n <<<B .a m b n <<<C .a m n b <<<D .a b m n <<<9.如图所示的几何体的左视图是( )A .B .C .D .10.将二次函数2y x 4x 1=--化为()2y x h k =-+的形式,结果为( )A .()2y x 25=++ B .()2y x 25=+- C .()2y x 25=-+D .()2y x 25=--二、填空题(每小题3分,共24分)11.抛物线y =x 2﹣4x 的对称轴为直线_____.12.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B'位置,A 点落在A'位置,若AC ⊥A'B',则∠BAC 的度数是__.13.如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是______.14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.15.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发,以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动,在运动期间,当四边形PQBC 为平行四边形时,运动时间为__________秒.16.如图已知二次函数y 1=x 2+c 与一次函数y 2=x +c 的图象如图所示,则当y 1<y 2时x 的取值范围_____.17.将抛物线2(1)y x =+向右平移2个单位长度,则所得抛物线对应的函数表达式为______. 18.如图,A 、B 、C 、D 是O 上四个点,连接OA 、OC ,过A 作AE OC ⊥交圆周于点E ,连接OE ,若140ABC ∠=︒,则OEA ∠的度数为___________.三、解答题(共66分) 19.(10分)解方程: (1)x 2+4x ﹣21=0 (2)x 2﹣7x ﹣2=020.(6分)如图,P 是平面直角坐标系中第四象限内一点,过点P 作PA ⊥x 轴于点A ,以AP 为斜边在右侧作等腰Rt △APQ ,已知直角顶点Q 的纵坐标为﹣2,连结OQ 交AP 于B ,BQ =2OB .(1)求点P 的坐标;(2)连结OP ,求△OPQ 的面积与△OAQ 的面积之比.21.(6分)先化简,再求值:22321122x x x x x --+⎛⎫-÷ ⎪--⎝⎭,然后从0,1,2三个数中选择一个恰当的数代入求值.22.(8分)在一元二次方程x 2-2ax +b =0中,若a 2-b >0,则称a 是该方程的中点值.(1)方程x 2-8x +3=0的中点值是________;(2)已知x 2-mx +n =0的中点值是3,其中一个根是2,求mn 的值.23.(8分)某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。
福建省福州市台江区华伦中学2024届数学七年级第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线2.按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.02(精确到0.01)D.0.0136≈0.014(精确到0.0001)3.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面相对的面上标的字是().A.我B.的C.梦D.国4.下列语句中:①画直线AB=3cm;②直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;③延长直线OA;④在同一个图形中,线段AB与线段BA是同一条线段.正确的个数有()A.0 B.1 C.2 D.35.某几何体的展开图如图所示,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱6.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港7.如图是由5个大小相同的正方体组合而成的几何体,从正面看得到的图形是()A.B.C.D.8.如图所示,点O在直线AB上,∠EOD=90°,∠COB=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOE与∠COD互余D.∠AOC与∠COB互补9.下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则a b c cB.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣310.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b二、填空题(本大题共有6小题,每小题3分,共18分)11.点P在数轴上距原点6个单位长度,且位于原点的左侧,若将P向右移动5个单位长度,再向左移动2个单位长度,此时点P表示的数是_____.12.一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为_____分.13.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜间,温度可降至-183℃,则月球表面昼夜的温度差是_________℃.14.若3x =是关于x 的方程3216x k +-=的解,则k 的值为______________.15.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______. 16.按如图所示的程序计算,若开始输入的n 的值为2-,则最后输出的结果是__________.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.18.(8分)为提倡节约用水,我县自来水公司每月只给某单位计划内用水200吨,计划内用水每吨收费2.4元,超计划部分每吨按3.6元收费.⑴用代数式表示下列问题(最后结果需化简 ):设用水量为x 吨,当用水量小于等于200吨时,需付款多少元?当用水量大于200吨时,需付款多少元?⑵若某单位4月份缴纳水费840元,则该单位用水量多少吨?19.(8分)解下列方程:(1)4﹣4(x ﹣3)=2(9﹣x )(2)221153x x x ---=- 20.(8分)先化简,再求值:()111221x y x y x y y x y x ------⎛⎫⎛⎫++⋅÷ ⎪ ⎪--⎝⎭⎝+⎭,其中122,3x y -==-21.(8分)计算.2211312()()2323x x y x y --+-+ 22.(10分)先化简,再求值:()()2232322x xy x y xy y ⎡⎤---++⎣⎦,其中x=-4,y=1. 23.(10分)(1)先化简,再求值:,其中,满足. (2)关于的代数式的值与无关,求的值. 24.(12分)解方程:36x --234x -=1参考答案一、选择题(每小题3分,共30分)1、D【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【题目详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D .【题目点拨】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.2、C【分析】根据近似数的定义可以得到各个选项的正确结果,从而可以解答本题.【题目详解】解:403.53≈404(精确到个位),故选项A 错误,2.604≈2.6(精确到十分位),故选项B 错误,0.0234≈0.02(精确到0.01),故选项C 正确,0.0136≈0.0136(精确到0.0001),故选项D 错误,故选:C .【题目点拨】本题考查近似数的概念,解答本题的关键是明确近似数的定义.3、D【分析】利用正方体及其表面展开图的特点解题.【题目详解】这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:D.【题目点拨】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】根据射线的表示,线段的性质以及直线的性质对各小题分析判断即可得解.【题目详解】直线没有长度,故①错误,射线只有一个端点,所以射线AB与射线BA是两条射线,故②错误,直线没有长度,不能延长,故③错误,在同一个图形中,线段AB与线段BA是同一条线段,故④正确,∴正确的有④,共1个,故选B.【题目点拨】本题考查了直线、线段以及射线的定义,熟记概念与性质是解题的关键5、A【分析】侧面为三个长方形,底面为三角形,故原几何体为三棱柱.【题目详解】观察图形可知,这个几何体是三棱柱.故选:A.【题目点拨】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.6、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【题目点拨】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7、C【解题分析】根据三视图的定义:主视图是从正面观察得到的图形解答即可.【题目详解】从正面观察可知:图形有两层,下层有3个正方体,上层左边有1个正方体,观察4个选项,只有C符合上面的几何体,故选C.【题目点拨】本题考查了简单组合体的三视图,注意掌握主视图、俯视图、左视图的观察方向.8、C【分析】根据垂直的定义和互余解答即可.【题目详解】解:∵∠EOD=90°,∠COB=90°,∴∠1+∠DOC=∠2+∠DOC=90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE=∠1+∠COD,∴∠AOE=∠COD,故选:C.【题目点拨】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.9、A【分析】通过等式的基本性质判断即可;【题目详解】解:∵若a=b,只有c≠0时,a bc c成立,∴选项A符合题意;∵若a=b,则ac=bc,∴选项B不符合题意;∵若a(x2+1)=b(x2+1),则a=b,∴选项C不符合题意;∵若x=y,则x﹣3=y﹣3,∴选项D不符合题意.故选:A.【题目点拨】本题主要考查了等式的基本性质,准确计算是解题的关键.10、C【分析】根据线段的和差关系即可求解.【题目详解】解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.【题目点拨】此题考查两点间的距离,解题关键是熟练掌握线段的和差关系.二、填空题(本大题共有6小题,每小题3分,共18分)11、-3【分析】先求出P点表示的数,再列出算式,最后求出即可.【题目详解】解:∵P在数轴上距原点6个单位长度,且位于原点的左侧,∴P点表示的数是﹣6,﹣6+5﹣2=﹣3,即此时点P所表示的数是﹣3,故答案为:﹣3【题目点拨】本题考查数轴和有理数的计算,能根据题意求出P点表示的数和列出算式是解题的关键.12、11【分析】根据超过96分,记为“+”,低于96分,记为“-”,即可得出答案.【题目详解】根据题意可得96-85=11故85分应记为-11分故答案为-11.【题目点拨】本题考查的是正负数在实际生活中的应用,比较简单,需要明确正负数在不同题目中代表的实际意义.13、1【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【题目详解】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至-183℃,所以月球表面昼夜的温差为:127℃-(-183℃)=1℃.故答案为1.【题目点拨】此题主要考查正负数在实际生活中的应用,温差=最高气温-最低气温.14、-1【分析】把x=3 代入方程得到以k 为未知数的方程,求解即可.【题目详解】∵3x =是关于x 的方程3216x k +-=的解,∴9+2k-1=6,解得,k=-1.故答案为:-1.【题目点拨】本题考查了一元一次方程的解法,本题相当于把k 看成未知数,解关于k 的一元一次方程.15、120182【分析】按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可. 【题目详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =11111122017201820192020201920184323201820192020+++⋯+++++⋯+++ =1201912018120171312120202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =120182+=120182故答案为:120182 【题目点拨】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.16、15【分析】根据运算程序,把2n =-代入计算,即可得到答案.【题目详解】解:当2n =-时,2192(2)1915n +=⨯-+=,∵1510>,∴输出的结果是15;故答案为:15.【题目点拨】本题考查了代数式求值,读懂图表运算程序是解题的关键.三、解下列各题(本大题共8小题,共72分)17、CE =10.4cm .【分析】根据中点的定义,可得AC 、BC 的长,然后根据题已知求解CD 、DE 的长,再代入CE=DE-CD 即可.【题目详解】∵AC=BC=12AB=12cm ,CD=13AC=4cm ,DE=35AB=14.4cm , ∴CE=DE ﹣CD=10.4cm.18、⑴当用水量小于等于200吨,需付款2.4x ,当用水量大于200吨,需付款(3.6240)x -元;⑵该单位用水量300吨.【分析】(1)根据计划内用水每吨收费2.4元,可求出用水量小于等于200吨时,需付款的钱数;再根据超计划部分每吨按3.6元收费,可求出用水量大于200吨时,需付款钱数;(2)先判断该单位4月份用水量是否超过200吨,再根据(1)中得出的关系式列方程求解即可.【题目详解】解:(1)由题意可知:当用水量小于等于200吨,需付款2.4x当用水量大于200吨,需付款2.4200 3.6(200)(3.6240)x x ⨯+-=-元(2)因为2.4200480840⨯=<所以该单位4月份用水量超过200吨根据题意得:3.6(200)840480x -=-解得:300x =答:该单位用水量300吨.【题目点拨】本题考查的知识点是列代数式以及一元一次方程的应用,解此题的关键是读懂题目,列出正确的代数式.19、(1)1x =-;(2)13x =-【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后移项合并,即可得到答案.【题目详解】解:(1)去括号得:4﹣4x +12=18﹣2x ,移项合并得:﹣2x =2,解得:x =﹣1;(2)去分母得:15x ﹣3x +6=10x ﹣5﹣15,移项合并得:2x =﹣26,解得:x =﹣1.【题目点拨】本题考查了解一元一次方程,解题的关键是熟练掌握运算法则进行解题.20、-xy ,92【分析】根据分式的混合运算以及负整数指数幂的性质,即可求解. 【题目详解】()111221x y x y x y y x y x ------⎛⎫⎛⎫++⋅÷ ⎪ ⎪--⎝⎭⎝+⎭ =()111111()()x y x y x y x y x y x y ------⎛⎫-+⋅⋅ ⎪+-⎝⎭++ =111()x y x y ---⋅- =()xy x y y x -⋅- =-xy .当122,3x y -==-时,原式=12192)(3)92(2-⨯-=⨯=-. 【题目点拨】本题主要考查分式的混合运算以及负整数指数幂的性质,掌握通分和约分以及负整数指数幂的性质,是解题的关键.21、23x y -+【分析】先去括号,再合并同类项即可求解. 【题目详解】解:原式22123122323x x y x y =-+-+ 22132122233x x x y y =--++ 23x y =-+.【题目点拨】本题考查整式的运算,掌握去括号法则是解题的关键.22、8xy -,64【分析】先去括号,再合并同类项,然后把x,y 的值代入化简后的式子计算即可.【题目详解】解:原式22363222x xy x y xy y =--+-- 8xy =-当x=-4,y=1时,原式()84264=-⨯-⨯=【题目点拨】本题考查了整式的化简求值,掌握整式的加减的计算法则是解题关键.23、(1)x 2y+xy 2 ;(2)【解题分析】原式去括号合并同类项得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【题目详解】(1)原式=∵∴∴原式==(2)原式 = =∵代数式的值与无关,∴4-k=0, ∴【题目点拨】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键. 24、94x =- 【分析】按照方程两边同乘以一个数去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【题目详解】解:方程两边同时乘以12得:2(x-3)-3(2x-3)=12去括号得:2x-6-6x+9=12 移项合并同类项得:-4x=9系数化为1得:x=-9 4【题目点拨】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键,去分母时注意方程两边都要乘以同一个数.。
福州市华伦中学数学圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.4.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.5.四边形ABCD 内接于⊙O ,连接AC 、BD ,2∠BDC +∠ADB =180°.(1)如图1,求证:AC =BC ;(2)如图2,E 为⊙O 上一点,AE =BE ,F 为AC 上一点,DE 与BF 相交于点T ,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)82【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=或﹣(舍弃),∴DE=2m=.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.6.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.7.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,610PQ OQ +=,求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据610PQ OQ +=,即可分别求出a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45°∴△NQC为等腰直角三角形∴NC=NQ=3a,∴BC=2NC=6a在Rt△CFN中,CF=2210+=NC FN a∵PQ OQ⊥∴PQ∥BC∴∠PQE=∠BCG∵PE∥BG∴∠PEQ=∠BGC∴△PQE∽△BCG∴=PQ PEBC BG即126=+PQ rra r解得:PQ=4a∵610PQ OQ+=,∴4a+2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.8.已知ABD△内接于圆O,点C为弧BD上一点,连接BC AC AC、,交BD于点E,CED ABC∠=∠.(1)如图1,求证:弧AB=弧AD;(2)如图2,过B作BF AC⊥于点F,交圆O点G,连接AG交BD于点H,且222EH BE DH=+,求CAG∠的度数;(3)如图3,在(2)的条件下,圆O上一点M与点C关于BD对称,连接ME,交∥交AD于点Q,交BD的延长线于点R,AB于点N,点P为弧AD上一点,PQ BG=,ANE的周长为20,52AQ BNDR=,求圆O半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB可得;(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合,证△ALE≌△AHE,利用勾股定理逆定理推导角度;(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD.先证△AEN≌△QUD,再证△NVE≌△RKU,可得到NV=KR=DK,进而求得OB的长.【详解】(1)∵∠CED是△BEC的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222=+EH BE DH∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU∴NV=KR=DK=2 2∴BN=5∴22r【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形9.如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)连结BC,求证:△BCD≌△DFB;(2)求证:PC是⊙O的切线;(3)若tan F=23,AG﹣BG=533,求ED的值.【答案】(1)详见解析;(2)详见解析;(3)DE=133.【解析】【分析】(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.(3)由于∠BCD=∠F,于是tan∠BCD=tanF=23=BGCG,设BG=2x,则CG=3x.注意到AB是直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG•AG,可得出AG的表达式(用x表示),再根据AG-BG=533求出x的值,从而CG、CB、BD、CD的长度可依次得出,最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】解:(1)证明:因为BE=DE,所以∠FBD=∠CDB,在△BCD和△DFB中:∠BCD=∠DFB∠CDB=∠FBDBD=DB所以△BCD≌△DFB(AAS).(2)证明:连接OC.因为∠PEC =∠EDB+∠EBD =2∠EDB , ∠COB =2∠EDB ,所以∠COB =∠PEC ,因为PE =PC ,所以∠PEC =∠PCE ,所以∠PCE =∠COB ,因为AB ⊥CD 于G ,所以∠COB+∠OCG =90°,所以∠OCG+∠PEC =90°,即∠OCP =90°,所以OC ⊥PC ,所以PC 是圆O 的切线.(3)因为直径AB ⊥弦CD 于G , 所以BC =BD ,CG =DG ,所以∠BCD =∠BDC ,因为∠F =∠BCD ,tanF =23, 所以∠tan ∠BCD =23=BG CG, 设BG =2x ,则CG =3x .连接AC ,则∠ACB =90°,由射影定理可知:CG 2=AG•BG ,所以AG =229922x C x G x G B ==,因为AG ﹣BG =3,所以292x x -=解得x ,所以BG =2x CG =3x =所以BC 3=,所以BD =BC , 因为∠EBD =∠EDB =∠BCD , 所以△DEB ∽△DBC ,所以B DB DC DE D =, 因为CD =2CG =43,所以DE =2133DB CD =. 【点睛】本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .10.如图.在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,DE 是ABC 的中位线,连结BD ,点F 是边BC 上的一个动点,连结AF 交BD 于H ,交DE 于G .(1)当点F 是BC 的中点时,求DH BH的值及GH 的长 (2) 当四边形DCFH 与四边形BEGH 的面积相等时,求CF 的长:(3)如图2.以CF 为直径作O . ①当O 正好经过点H 时,求证:BD 是O 的切线: ②当DH BH的值满足什么条件时,O 与线段DE 有且只有一个交点.【答案】(1)12DH BH =,133GH =;(2)83CF =;(3)①见解析;②当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【解析】【分析】(1)根据题意得H 为ABC 的重心,即可得DH BH的值,由重心和中位线的性质求得16=GH AF ,由勾股定理求得AF 的长,即可得GH 的长; (2)根据图中面积的关系得S 四边形DCFG =DEB S,列出关系式求解即可得CF 的长; (3)根据O 与线段DE 有且只有一个交点,可分两类情况讨论:当O 与DE 相切时,求得DH BH 的值;当O 过点E ,此时是O 与线段DE 有两个交点的临界点,即可得出O 与线段DE 有且只有一个交点时DH BH 满足的条件. 【详解】解:(1)∵DE 是ABC 的中位线,∴,D E 分别是,AC AB 的中点,//DE BC ,又∵点F 是BC 的中点,∴BD 与AF 的交点H 是ABC 的重心,:1:2DH BH ∴=,即12DH BH =;:1:2=HF AH , ∴13=HF AF , 在ACF 中,D 为AC 中点,//DE BC ,则//DG CF ,∴DG 为ACF 的中位线,G 为AF 的中点,12∴=GF AF , 111236∴=-=-=GH GF HF AF AF AF , 在Rt ABC 中,90ACB ∠=︒,6AC =,10AB =,8BC ∴===, 则142==CF BC ,AF ∴=163∴=⨯=GH ; (2)∵四边形DCFH 与四边形BEGH 的面积相等,∴S 四边形DCFH +DGH S=S 四边形BEGH +DGH S , 即S 梯形DCFG =DEB S ,∵6AC =,8BC =,DE 是ABC 的中位线,∴3CD =,4DE =, ∵1143622=⋅⋅=⨯⨯=DEB S DE CD ,设2CF a =,∵DG 为ACF 的中位线, ∴12==DG CF a , 则S 梯形DCFG ()3(2)622+⋅==+=DG CF CD a a , 解得:43a =, 823∴==CF a ; (3)①证明:如图2,连结、CH OH ,CF 为O 的直径,O 经过点H ,90∴∠=︒FHC , ∴90∠=∠=︒AHC FHC ,AHC 为直角三角形,D 为AC 的中点,12∴==DH AC CD , ∠∠∴=DCH DHC .又OC OH =,∴∠=∠OCH OHC ,∴∠+=∠+OCH DCH OHC DHC ,即90∠=∠=︒DHO ACB ,∴BH BD ⊥,即BD 是O 的切线;②如图3-1,当O 与DE 相切时,O 与线段DE 有且只有一个交点,设O 的半径为r ,圆心O 到DE 的距离为d ,∴当r=d 时,O 与DE 相切, ∵//DE CF ,90ACB ∠=︒,3CD =,∴两平行线、DE CF 之间的距离为3CD =,∴3r =,则6CF =,1862,32=-=-===BF BC CF DG CF , 由//DE CF 得:DGH BFH ,32DH DG BH BF ∴==; 如图3-2,当O 经过点E 时,连接OE 、OG , 设O 的半径为r ,即==OE OC r ,∵G 为AF 的中点,O 为CF 的中点,∴//OG CD ,∴四边形COGD 为平行四边形,又∵90ACB ∠=︒,∴四边形COGD 为矩形,∴90∠=︒DGO ,则90∠=︒OGE ,OGE 为直角三角形,∴=3=OG CD ,==DG OC r ,则4=-=-GE DE DG r ,由勾股定理得:222+=OG GE OE ,即2223(4)+-=r r , 解得:258r =,则258==OE OC ,2524==CF r 257258,448∴=-=-===BF BC CF DG OC ,由//DE BC 得:DGH BFH ,252514874∴===DH DG BH BF, 则当2514DH BH >时,O 与线段DE 有且只有一个交点; 综上所述,当32DH BH =或2514DH BH >时,O 与线段DE 有且只有一个交点. 【点睛】本题属于圆综合题,考查了切线的性质与判定、中位线的性质等知识,解题的关键是灵活添加常用的辅助线,属于中考压轴题.。
福建省福州市台江区福州华伦中学2024届中考数学模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=92.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10123.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<04.若a与5互为倒数,则a=()A.15B.5 C.-5 D.15-5.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线7.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a48.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个黄球的概率为()A.14B.13C.512D.129.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x10.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-4二、填空题(共7小题,每小题3分,满分21分)11.已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是.12.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为.14.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.15.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.16.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.17.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为________元。
2025届福建福州市台江区华伦中学七年级数学第一学期期末达标检测模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分) 1.以下问题,适合用普查的是( ) A .调查某种灯泡的使用寿命 B .调查中央电视台春节联欢会的收视率 C .调查我国八年级学生的视力情况 D .调查你们班学生早餐是否有喝牛奶的习惯2.下列方程变形中正确的是( ) A .2x-1=x+5移向得2x+x=5+1 B .+=1去分母得3x+2x=1C .(x+2)-2(x-1)=0,去括号得x+2-2x+2=0D .-4x=2,系数化为1得 x=-2 3.2的绝对值是( ). A .2B .-2C .-12D .±24.有理数a ,b 在数轴上的位置如图所示,则下列式子错误的是( )A .ab <0B .a +b <0C .|a |<|b |D .a ﹣b <|a |+|b |5.在数轴上,到表示5-的点的距离等于5个单位的点所表示的数是( ) A .10 B .10-C .0或10-D .10-或106.已知12a b +=,则代数式223a b +﹣的值是( ) A .2B .-2C .-4D .132- 7.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时B .2小时20分C .2小时24分D .2小时40分8.2020年某市各级各类学校学生人数约为1 580 000人,将1 580 000 这个数用科学记数法表示为( ) A .0.158×107 B .15.8×105 C .1.58×106D .1.58×1079.OB 是∠AOC 内部一条射线,OM 是∠AOB 平分线,ON 是∠AOC 平分线,OP 是∠NOA 平分线,OQ 是∠MOA 平分线,则∠POQ ∶∠BOC =( )A .1∶2B .1∶3C .2∶5D .1∶410.已知关于x 的方程250x m -+=的解是3x =-,则m 的值为( ) A .1B .1-C .11-D .11二、填空题(本大题共有6小题,每小题3分,共18分)11.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 12.如果+5表示收入5元.那么-1表示__________________.13.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为_____元. 14.当a =_________时,两方程232x a +=与22x a +=的解相同. 15.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.16.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .三、解下列各题(本大题共8小题,共72分)17.(8分)我们知道:若数轴上点A ,点B 表示的数分别为a ,b ,则A ,B 两点之间的距离ABa b ,如图1,数轴上点A 表示的数为10-,点B 表示的数为20,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向右匀速运动,设运动时间为t 秒(0)t >(1)①A ,B 两点间的距离AB = .②用含t 的代数式表示:t 秒后,点P 表示的数为 ,点Q 表示的数为 . (2)求当t 为何值时,点P 追上点Q ,并写出追上点C 所表示的数; (3)求当t 为何值时,15PQ AB =拓展延伸:如图2,若点P 从点A 出发,点Q 从点M 出发,其它条件不变,在线段AB 上是否存在点M ,使点P 在线段AM 上运动且点Q 在线段MB 上运动的任意时刻,总有32PM BQ =?若存在,请求出点M 所表示的数;若不存在,请说明18.(8分)如图1,将一段长为60cm 绳子AB 拉直铺平后折叠(绳子无弹性,折叠处长度忽略不计),使绳子与自身一部分重叠.(1)若将绳子AB 沿M 、N 点折叠,点A 、B 分别落在A '、B '处. ①如图2,若A '、B '恰好重合于点О处,MN = cm ;②如图3,若点A '落在点B '的左侧,且20cm A B ='',求MN 的长度;③若cm A B n ''=,求MN 的长度.(用含n 的代数式表示)(2)如图4,若将绳子AB 沿N 点折叠后,点B 落在B '处,在重合部分B N '上沿绳子垂直方向剪断,将绳子分为三段,若这三段的长度由短到长的比为3:4:5,直接写出AN 所有可能的长度.19.(8分)下表是中国电信两种”4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)月基本费/元主叫通话/分钟上网流量MB 接听主叫超时部分/(元/分钟)超出流量部分/(元/MB )(1)若某月小萱主叫通话时间为220分钟,上网流量为800MB,则她按方式一计费需元,按方式二计费需元;若她按方式二计费需129元,主叫通话时间为240分钟,则上网流量为MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.20.(8分)某水果商店以每箱200元价格从市场上购进一批苹果共8箱,若以每箱苹果净重30千克为标准,超过千克数记为正数,不足千克数记为负数,称重后记录如下:1.5, 3.5,2,2.5, 1.5,4,2,1+-++---+(1)这8箱苹果一共中多少千克,购买这批苹果一共花了多少钱?(2)若把苹果的销售单价定为每千克x元,那么销售这批苹果(损耗忽略不计)获得的总销售金额为_____元,获得利润为____________元(用含字母x的式子表示);32.75,请你通过列方程并求出x的值.(3)在(2)条件下,若水果商店计划共获利0021.(8分)一种商品按销售量分三部分制定销售单价,如表:(1)若买100件花元,买300件花元;买350件花元;(2)小明买这种商品花了338元,列方程求购买这种商品多少件?(3)若小明花了n元(n>250),恰好购买0.45n件这种商品,求n的值.22.(10分)某铁路桥长1000米.现有一列火车从桥上匀速通过.测得火车从开始上桥到完全通过桥共用了1分钟(即从车头进入桥头到车尾离开桥尾),整个火车完全在桥上的时间为40秒.(1)如果设这列火车的长度为x米,填写下表(不需要化简):(2)求这列火车的长度.23.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?24.(12分)解方程:(1) 5x-6=3x-4 (2) 123173x x-+-=参考答案一、选择题(每小题3分,共30分)1、D【分析】根据被调查对象较小时,宜使用普查,可得答案.【详解】解:A、调查某种灯泡的使用寿命,不能使用普查,错误;B、调查中央电视台春节联欢会的收视率被调查的对象都较大,不能使用普查,错误;C、调查我国八年级学生的视力情况被调查的对象都较大,不能使用普查,错误;D、调查你们班学生早餐是否有喝牛奶的习惯被调查的对象较小,故D宜使用普查;故选:D.【点睛】本题考查了全面调查与抽样调查,被调查对象较小时宜使用普查.2、C【解析】将各项中方程变形得到结果,即可做出判断.【详解】A、2x-1=x+5,移项得:2x-x=5+1,错误;B 、+=1去分母得:3x+2x=6,错误;C 、(x+2)-2(x-1)=0去括号得:x+2-2x+2=0,正确;D 、-4x=2系数化为“1”得:x=-,错误. 故选C . 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解. 3、A【解析】根据绝对值的含义指的是一个数在数轴上的点到距离,而正数的绝对植是一个正数,易找到2的绝对值. 【详解】A 选项根据正数的绝对值是它本身得∣2∣=2,正确;B 选项-2是2的相反数,错误;C 选项 12-是2的相反数的倒数,错误;D 选项既是2的本身也是2的相反数,错误. 故选:A . 【点睛】本题考查的知识点是绝对值的概念,牢记绝对值的概念并能与相反数、倒数等概念加以区分是关键. 4、D【分析】根据图形可知0b a <<,且||||b a >,对每个选项对照判断即可. 【详解】解:由数轴可知b <0<a ,且|b |>|a |, ∴ab <0,答案A 正确; ∴a +b <0,答案B 正确; ∴|b |>|a |,答案C 正确;而a ﹣b =|a |+|b |,所以答案D 错误; 故选:D . 【点睛】本题考查的有理数及绝对值的大小比较,把握数形结合的思想是解题的关键. 5、C【分析】借助数轴可知这样的点在-5的左右两边各一个,分别讨论即可.【详解】若点在-5左边,此时到表示5-的点的距离等于5个单位的点所表示的数是-5-5=-10; 若点在-5右边,此时到表示5-的点的距离等于5个单位的点所表示的数是-5+5=0; 综上所述,到表示5-的点的距离等于5个单位的点所表示的数是-10或0 故选:C . 【点睛】本题主要考查数轴与有理数,注意分情况讨论是解题的关键. 6、B【分析】把2a+2b 提取公因式2,然后把12a b +=代入计算即可. 【详解】∵()22323a b a b +-=+-, ∴将12a b +=代入得:12322⨯-=- 故选B . 【点睛】本题考查了因式分解的应用,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 7、C【分析】设停电x 小时.等量关系为:1-粗蜡烛x 小时的工作量=2×(1-细蜡烛x 小时的工作量),把相关数值代入即可求解.【详解】解:设停电x 小时. 由题意得:1﹣14x =2×(1﹣13x ), 解得:x =2.1. 2.1h =2小时21分.答:停电的时间为2小时21分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键. 8、C【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数. 【详解】解:61580000 1.5810=⨯. 故选:C . 【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法. 9、D【分析】依据OM 是∠AOB 平分线,OQ 是∠MOA 平分线,可得∠AOQ=12∠AOM=14∠AOB ,依据ON 是∠AOC平分线,OP 是∠NOA 平分线,可得∠AOP=12∠AON=14∠AOC=14(∠AOB+∠BOC ),进而得出∠POQ :∠BOC=1:1.【详解】解:∵OM 是∠AOB 平分线,OQ 是∠MOA 平分线,∴∠AOQ=12∠AOM=14∠AOB , ∵ON 是∠AOC 平分线,OP 是∠NOA 平分线, ∴∠AOP=12∠AON=14∠AOC=14(∠AOB+∠BOC ), ∴∠POQ=∠AOP-∠AOQ=14(∠AOB+∠BOC )-14∠AOB , =14∠BOC , ∴∠POQ :∠BOC=1:1, 故选D . 【点睛】本题主要考查了角平分线的定义的运用,解决问题的关键是利用角的和差关系进行推算. 10、B【分析】根据一元一次方程的解定义,将3x =-代入已知方程列出关于m 的新方程,通过解新方程即可求得m 的值. 【详解】∵关于x 的方程250x m -+=的解是3x =- ∴()2350m ⨯--+= ∴1m =- 故选:B 【点睛】本题考查了一元一次方程的解.方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题(本大题共有6小题,每小题3分,共18分) 11、-5【解析】分别解出两方程的解,两解相等,就得到关于a 的方程,从而可以求出a 的值.【详解】解方程21x a +=,得12ax -=, 解方程3122x x -=+,得3x =,∴132a-=, 解得:5a =-. 故答案为:5-. 【点睛】此题考查同解方程的解答,解决的关键是能够求解关于x 的方程,同时正确理解“解相同”的含义. 12、支出1元【分析】此题主要用正负数来表示具有意义相反的两个量,根据正数与负数的意义即可得出. 【详解】收入与支出是具有相反意义的量, 若+5表示收入5元,则-1表示支出1元, 故答案为:支出1元. 【点睛】本题考查了正数与负数的意义,掌握与理解正数与负数的意义是解题的关键. 13、65【分析】根据题意,实际售价=进价+利润,八折即标价的80%;可得一元一次的等量关系式,求解可得答案. 【详解】设标价是x 元,根据题意有: 0.8x =40(1+30%), 解得:x =65. 故标价为65元. 故答案为65. 【点睛】考查一元一次方程的应用,掌握利润=售价-进价是解题的关键. 14、53【分析】先求出每个方程的解,根据同解方程得出关于a 的方程,求出即可. 【详解】解2x+3=2a 得:232a x -=, 解2x+a=2得:22ax -=, ∵方程2x+3=2a 与2x+a=2的解相同,∴22322a a --=, 解得:53a = .【点睛】本题考查了一元一次方程相同解问题,根据两个方程的解相同建立关于a 的方程是解决本题的关键. 15、20192020【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得.【详解】解:由数列知第n 个数为()11n n +,则前2019个数的和为:11111...26122020192020+++++⨯ =111...122320192020+++⨯⨯⨯ =11111111...2233420192020-+-+-++-=112020-=20192020故答案为:20192020.【点睛】本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法.16、40%【解析】试题分析:从条形统计图可知:甲、乙、丙、丁四个兴趣小组的总人数为200人,甲、丙两个小组的人数为80人,所以报名参加甲组和丙组的人数之和占所有报名人数的百分比为80÷200×100%=40%.三、解下列各题(本大题共8小题,共72分)17、(1)①30;②103t -+;202t +;(2)30()t s =;C 点表示的数是80;(3)24t s =或36s ;拓展延伸:存在;点M 所表示的数是8.【分析】(1)①利用题目中给出的距离公式计算即可;②利用代数式表示即可;(2)根据题意列方程,点P 追上点Q 时,多运动30个单位长度;(3)分类讨论,P 、Q 两点相距15AB 时,可能在相遇前也可能在相遇后; 拓展延伸:根据两点间距离公式,再找出等量关系列方程求解即可.【详解】解:(1)①=-10-20=30ABa b , 故填:30;②点P 表示的数为:103t -+,点Q 表示的数为:202t +,故填:103t -+,202t +;(2)依题意得,3302t t =+解得:30t =此时,C 点表示的数是80(3)依题意得情况1:相遇前12303305t t +-=⨯ 解得,24t =情况2:相遇后13(230)305t t -+=⨯ 解得:36t =所以24t s =或36s 时,15PQ AB =拓展延伸: 32PM BQ = 3()2AM AP AB AM MQ -=-- 33(302)2AM t AM t -=-- 18AM =所以点M 所表示的数是8.【点睛】本题考查了数轴、绝对值与一元一次方程的应用,是一个综合问题,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,进而求解.18、(1)①30;②40cm ;③(30)2ncm +或(30)2n cm -;(2)AN 所有可能的长度为:25cm ,27.5cm ,32.5cm ,35cm .【分析】(1)①根据折叠可得,AM OM BN ON ==,再利用线段的和差即可得出MN 的长度;②根据折叠可得,AM A M BN B N ''==,再利用线段的和差即可得出MN 的长度;③分点A '落在点B '的左侧时和点A '落在点B '的右侧两种情况讨论,利用线段的和差即可得出MN 的长度;(2)分别计算出三段绳子的长度,再分类讨论,利用线段的和差即可得出AN 的长度.【详解】解:(1)①因为A '、B '恰好重合于点О处,所以,AM OM BN ON ==, ∴11()3022MN OM ON OA OB AB =+=+==cm , 故答案为:30; ②由题意得:,AM A M BN B N ''==,因为60AM A M A B B N BN AB ''''++++==cm,所以220260A M B N ''++=cm,即20A M B N ''+=cm ,所以40MN A M B N A B cm ''''=++=;③当点A '落在点B '的左侧时,由②得6060()22A B n A M B N cm ''--''+==, 60(30)22n n MN A M B N A B n cm -''''=++=+=+; 当点A '落在点B '的右侧时,如下图,可知2260A M B N A B cm ''''+-=,所以60()2n A M B N cm +''+=, 所以(30)2nMN A M B N A B cm ''''=+-=-,综上所述,MN 的长度是(30)2ncm +或(30)2n cm -; (2)根据题意,这三段长度分别为:3456015,6020,6025121212cm cm cm ⨯=⨯=⨯=, 所以AN 的长度可以为:2015252cm +=; 251527.52cm +=; 252032.52cm +=; 152027.52cm +=; 152532.52cm +=; 2025352cm +=; 故AN 所有可能的长度为:25cm ,27.5cm ,32.5cm ,35cm .【点睛】本题考查线段的和差.掌握数形结合思想,能结合图形分析是解题关键.注意分情况讨论.19、(1)1;2;3;(2)见解析;(3)见解析.【解析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可; (2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可;(3)本题结论可由(2)中结果直接得出.【详解】(1)方式一:49+0.2(220﹣200)+0.3(800﹣500)=49+0.2×20+0.3×300 =49+4+901.方式二:69+0.2(800﹣600)=69+0.2×200 =69+40=2.设上网流量为xMB ,则69+0.2(x ﹣600)=129解得x =3.故答案为1;2;3.(2)当0≤t <200时,49+0.3(540﹣500)=61≠69∴此时不存在这样的t .当200≤t ≤250时,49+0.2(t ﹣200)+0.3(540﹣500)=69解得t =4.当t >250时,49+0.2(t ﹣200)+0.3(540﹣500)=69+0.15(t ﹣250)解得t =210(舍).故若上网流量为540MB ,当主叫通话时间为4分钟时,两种方式的计费相同.(3)由(2)可知,当t <4时方式一省钱;当t >4时,方式二省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.本题难度中等偏大.20、 (1)这8箱苹果一共重236千克,购买这批苹果一共花了1600元.(2)236x ;2361600x -;(3) 若水果商店要获利0032.75,则销售单价应定为9元每千克.【分析】(1)将8筐苹果质量相加可得出购进苹果的总重量,再利用总价=每筐价格×8可得出购买这批苹果的总钱数; (2)根据销售总价=销售单价×数量,以及结合利润=销售总价-成本,即可得出结论;(3)由(2)的结论结合水果商店共获利0032.75,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)由题意得,8箱苹果一共重:830( 1.5 3.52 2.5 1.5421)⨯++-++---+=236(千克)购买这批苹果一共花了20081600⨯=(元)答:这8箱苹果一共重236千克,购买这批苹果一共花了1600元.(2)已知苹果的销售单价定为每千克x 元,依题意得销售金额为236x 元;获得利润为(2361600x -)元;(3)由题意得:002361600160032.75x -=⨯解得9x =(元)答:若水果商店要获利0032.75,则销售单价应定为9元每千克.【点睛】本题考查一元一次方程的应用以及列代数式,解题的关键是首先根据数量关系,列式计算;然后根据各数量之间的关系,利用含x的代数式表示出总销售金额及利润;最终找准等量关系,正确列出一元一次方程即可.21、(1)250;690;790;(2)140件;(3)1【分析】(1)根据总价=单价×数量结合表格中的数据,即可求出分别购买100件、300件、350件时花费的总钱数;(2)设小明购买这种商品x件,由250<338<690可得出100<x<300,根据100×2.5+(购买件数-100)×2.2=总钱数(338元),即可得出关于x的一元一次方程,解之即可得出结论;(3)分250<n<690及n>690两种情况,找出关于n的一元一次方程,解之即可得出结论.【详解】(1)250;690;790(2)设小明购买这种商品x件∵250<338<690,∴100<x<300根据题意得100×2.5+(x﹣100)×2.2=338解得x=140答:小明购买这种商品140件(3)当250<n<690时,有250+2.2(0.45n﹣100)=n解得:n=3000(不合题意,舍去)当n>690时,有690+2(0.45n﹣300)=n,解得:n=1.答:n的值为1【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据总价=单价×数量结合表格中的数据,列式计算;(2)根据100×2.5+(购买件数-100)×2.2=总钱数,列出关于x的一元一次方程;(3)分250<n<690及n>690两种情况,列出关于n的一元一次方程.22、(1)1000+x,100060x+,1000-x,100040x-;(2)200米【分析】(1)根据题意列出代数式即可.(2)通过理解题意可知本题存在两个等量关系,即整列火车过桥通过的路程=桥长+车长,整列火车在桥上通过的路程=桥长-车长,根据这两个等量关系可列出方程求解.【详解】解:(1)火车行驶过程 路程(米) 速度(米/秒) 完全通过桥 1000x + 100060x + 整列车在桥上1000x -100040x - (2)解:设这列火车的长度为x 米依题意得100010006040x x +-= 解得200x =答:这列火车的长度为200米.【点睛】本题考查了一元一次方程以及速度公式的应用.解题关键是弄清题意,合适的等量关系,列出方程.弄清桥长、车长以及整列火车过桥通过的路程,整列火车在桥上通过的路程之间的关系.23、(3)3;(2)﹣3.3或3.3.(3)P 对应的数﹣43,点Q 对应的数﹣2.【分析】(3)根据两点间的距离公式即可求解;(2) 分两种情况: ①点P 在点M 的左边; ②点P 在点N 的右边; 进行讨论即可求解;(3) 分两种情况: ①点P 在点Q 的左边;②点P 在点Q 的右边; 进行讨论即可求解.【详解】解:(3)﹣3+4=3.故点N 所对应的数是3;(2)(3﹣4)÷2=0.3,①﹣3﹣0.3=﹣3.3,②3+0.3=3.3.故点P 所对应的数是﹣3.3或3.3.(3)①(4+2×3﹣2)÷(3﹣2)=32÷3=32(秒),点P 对应的数是﹣3﹣3×2﹣32×2=﹣37,点Q 对应的数是﹣37+2=﹣33;②(4+2×3+2)÷(3﹣2)=36÷3=36(秒);点P 对应的数是﹣3﹣3×2﹣36×2=﹣43,点Q 对应的数是﹣43﹣2=﹣2.【点睛】本题考查的是数轴,注意分类导论思想在解题中的应用.24、(1)x=1;(2)x=-1.【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1) 5x -6=1x -4解:5x -1x =-4+62x =2x =1 (2) 123173x x -+-= 解:()()3122173x x --=+3621721x x --=+6721213x x --=+-1339x -=3x =-【点睛】本题考查的是一元一次方程的解法,解题中注意移项要变号,去括号是要注意括号前的符号,去分母时防止漏乘是关键.。
福建省福州市台江区福州华伦中学2024届九年级数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是()A.47B.37C.17D.132.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB ,作线段AB的垂直平分线DE;(2)连接BC ,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB 长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC, 则点O是△ABC的内心B.AD BG=C.连接OA,OC,则OA, OC不是⊙o的半径D.若连接AC, 则点O在线段AC的垂直平分线上3.如图,点A,B在反比例函数1(0)y xx=>的图象上,点C,D在反比例函数(0)ky kx=>的图象上,AC//BD//y轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .324.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm (如箭头所示),则木桩上升了( )A .8tan20°B .C .8sin20°D .8cos20°5.设点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限6.已知一个正多边形的一个外角为锐角,且其余弦值为22,那么它是正( )边形. A .六B .八C .十D .十二7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB 6 cmC .2.5cmD 5cm8.如图,已知四边形 ABCD 内接于⊙O ,AB 是⊙O 的直径,EC 与⊙O 相切于点 C ,∠ECB=35°, 则∠D 的度数是( )A .145°B .125°C .90°D .80°9.如图,已知抛物线y 1=12x 1-1x ,直线y 1=-1x +b 相交于A ,B 两点,其中点A 的横坐标为1.当x 任取一值时,x 对应的函数值分别为y 1,y 1,取m =12(|y 1-y 1|+y 1+y 1).则( )A .当x <-1时,m =y 1B .m 随x 的增大而减小C .当m =1时,x =0D .m≥-110.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .11.已知二次函数23y ax bx =++自变量x 的部分取值和对应函数值y 如表:x… -2 -1 0 1 2 3 … y…-5343…则在实数范围内能使得50y +>成立的x 取值范围是( ) A .2x >-B .2x <-C .24x -<<D .2x >-或4x <12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60C .80D .100二、填空题(每题4分,共24分)13.不等式组的解是________.14.如图,反比例函数3(0)y x x=-<的图象经过点 A ,过 A 作 x 轴垂线,垂足是 B C ,是 y 轴上任意一点,则ABC ∆的面积是_________.15.已知扇形的圆心角为240︒,所对的弧长为8π,则此扇形的面积是________.16.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.17.如图,一段抛物线(2)(02)y x x x =--≤≤记为1C ,它与x 轴交于两点O 、1A ,将1C 绕1A 旋转180︒得到2C ,交x 轴于2A ,将2C 绕2A 旋转180︒得到3C ,交x 轴于3A ;如此进行下去,直至得到8C ,若点29,2P m ⎛⎫⎪⎝⎭在第8段抛物线8C 上,则m 等于__________18.已知25a b =,则2a ba +=___________. 三、解答题(共78分)19.(8分)阅读材料,解答问题: 观察下列方程:①23x x +=;②65x x +=;③127x x+=;…;(1)按此规律写出关于x 的第4个方程为 ,第n 个方程为 ; (2)直接写出第n 个方程的解,并检验此解是否正确.20.(8分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB ,按要求画图. (1)在图1中画一条格点线段CD 将AB 平分. (2)在图2中画一条格点线段EF .将AB 分为1:1.21.(8分)先化简,再求值:已知3x =,1y =,求222225454x xy y x y x yx xy x y x+++-÷+--的值.22.(10分)如图,在平面直角坐标系中,O 为坐标原点,ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数() 0ky x x=>的图象经过AO 的中点C ,且与AB 相交于点,4,3D OB AD ==.(1)求反比例函数ky x=的解析式; (2)求cos OAB ∠的值.23.(10分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,以B 为顶点在BC 边上方作菱形DBEF ,使点D E ,分别在AB BC ,边上,另两边EF DF ,分别交AC 于点M N ,,且点M 恰好平分EF . (1)求证: DM EF ⊥; (2)请说明:2MN NF DN =⋅.24.(10分)已知:点D 是△ABC 中AC 的中点,AE ∥BC ,ED 交AB 于点G ,交BC 的延长线于点F . (1)求证:△GAE ∽△GBF ; (2)求证:AE =CF ;(3)若BG :GA =3:1,BC =8,求AE 的长.25.(12分)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 26.如图,AB 是O 的直径,弦EF AB ⊥于点C ;点D 是AB 延长线上一点,30A ∠=︒,30D ∠=︒.(1)求证:FD 是O 的切线;(2)取BE 的中点AM ,连接MF ,若O 的半径为2,求MF 的长.参考答案一、选择题(每题4分,共48分) 1、B【分析】直接利用概率公式计算求解即可.【题目详解】转动转盘停止后,指针指向“中”字所在扇形的概率是37,故选:B . 【题目点拨】本题考查概率的计算,解题的关键是熟练掌握概率的计算公式. 2、D【分析】根据三角形的外心性质即可解题.【题目详解】A:连接AC, 根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明AD BG=,故B错误;C:连接OA,OC,则OA, OC是⊙o的半径,故C错误D:若连接AC, 则点O在线段AC的垂直平分线上,故D正确故答案为:D.【题目点拨】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.3、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为32,列出方程,求解得出答案.【题目详解】把x=1代入1yx=得:y=1,∴A(1,1),把x=2代入1yx=得:y=12,∴B(2, 1 2 ),∵AC//BD// y轴,∴C(1,k),D(2,k 2 )∴AC=k-1,BD=k2-12,∴S△OAC=12(k-1)×1,S△ABD=12(k2-12)×1,又∵△OAC与△ABD的面积之和为32,∴12(k-1)×1+12(k2-12)×1=32,解得:k=3;故答案为B.【题目点拨】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.4、A【解题分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【题目详解】设木桩上升了h 米, ∴由已知图形可得:tan20°=8h, ∴木桩上升的高度h =8tan20° 故选B. 5、A【解题分析】∵点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数ky x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况: ①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限; ②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限; ③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限; ④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A . 6、B【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【题目详解】∵一个外角为锐角,且其余弦值为2, ∴外角=45°, ∴360÷45=1. 故它是正八边形. 故选:B . 【题目点拨】本题考查根据正多边形的外角判断边数,根据余弦值得到外角度数是解题的关键. 7、D【解题分析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可. 详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm . 在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2 解得:OE=3, ∴OB=3+2=5, ∴EC=5+3=1.在Rt △EBC 中,BC=22224845BE EC +=+=. ∵OF ⊥BC ,∴∠OFC=∠CEB=90°. ∵∠C=∠C , ∴△OFC ∽△BEC , ∴OF OCBE BC =,即5445OF =, 解得:OF=5. 故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长. 8、B【解题分析】试题解析:连接.OC∵EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选B.点睛:圆内接四边形的对角互补. 9、D【分析】将点A 的横坐标代入21122y x x =-,求得12y =-,将2x =,2y =-代入22y x b =-+求得2b =,然后将21122y x x =-与222y x =-+联立求得点B 的坐标,然后根据函数图象化简绝对值,最后根据函数的性质,可得函数m 的增减性以及m 的范围.【题目详解】将2x =代入21122y x x =-,得12y =-, ∴点A 的坐标为()2,2-.将2x =,2y =-代入22y x b =-+,得2b =,222y x ∴=-+.将21122y x x =-与222y x =-+联立,解得:12x =,12y =-或22x =-,26y .∴点B 的坐标为()2,6-.∴当x <-1时,12y y >, ∴m =12(|y 1-y 1|+y 1+y 1)= 12(y 1-y 1+y 1+y 1)= y 1, 故A 错误;当2x <-时,12y y >,21122m y x x ∴==-. 当22x -<时,12y y <222m y x ∴==-+.当2x 时,12y y >,21122m y x x ∴==-. ∴当x <1时,m 随x 的增大而减小,故B 错误;令2m =,代入21122m y x x ==-,求得:222x =+或222x =-(舍去), 令2m =,代入222m y x ==-+,求得:0x =,∴当m =1时,x =0或222x =+,故C 错误.∵m=2212(2)222(22)12(2)2x x x x x x x x -<--+-≤<-≥⎧⎪⎪⎨⎪⎪⎩,画出图像如图,∴2m -.∴D 正确.故选D .【题目点拨】本题主要考查的是二次函数与一次函数的综合,根据函数图象比较出1y 与2y 的大小关系,从而得到m 关于x 的函数关系式,是解题的关键.10、B【解题分析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【题目详解】A 、既不是中心对称图形,也不是轴对称图形,此项不符题意B 、既是中心对称图形,又是轴对称图形,此项符合题意C 、是轴对称图形,但不是中心对称图形,此项不符题意D 、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【题目点拨】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.11、C【分析】根据y=0时的两个x 的值可得该二次函数的对称轴,根据二次函数的对称性可得x=4时,y=5,根据二次函数的增减性即可得图象的开口方向,进而可得答案.【题目详解】∵50y +>,∴5y >-,∵x=-1时,y=0,x=3时,y=0,∴该二次函数的对称轴为直线x=132-+=1, ∵1-3=-2,1+3=4,∴当2x =-时的函数值与当4x =时的函数值相等,∵2x =-时,5y =-,∴4x =时,5y =-,∵x>1时,y 随x 的增大而减小,x<1时,y 随x 的增大而增大,∴该二次函数的开口向下,∴当24x -<<时,5y >-,即50y +>,故选:C.【题目点拨】本题考查二次函数的性质,正确提取表中信息并熟练掌握二次函数的性质是解题关键.12、C【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【题目详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【题目点拨】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.二、填空题(每题4分,共24分)13、x >4【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【题目详解】由①得:x >2;由②得 :x >4;∴此不等式组的解集为x >4;故答案为x >4.【题目点拨】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14、32【分析】连接OA ,根据反比例函数中k 的几何意义可得32ABO S ∆=,再根据等底同高的三角形的面积相等即可得出结论【题目详解】解:连接OA ,∵反比例函数3(0)y x x=-<的图象经过点 A , ∴32ABO S ∆=; ∵过 A 作 x 轴垂线,垂足是 B ; ∴AB//OC∴ABC ∆和ABO ∆等底同高;∴32ABC ABO S S ∆∆;故答案为:32【题目点拨】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键 15、24π【分析】利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积.【题目详解】设扇形所在圆的半径为r .∵扇形的圆心角为240°,所对的弧长为8π,∴l 2408180r ππ⨯==, 解得:r =6, 则扇形面积为12rl 1682π=⨯⨯=24π. 故答案为:24π.【题目点拨】本题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解答本题的关键.16、不具有【分析】根据抽取样本的注意事项即要考虑样本具有广泛性与代表性,其代表性就是抽取的样本必须是随机的,以此进行分析.【题目详解】解:要估计全市九年级学生早读时间情况,应从该市所以学校九年级中随机抽取100人进行调查,所以在这个问题中调查的样本不具有代表性.故此空填“不具有”.【题目点拨】本题考查抽样调查的可靠性,解题时注意:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.17、34- 【分析】求出抛物线1C 与x 轴的交点坐标,观察图形可知第奇数号抛物线都在x 轴上方、第偶数号抛物线都在x 轴下方,再根据向右平移横坐标相加表示出抛物线8C 的解析式,然后把点P 的横坐标代入计算即可.【题目详解】抛物线()()21:112C y x x x =--+=--与x 轴的交点为(0,0)、(2,0),将1C 绕1A 旋转180°得到2C ,则2C 的解析式为()()24y x x =--,同理可得3C 的解析式为()()46y x x =---,4C 的解析式为()()68y x x =--5C 的解析式为()()810y x x =---6C 的解析式为()()1012y x x =--7C 的解析式为()()1214y x x =---8C 的解析式为()()1416y x x =-- ∵点29,2P m ⎛⎫ ⎪⎝⎭在抛物线8C 上, ∴292931416224m ⎛⎫⎛⎫=-⨯-=-⎪ ⎪⎝⎭⎝⎭ 故答案为34- 【题目点拨】本题考查的是二次函数的图像性质与平移,能够根据题意确定出8C 的解析式是解题的关键.18、92【分析】根据比例式设a=2k,b=5k,代入求值即可解题. 【题目详解】解:∵25a b =,设a=2k,b=5k, ∴245922a b k k a k ++== 【题目点拨】本题考查了比例的性质,属于简单题,设k 法是解题关键.三、解答题(共78分)19、(1)9,2n+1;(2)2n+1,见解析【分析】(1)观察一系列等式左边分子为连续两个整数的积,右边为从3开始的连续奇数,即可写出第4个方程及第n 个方程;(2)归纳总结即可得到第n 个方程的解为n 与n+1,代入检验即可.【题目详解】解:(1)x+45x⨯=x+20x =9,x+(1)n n x +=2n+1;故答案为:x+20x =9;x+(1)n n x+=2n+1. (2)x+(1)n n x +=2n+1, 观察得:x 1=n ,x 2=n+1,将x =n 代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x =n 是方程的解;将n+1代入方程左边得:n+1+n =2n+1;右边为2n+1,左边=右边,即x =n+1是方程的解,则经检验都为原分式方程的解.【题目点拨】本题主要考查的是分式方程的解,根据所给方程找出规律是解题的关键.20、(1)见解析;(2)见解析.【分析】(1)根据矩形ACBD 即可解决问题.(2)利用平行线分线段成比例定理解决问题即可.【题目详解】解:(1)如图,线段CD 即为所求.(2)如图,线段EF 即为所求,注意有两种情形.【题目点拨】本题考查作图-应用与设计,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.21、1x +,原式13=+.【分析】先根据分式的运算法则把所给代数式化简,然后把3x =1y =代入化简的结果计算即可.【题目详解】原式22()54(54)x y x y x y x x y x y x+--=⋅+-+ 2x y x y x x+-=+ 1x =+,当x 1y =时,原式1=.【题目点拨】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22、(1)4y x =;(2)2cos OAB ∠=. 【分析】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),由C 为OA 的中点可表示出点C 的坐标,根据C 、D 点在反比例函数图象上可得出关于k 、m 的二元一次方程租,解方程组即可得出结论;(2)由m 的值,可找出点A 的坐标,由此即可得出线段OB 、AB 的长度,从而得出△OAB 为等腰直角三角形,最后得出结果.【题目详解】解:(1)设点D 的坐标为()()4,0m m >,则点A 的坐标为()4,3m +.点C 为线段AO 的中点,∴点C 的坐标为32,2m +⎛⎫ ⎪⎝⎭. 点,C D 均在反比例函数k y x=的图象上, 4322k m m k =⎧⎪∴⎨+=⨯⎪⎩,解得14m k =⎧⎨=⎩, ∴反比例函数的解析式为4y x =; (2)1m =,∴点A 的坐标为()4,4,4,4OB AB ∴==,∴△OAB 是等腰直角三角形,2cos 452OAB cos ∴∠=︒=. 【题目点拨】 本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、解直角三角形以及待定系数法求函数解析式等知识点,解决该题型题目时,利用反比例函数图象上点的坐标特征找出方程组,通过解方程组得出点的坐标,再利用待定系数法求出函数解析式即可.23、(1)证明见解析;(2)证明见解析.【分析】(1)根据四边形DBEF 是菱形,得到DF EF =,又60F B ∠=∠=推出DE DF =,又点M 恰好平分EF ,三线合一,DM EF ⊥(2)可证DMN F ∠=∠,再证DNMMNF ∆∆,从而求得【题目详解】证明:(1)连接DE ,∵90ACB ∠=,30A ∠=,∴903060B ACB A ∠=∠-∠=-=.∵四边形DBEF 是菱形,∴EF AB ∥,DF EF =,60F B ∠=∠=∴DEF ∆是等边三角形.∵M 是EF 的中点,∴DM EF ⊥(2)∵DM EF ⊥,∴90DMF ∠=.∴9030MDE F ∠=-∠=.∵EF AB ∥,∴30NMF A ∠=∠=.∴30MDE NMF ∠=∠=.∴30NMF A ∠=∠=.∴DMN F ∠=∠.∴DNMMNF ∆∆. ∴MN DN NF MN=. ∴2MN NF DN =⋅.【题目点拨】本题考查了菱形的性质、三线合一以及相似三角形的性质.24、(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE ∥BC 可直接判定结论;(2)先证△ADE ≌△CDF ,即可推出结论;(3)由△GAE ∽△GBF ,可用相似三角形的性质求出结果.【题目详解】(1)∵AE ∥BC ,∴△GAE ∽△GBF ;(2)∵AE ∥BC ,∴∠E =∠F ,∠EAD =∠FCD ,又∵点D 是AC 的中点,∴AD =CD ,∴△ADE ≌△CDF (AAS),∴AE =CF ;(3)∵△GAE ∽△GBF , ∴BG BF BC CF GA EA AE+==, 又∵AE =CF , ∴BC AE BG AE GA+==3, 即8AE AE +=3, ∴AE =1.【题目点拨】本题考查了相似三角形的判定与性质等,解答本题的关键是灵活运用相似三角形的性质.25、(1)详见解析(2)。
2024届福建省福州市台江区福州华伦中学数学八下期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面点A 有一只蚂蚁,它想吃到上底面上与点A 相对的点B 的食物,需要爬行的最短路程是(π取3)( )A .10cmB .12mC .14cmD .15cm2.如图,直线()0y kx k =≠和直线()0y mx n m =+≠相交于点()2,3A ,则不等式kx mx n ≥+的解集为( )A .3x ≥B .3x ≤C .2x ≥D .2x ≤3.如图,在△ABC 中,∠ACB=90°,分别以点A 和点B 为圆心以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N 点,作直线MN 交AB 于点D ,交BC 于点E ,若AC=3,BC=4,则BE 等于( )A .32B .94C .154D .2584.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的( ) A .方差B .中位数C .众数D .平均数5.一次函数y=2x–6的图象不经过第( )象限.A.一B.二C.三D.四6.下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等C.若,则D.有一角对应相等的两个菱形相似7.如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=3;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是()A.1 B.2 C.3 D.48.若解关于x的方程2x5m1x22x-+=--时产生增根,那么常数m的值为()A.4 B.3 C.-4 D.-19.函数2xyx1=+中,自变量x的取值范围是()A.x>-1 B.x>1 C.x≠-1 D.x≠010.如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有( )A.4个B.3个C.2个D.1个11.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是( ).A .4.5B .5C .2D .1.512.如图,平行四边形ABCD 中,对角线AC 与BD 交于O ,AC =6,BD =8,AB =5,则△BOC 的周长是( )A .12B .11C .14D .15二、填空题(每题4分,共24分) 13.计算:2(21)+=_____________。
2025届福建福州市台江区华伦中学数学八年级第一学期期末综合测试模拟试题 合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,阴影部分搪住的点的坐标可能是( )A .(6,2)B .(-5,3)C .(-3,-5)D .(4,-3)2.下列式子可以用平方差公式计算的是( ) A .()()m n n m --+ B .(23)(23)x y y x -+ C .(67)(67)x y x y -+- D .(23)(32)a b b a +-34 ) A .16 B .2C .2±D .2±4.化简()23- )A .3B .3-C .9-D .95.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF ,AD∥CE,连接BC,CD,则∠A的度数是()A.40°B.45°C.50°D.60°7.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15°B.20°C.25°D.30°8.若数a关于x的不等式组11(2)2332(1)xxx a x⎧--⎪⎨⎪--⎩恰有两个整数解,且使关于y的分式方程13211y ay y----=﹣2的解为正数,则所有满足条件的整数a的值之和是()A.4 B.5 C.6 D.39.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,问:乙校开学时的人数与原有的人数相差多少?( ) A .6 B .9C .12D .1810.若把分式6445x yx y--中的x 、y 都扩大4倍,则该分式的值( )A .不变B .扩大4倍C .缩小4倍D .扩大16倍二、填空题(每小题3分,共24分) 11.若x ,y 为实数,且230x y -++=,则()2019x y +的值为____12.如图所示,已知△ABC 和△BDE 均为等边三角形,且A 、B 、E 三点共线,连接AD 、CE ,若∠BAD=39°,那么∠AEC= 度.13.如图,线段BC 的垂直平分线分别交AB 、BC 于点D 和点E ,连接CD ,AC DC =,25B ∠=︒,则ACD ∠的度数是_____________︒.14.如图,在平面直角坐标系中,点123,,...A A A 都在x 轴上,点123,,...B B B 都在第一象限的角平分线上,112223334,,...B A A B A A B A A ∆∆∆都是等腰直角三角形,且11OA =,则点2020B 的坐标为_________________.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .16.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩的值为_____.17.点(2+a ,3)关于y 轴对称的点的坐标是(﹣4,2﹣b ),则a b =_____. 18.命题“若a 2>b 2则a >b ”是_____命题(填“真”或“假”),它的逆命题是_____. 三、解答题(共66分) 19.(10分)如图,等边△ABC 中,AD 是∠BAC 的角平分线,E 为AD 上一点,以BE 为一边且在BE 下方作等边△BEF ,连接CF.(1)求证:AE =CF ; (2)求∠ACF 的度数.20.(6分)如图,已知正比例函数12y x =和一个反比例函数的图像交于点(2A ,)m .(1)求这个反比例函数的解析式;(2)若点B 在x 轴上,且△AOB 是直角三角形,求点B 的坐标. 21.(6分)计算:(1)534153a b c a b -÷; (2)()()()2212y y y --+-.22.(8分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.(3)若P点在x轴上,当BP+CP最小时,直接写出BP+CP最小值为.23.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,求∠BDA的度数为多少时,△ADE是等腰三角形.24.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.25.(10分)计算题:(1)+-(2)×÷(﹣2)26.(10分)(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC相交于E,与AB的延长线相交于F,使BF=CE.①已知△CDE的面积为1,AE=kCE,用含k的代数式表示△ABD的面积为;②求证:△AEF是等腰三角形;(2)如图2,在△ABC中,若∠1=2∠2,G是△ABC外一点,使∠3=∠1,AH∥BG 交CG于H,且∠4=∠BCG﹣∠2,设∠G=x,∠BAC=y,试探究x与y之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当∠G=100°,AD=a 时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,试用含a、k的代数式表示△PQM周长的最小值.(只需直接写出结果)参考答案一、选择题(每小题3分,共30分)1、D【分析】根据坐标系可得阴影部分遮住的点在第四象限,再确定答案即可.【详解】阴影部分遮住的点在第四象限,A、(6,2)在第一象限,故此选项错误;B、(-5,3)在第二象限,故此选项错误;C、(-3,-5)在第三象限,故此选项错误;D、(4,-3)在第四象限,故此选项正确;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号.2、D【分析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【详解】A、两个都是相同的项,不符合平方差公式的要求;B、不存在相同的项,不符合平方差公式的要求;C、两个都互为相反数的项,不符合平方差公式的要求;D、3b是相同的项,互为相反项是2a与-2a,符合平方差公式的要求.故选:D.【点睛】此题考查平方差公式,熟记公式结构是解题的关键.运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.3、B【分析】根据算术平方根的定义求值即可.=1.故选:B.【点睛】本题考查算术平方根,属于基础题型.4、Ba进行化简.=-【详解】解:3故选:B.【点睛】本题考查二次根式的化简,掌握二次根式的性质2a a =,正确化简是解题关键. 5、C【分析】根据函数图形,结合选项进行判断,即可得到答案.【详解】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选C . 【点睛】本题考查函数图象,解题的关键是读懂函数图象的信息. 6、D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠. 【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠, ∵ADCE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒, ∴60BAD FCE ∠=∠=︒, 故选D . 【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型. 7、B【分析】根据三角形的外角性质即可求出答案. 【详解】解:延长AC 交BD 于点E , 设∠ABP =α, ∵BP 平分∠ABD , ∴∠ABE =2α,∴∠AED =∠ABE +∠A =2α+60°, ∴∠ACD =∠AED +∠D =2α+80°, ∵CP 平分∠ACD , ∴∠ACP =12∠ACD =α+40°, ∵∠AFP =∠ABP +∠A =α+60°, ∠AFP =∠P +∠ACP ∴α+60°=∠P +α+40°, ∴∠P =20°, 故选B .【点睛】此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型. 8、B【分析】解不等式组得225a a +,根据其有两个整数解得出2015a +<,解之求得a 的范围;解分式方程求出21y a =-,由解为正数且分式方程有解得出210211a a ->⎧⎨-≠⎩,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:解不等式11(2)23x x --,得:2x ,解不等式32(1)x a x --,得:25a x +, 不等式组恰有两个整数解, 2015a +∴<, 解得23a -<,解分式方程132211y ay y--=---得21y a =-, 经检验,y=2a-1是原分式方程的解,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足23a -<,且12a >且1a ≠的所有整数有2、3, 所以所有满足条件的整数a 的值之和是235+=, 故选:B . 【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是掌握根据不等式组整数解的个数得出a 的范围,根据分式方程解的情况得出a 的另一个范围. 9、D【分析】分别设设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,根据寒假结束开学时甲、乙两校人数相同,可列方程求解即可解答.【详解】设甲、乙两校转出的人数分别为x 人、3x 人,甲、乙两校转入的人数分别为y 人、3y 人,∵寒假结束开学时甲、乙两校人数相同, ∴1016102833x y x y -+=-+, 整理得:6x y -=,开学时乙校的人数为:()102833102831028181010x y x y -+=--=-=(人), ∴乙校开学时的人数与原有的人数相差;1028-1010=18(人), 故选:D . 【点睛】本题考查了二元一次方程的应用,解决本题的关键是根据题意列出方程. 10、A【分析】把x 换成4x ,y 换成4y ,利用分式的基本性质进行计算,判断即可.【详解】644464445445x y x yx y x y⨯-⨯-=⨯-⨯-,∴把分式6445x yx y--中的x ,y 都扩大4倍,则分式的值不变.故选:A . 【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.二、填空题(每小题3分,共24分) 11、1-【分析】根据非负数(式)的性质先求出x,y 的值,再代入式中求值即可.【详解】解:∵20x -=,2,3,x y ∴==-则()2019x y += 20192019(23)(1) 1.-=-=-故答案为-1 【点睛】本题考查了绝对值和算术平方根非负性的应用,能正确把x,y 的值求出是解题关键. 12、21【分析】根据△ABC 和△BDE 均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD ≌△CBE ,所以∠ADB=∠AEC ,利用三角形内角和代入数值计算即可得到答案. 【详解】解:∵△ABC 和△BDE 均为等边三角形, ∴∠ABC=∠DBE=60°,AB=BC ,BE=BD , ∴∠CBD=60°,∴∠ABD=∠CBE=120°, 在△ABD 和△CBE 中,AB BC ABD CBE BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CBE ,(SAS ) ∴∠AEC=∠ADB ,∵∠ADB=180°-∠ABD-∠BAD=21°, ∴∠AEC=21°.【点睛】此题主要考查了三边及其夹角对应相等的两个三角形全等的判定方法以及全等三角形的对应角相等的性质,熟记特殊三角形的性质以及证明△ABD ≌△CBE 是解题的关键. 13、1【分析】先根据垂直平分线的性质可得DC DB =,再根据等腰三角形的性质可得BCD ∠的度数,从而可得ADC ∠的度数,最后根据等腰三角形的性质、三角形的内角和定理即可得.【详解】由题意得,DE 为BC 的垂直平分线DC DB ∴=25BCD B ∴∠=∠=︒50ADC BCD B ∴∠=∠+∠=︒ AC DC =50A ADC ∴∠=∠=︒180180505080ACD A ADC ∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:1. 【点睛】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,熟记等腰三角形的性质是解题关键. 14、()201920192,2【分析】因点123,,...B B B 都在第一象限的角平分线上,11OA B ∆是等腰直角三角形,1111OA B A ==,()11,1B ,以此类推得出()22,2B ,()34,4B ,()48,8B 从而推出一般形式()112,2n n n B --,即可求解.【详解】解:∵123,,...B B B 都在第一象限的角平分线上 ∴11OA B ∆是等腰直角三角形11=1OA BA =∴()11,1B同理可得:()22,2B ,()34,4B ,()48,8B ∴()112,2n n n B --当2020n =时,代入得()2019201920202,2B故答案为:()201920192,2.【点睛】本题主要考查的是找规律问题,先写出前面几个值,在根据这几个值找出其中的规律扩展到一般情况是解题的关键. 15、12°.【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A , ∴∠A=∠AP 2P 1=∠AP 13P 14=x . ∴∠P 2P 1P 3=∠P 13P 14P 12=2x , ∠P 2P 3P 4=∠P 13P 12P 10=3x , ……,∠P 7P 6P 8=∠P 8P 9P 7=7x . ∴∠AP 7P 8=7x ,∠AP 8P 7=7x .在△AP 7P 8中,∠A+∠AP 7P 8+∠AP 8P 7=180°,即x+7x+7x=180°. 解得x=12°,即∠A=12°.16、9727x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据二元一次方程组的加减消元法,即可求解.【详解】345254x y x y +=⎧⎨+=⎩①②,①×5﹣②×4,可得:7x =9, 解得:x =97, 把x =97代入①,解得:y =27,∴原方程组的解是:9727x y ⎧=⎪⎪⎨⎪=⎪⎩.故答案为:9727xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.17、12.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),∴2+a=4,2-b=3,解得a=2,b=-1,所以,a b=2-1=12,故答案为1 2【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.18、假若a>b则a1>b1【分析】a1大于b1则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a1>b1”.【详解】①当a=-1,b=1时,满足a1>b1,但不满足a>b,所以是假命题;②命题“若a1>b1则a>b”的逆命题是若“a>b则a1>b1”;故答案为:假;若a>b则a1>b1.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)∠ACF=90°.【解析】(1)根据△ABC是等边三角形,得出AB=BC,∠ABE+∠EBC=60°,再根据△BEF是等边三角形,得出EB=BF ,∠CBF+∠EBC=60°,从而求出∠ABE=∠CBF ,最后根据SAS 证出△ABE ≌△CBF ,即可得出AE=CF ;(2)根据△ABC 是等边三角形,AD 是∠BAC 的角平分线,得出∠BAE=30°,∠ACB=60°,再根据△ABE ≌△CBF ,得出∠BCF=∠BAE=30°,从而求出∠ACF 的度数. 【详解】(1)证明:∵△ABC 是等边三角形, ∴AB =BC ,∠ABE +∠EBC =60 °. ∵△BEF 是等边三角形,∴EB =BF ,∠CBF +∠EBC =60 °. ∴∠ABE =∠CBF.在△ABE 和△CBF 中,{AB BCABE CBF EB BF=∠=∠= ,∴△ABE ≌△CBF(SAS). ∴AE =CF ;(2)∵等边△ABC 中,AD 是∠BAC 的角平分线, ∴∠BAE =12∠BAC=30 °,∠ACB =60°. ∵△ABE ≌△CBF , ∴∠BCF =∠BAE =30 °. ∴∠ACF =∠BCF +∠ACB =30 °+60 °=90 °. 【点睛】此题考查了等边三角形的性质和全等三角形的判定,关键是根据等边三角形的性质得出∠ABE=∠CBF ,掌握全等三角形的判定,角平分线的性质等知识点.20、(1)2y x =;(2)点B 的坐标为(2,0)或5,02⎛⎫⎪⎝⎭【分析】(1)先由点A 在正比例函数图象上求出点A 的坐标,再利用待定系数法解答即可;(2)由题意可设点B 坐标为(x ,0),然后分∠ABO =90°与∠OAB =90°两种情况,分别利用平行于y 轴的点的坐标特点和勾股定理建立方程解答即可. 【详解】解:(1)∵正比例函数12y x =的图像过点(2,m ), ∴m =1,点A (2,1), 设反比例函数解析式为k y x=,∵反比例函数图象都过点A (2,1), ∴12k=,解得:k =2, ∴反比例函数解析式为2y x=; (2)∵点B 在x 轴上,∴设点B 坐标为(x ,0), 若∠ABO =90°,则B (2,0);若∠OAB =90°,如图,过点A 作AD ⊥x 轴于点D ,则222OA AB OB +=, ∴()2222121x x ++-+=,解得:52x =,∴B 5,02⎛⎫⎪⎝⎭; 综上,点B 的坐标为(2,0)或5,02⎛⎫ ⎪⎝⎭.【点睛】本题是正比例函数与反比例函数综合题,主要考查了待定系数法求函数的解析式、函数图象上点的坐标特点以及勾股定理等知识,属于常考题型,熟练掌握正比例函数与反比例函数的基本知识是解题的关键. 21、(1)25ab c -;(2)36y -+.【分析】(1)根据单项式除以单项式的法则计算,把系数、相同底数的幂分别相除作为商的因式,对于只在被除数里含有的字母,连同他的指数作为商的一个因式; (2)完全平方公式的应用,多项式乘以多项式的应用,合并同类项的化简. 【详解】(1)原式5431(153)ab c --=-÷25ab c =-;(2)原式2244(22)y y y y y =-+--+-22442y y y y =-+-++36y =-+,故答案为:(1)25ab c -;(2)36y -+. 【点睛】(1)利用单项式除以单项式法则计算,要注意系数的符号问题,同底数幂相除,底数不变,指数相减;(2)完全平方公式的应用,多项式乘以多项式的法则,以及合并同类项,注意括号前面是负号时,去括号变符号的问题. 22、(1)见解析;(2)2;(3)10【分析】(1)△ABC 关于y 轴对称图形为△A 1B 1C 1,根据轴对称的性质画出三个点的对称点再连接即可作出△A 1B 1C 1; (2)用割补法求△ABC 的面积即可;(3)P 点在x 轴上,当BP +CP 最小时,即可求出BP +CP 最小值. 【详解】解:如图所示,(1)如图,△A 1B 1C 1即为所求; (2)△ABC 的面积为:11123221113=2222⨯-⨯⨯-⨯⨯-⨯⨯; (3)作点B 关于x 轴的对称点B ′, 连接CB ′交x 轴于点P ,此时BP +CP 最小, BP +CP 的最小值即为CB ′2213=10+. 10 【点睛】本题结合网格图和平面直角坐标系考查了作已知图形的对称图形,割补法求三角形面积,简单的动点与最值问题,熟练掌握相关知识点是解答关键.23、(1)30,110,小;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)∠BDA =80°或110°.【分析】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数,由三角形内角和定理可判断∠BDA的变化;(2)当DC=2时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE两种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA的度数.【详解】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°,∴∠EDC=180°-∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°-∠BAD,∵点D从B向C的运动过程中,∠BAD逐渐变大,∴∠BDA逐渐变小,故答案为:小;(2)当DC=2时,△ABD≌△DCE.理由如下∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA);(3)若AD=DE时.∵AD=DE,∠ADE=40°,∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC,∴∠EDC=30°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时.∵AE=DE,∠ADE=40°,∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC,∴∠EDC=60°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形.【点睛】本题是三角形综合题,考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.24、(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 25、 (1);(2)-1.【解析】(1)先化简各二次根式,再合并同类二次根式即可得; (2)根据二次根式的混合运算顺序和运算法则计算可得. 【详解】解: (1)原式=1+﹣2=;(2)原式=÷(﹣2)=÷(﹣) =﹣=﹣ =﹣1. 故答案为:(1);(2)-1. 【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.26、(1)①k +1;②见解析;(2)y =34x +45°,理由见解析;(3)2(1)(1)k k k a +-【分析】(1)①先根据AE 与CE 之比求出△ADE 的面积,进而求出ADC 的面积,而D 中BC 中点,所以△ABD 面积与△ADC 面积相等;②延长BF 至R ,使FR =BF ,连接RC ,注意到D 是BC 中点,过B 过B 点作BG ∥AC 交EF 于G .得BGD CED ≅,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P 点关于FA 、FD 的对称点P '、P '',则PQ +QM +PM =P 'Q +QM +MP “≥P 'P ''=FP ,当FP 垂直AD 时取得最小值,即最小值就是AD 边上的高,而AD 已知,故只需求出△ADF 的面积即可,根据AE =kEC ,AE =AF ,CE =BF ,可以将△ADF 的面积用k 表示出来,从而问题得解.【详解】解:(1)①∵AE =kCE ,∴S △DAE =kS △DEC ,∵S △DEC =1,∴S △DAE =k ,∴S △ADC =S △DAE +S △DEC =k +1,∵D 为BC 中点,∴S △ABD =S △ADC =k +1.②如图1,过B 点作BG ∥AC 交EF 于G .∴BGD CED ∠=∠,BGF AED ∠=∠在△BGD 和△CED 中,BGD CED BD CD BDG CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BGD CED ≅(ASA ),∴BG =CE ,又∵BF =CE ,∴BF =BG ,∴BGF F ∠=∠,∴F AED ∠=∠∴AF =AE ,即△AEF 是等腰三角形.(2)如图2,设AH 与BC 交于点N ,∠2=α.则∠3=∠1=2∠2=2α,∵AH ∥BG ,∴∠CNH =∠ANB =∠3=2α,∵∠CNH =∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG ﹣∠2,∴∠BCG =∠2+∠4=2α,在△BGC 中,3180BCG G ∠+∠+∠=︒,即:4180x α+=︒,在△ABC 中,12180BAC ∠+∠+∠=︒,即:3180y α+=︒,联立消去α得:y =34x +45°. (3)如图3,作P 点关于FA 、FD 的对称点P '、P '',连接P 'Q 、P 'F 、PF 、P ''M 、P ''F 、P 'P '',则FP '=FP =FP '',PQ =P 'Q ,PM =P ''M ,∠P 'FQ =∠PFQ ,∠P ''FM =∠PFM , ∴∠P 'FP ''=2∠AFD ,∵∠G =100°,∴∠BAC =34∠G +45°=120°, ∵AE =AF ,∴∠AFD =30°,∴∠P 'FP ''=2∠AFD =60°,∴△FP 'P ''是等边三角形,∴P 'P ''=FP '=FP ,∴PQ +QM +PM =P 'Q +QM +MP ''≥P 'P ''=FP ,当且仅当P '、Q 、M 、P ''四点共线,且FP ⊥AD 时,△PQM 的周长取得最小值. AE kCE =,AF AE =,BF CE =,1AB k AF k-∴=, ()111ADF ABD k k k S S k k +∴==--,∴当FP AD ⊥时,()()2121ADF k k S FP AD k a+==-, PQM ∴的周长最小值为()()211k k k a +-.【点睛】 本题是三角形综合题,涉及了三角形面积之比与底之比的关系、全等三角形等腰三角形性质和判定、轴对称变换与最短路径问题、等边三角形的判定与性质等众多知识点,难度较大.值得强调的是,本题的第三问实际上是三角形周长最短问题通过轴对称变换转化为两点之间线段最短和点到直线的距离垂线段最短.。
福州市华伦中学数学旋转几何综合达标检测(Word版含解析)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠,∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.3.如图,四边形ABCD 为正方形,△AEF 为等腰直角三角形,∠AEF =90°,连接FC ,G 为FC 的中点,连接GD ,ED .(1)如图①,E 在AB 上,直接写出ED ,GD 的数量关系.(2)将图①中的△AEF 绕点A 逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB =5,AE =1,将图①中的△AEF 绕点A 逆时针旋转一周,当E ,F ,C 三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=2DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE=2DG.(3)①如图3﹣1中,当E,F,C共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6, ∴CG =12CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=最小值322=. 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF 922= 当点F 在AC 延长线上时,CE 有最小值,图形如下:同理,CE=EF -CF 322=【点睛】 本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.5.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;(2)将A B D'''△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D'''△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32秒、695.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm=,8AD cm=,10BD cm∴=,根据旋转的性质可知10B D BD cm''==,2CD B D BC cm'=''-=,tanA B CEB D AA D CD'''''∠==''',682CE∴=,32CE cm∴=,()28634522222A B CE A B D CEDS S S cm''''''⨯∴==-⨯÷=-;(2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭, 解得:6695x -=秒,(6695x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.6.小明研究了这样一道几何题:如图1,在△ABC 中,把AB 点A 顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,13【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12BM3DE=EM﹣DM3﹣33由已知DA3AE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC3,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CMDM,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM,∠MBE=90°﹣∠M=30°,∴EM=12 BM∴DE=EM﹣DM∵DA∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313. 【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.7.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH 3.只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,EDO FBOOD OBEOD BOF∠∠⎧⎪⎨⎪∠∠⎩===,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=3FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,DHG GHFDH GHJDH FGH∠∠⎧⎪⎨⎪∠∠⎩===,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,BI MJB MBF IM⎧⎪∠∠⎨⎪⎩===,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=3FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,DEDE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。