几种常见函数的导数
- 格式:ppt
- 大小:438.00 KB
- 文档页数:39
§ 3.2 几种常见函数的导数课时安排1课时从容说课本节依次要讲述函数y =C (常量函数),y =x n (n ∈Q ),y =sin x ,y =cos x 的导数公式,这些公式都是由导数的定义导出的,所以要强调导数定义在解题中的作用.(1)关于公式(x n )′=nx n -1(n ∈Q ),这个公式的证明比较复杂,教科书中只给了n ∈N *情况下的证明.实际上,这个公式对于n ∈R 都成立.在n ∈N *的情况下证明公式,一定要让学生自主去探索,特别是xx x x x x f x x f nn ∆-∆+=∆-∆+)()()(要运用二项式定理展开后再证明,化为12211)(---∆++∆⋅+n n n n n n n x C x x C x C ,当Δx →0时,其极限为11-n n x C 即nx n -1.在讲完这个公式后教师可以因势利导,让学生利用定义或这个公式求y =(x -a)n 的导数,学生一定会模仿上述方法用定义求解,这是十分可贵的.也有的学生要利用二项式定理先将(x -a)n 展开,然后求导,即利用(x n )′=nx n -1求导.y =(x -a )n =n n n n n n n n n n a C a x C a x C x C )1(222110-⋅+-+-=-- ,1112110)1()1(------++-⋅-='n n n n n n n n a C a x n C x nC y ,利用11--=k n k n nC kC 将其合并成二项式定理的形式.当然有这种解法的,应该提出表场,激励学生大胆创新,同时也要提出这要运用导数的和差运算法则,并告诉学生这是2003年高考题.(2)运用定义证明公式(sin x )′=cos x ,(cos x )′=-sin x ,要用到极限1sin lim0=→∆xx x ,根据学生的情况可以补充证明.第五课时课 题§ 3.2 几种常见函数的导数教学目标一、教学知识点1.公式1 C ′=0(C 为常数)2.公式2 (x n )′=nx n -1(n ∈Q )3.公式3 (sin x )′=cos x4.公式4 (cos x )′=-sin x5.变化率二、能力训练要求1.掌握四个公式,理解公式的证明过程.2.学会利用公式,求一些函数的导数.3.理解变化率的概念,解决一些物理上的简单问题.三、德育渗透目标1.培养学生的计算能力.2.培养学生的应用能力.3.培养学生自学的能力.教学重点四种常见函数的导数:C ′=0(C 为常数),(x n )′=nx n -1(x ∈Q ),(sin x )′=cos x ,(cos x )′=-sin x .教学难点四种常见函数的导数的内容,以及证明的过程,这些公式是由导数定义导出的.教学方法建构主义式让学生自己根据导数的定义来推导公式1、公式2、公式3、公式4,公式2中先证n ∈N *的情况.教学过程Ⅰ.课题导入[师]我们上一节课学习了导数的概念,导数的几何意义.我们是用极限来定义函数的导数的,我们这节课来求几种常见函数的导数.以后可以把它们当作直接的结论来用.Ⅱ.讲授新课[师]请几位同学上来用导数的定义求函数的导数.1.y =C (C 是常数),求y ′.[学生板演]解:y =f (x )=C ,∴Δy =f (x +Δx )-f (x )=C -C =0,xy ∆∆=0. y ′=C ′=xy x ∆∆→∆0lim =0,∴y ′=0. 2.y =x n (n ∈N *),求y ′.[学生板演]解:y =f (x )=x n ,∴Δy =f (x +Δx )-f (x )=(x +Δx )n -x nn n n n n n n n n x x C x x C x x C x -∆⋅++∆+∆+=--)()(22211n n n n n n n x C x x C x x C )()(22211∆⋅++∆+∆=--12211)(---∆++∆+=∆∆n n n n n n n x C x x C x C xy ∴y ′=(x n )′1111221100)(lim lim -----→∆→∆==∆++∆+=∆∆=n n n n n n n n n n x x nx x C x C x x C x C x y . ∴y ′=nx n -1.3.y =x -n (n ∈N *),求y ′.[学生板演]解:Δy =(x +Δx )-n -x -nnn n n n n n n n n n n n n n n n n nn nn nn x x x x C x x C x C x y x x x x C x x C x C x x x x x x x x x )()()()()()()(1)(11221122211∆+∆++∆+-=∆∆∆+∆++∆+-=∆+∆+-=-∆+=----- ∴xy y x ∆∆='→∆0lim n n n n n n n n n n n n n x x x xC xx x x C x x C x C ⋅-=∆+∆++∆+-=----→∆11122110])()([lim=-nx -n -1.∴y ′=-nx -n -1.※4.y =sin x ,求y ′.(叫两位同学做)[学生板演][生甲]解:Δy =sin(x +Δx )-sin x=sin x cos Δx +cos x sin Δx -sin x ,xx x x x x x y ∆-∆+∆=∆∆sin sin cos cos sin , ∴xy y x ∆∆='→∆0lim x x x x x xx x x x x xx x x x xxx x x x x x x x x cos 4)2(2sin )sin 2(lim sin cos lim )2sin 2(sin lim sin cos )1(cos sin lim sin sin cos cos sin lim22002000+∆⋅∆∆⋅-=∆∆+∆∆-=∆∆+-∆=∆-∆+∆=→∆→∆→∆→∆→∆ =-2sin x ·1·0+cos x =cos x .∴y ′=cos x .[生乙]Δy =sin(x +Δx )-sin x=2cos(x +2x ∆)sin 2x ∆,xx y ∆=∆∆22, ∴xy y x ∆∆='→∆0lim 22sin lim )2cos(lim 22sin )2cos(lim 2sin )2cos(2lim 0000xx x x xx x x xx x x x x x x ∆∆∆+=∆∆∆+=∆∆∆+=→∆→∆→∆→∆ =cos x .∴y ′=cos x .(如果叫两位同学上去做没有得到两种方法,老师可把另一种方法介绍一下)※5.y =cos x ,求y ′.(也叫两位同学一起做)[生甲]解:Δy =cos(x +Δx )-cos x=cos x cos Δx -sin x sin Δx -cos x ,x x x x x x x yy x x ∆-∆-∆=∆∆='→∆→∆cos sin sin cos cos lim lim00 1sin 4)2(2sin )cos 2(lim sin sin lim )2sin 2(cos lim sin sin )1(cos cos lim2200200⋅-∆⋅∆∆-=∆∆-∆∆-=∆∆--∆=→∆→∆→∆→∆x x x x x xx x x x x xxx x x x x x x =-2cos x ·1·0-sin x =-sin x ,∴y ′=-sin x .[生乙]解:x x x x x ∆-∆+→∆cos )cos(lim22sin )2sin(lim 22lim 00xx x x xx x ∆∆∆+-=∆=→∆→∆ =-sin x ,∴y ′=-sin x .[师]由4、5两道题我们可以比较一下,第二种方法比较简便,所以求三角函数的极限时,选择哪一种公式进行三角函数的转化,要根据具体情况而定,选择好的公式,可以简化计算过程.上面的第2题和第3题中,只证明了n ∈N *的情况,实际上它对于全体实数都成立.我们把上面四种函数的导数作为四个公式,以后可以直接用.[板书](一)公式1 C ′=0(C 是常数)公式2 (x n )′=nx n -1(n ∈R)公式3 (sin x )′=cos x公式4 (cos x )′=-sin x(二)课本例题[师]下面我们来看几个函数的导数,运用公式求:(1)(x 3)′;(2)(21x )′;(3)(x )′. [学生板演](1)解:(x 3)′=3x 3-1=3x 2.(2)解:3122222)()1(----=-='='x x x x. (3)解:xx x x x 212121)()(2112121==='='--. (还可以叫两个同学同做一道题,一个用极限即定义来求,一个用公式来求,比较一下)(三)变化率举例[师]我们知道在物理上求瞬时速度时,可以用求导的方法来求.知道运动方程s=s(t ),瞬时速度v =s′(t ).[板书]物体按s=s(t )作直线运动,则物体在时刻t 0的瞬时速度v 0=s′(t 0).v 0=s′(t 0)叫做位移s 在时刻t 0对时间t 的变化率.[师]我们引入了变化率的概念,函数f (x )在点x 0的导数也可以叫做函数f (x )在点x 0对自变量x 的变化率.很多物理量都是用变化率定义的,除了瞬时速度外,还有什么?[板书]函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.[生]例如角速度、电流等.[师]它们是分别对哪些量的变化率呢?[生]角速度是角度(作为时间的函数)对时间的变化率;电流是电量(作为时间的函数)对时间的变化率.[师]下面来看两道例题.[例1]已知物质所吸收的热量Q =Q (T )(热量Q 的单位是J ,绝对温度T 的单位是K),求热量对温度的变化率C (即热容量).[学生分析]由变化率的含义,热量是温度的函数,所以热量对温度的变化率就是热量函数Q (T )对T 求导.解:C =Q ′(T ),即热容量为Q ′(T )J/K.[师]单位质量物质的热容量叫做比热容,那么上例中,如果物质的质量是v kg,那么比热容怎么表示?[生]比热容是v1Q ′(T ) J/(kg·K).图3-9[例2]如图3-9,质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.[学生分析]要求时刻t 时M 点的速度,首先要求出在y 轴的运动方程,是关于t 的函数,再对t 求导,就能得到M 点的速度了.解:时刻t 时,∵角速度为1 rad/s,∴∠POA=1·t =t rad.∴∠MPO =∠POA =t rad.∴OM =OP ·sin ∠MPO =10·sin t .∴点M 的运动方程为y =10sin t .∴v =y ′=(10sin t )′=10cos t ,即时刻t 时,点P 在y 轴上的射影点M 的速度为10cos t cm/s.[师]我们学习了有关导数的知识,对于一些物理问题,就可以利用导数知识轻而易举地解决了.求导时,系数可提出来.Ⅲ.课堂练习1.(口答)求下列函数的导数.(1)y =x 5;(2)y =x 6;(3)x =sin t ;(4)u =cos φ. [生](1)y ′=(x 5)′=5x 4.[生](2)y ′=(x 6)′=6x 5.[生](3)x ′=(sin t )′=cos t .[生](4)u ′=(cos φ)′=-sin φ.2.求下列函数的导数.(1)31xy =;(2)3x y =. (1)解:y ′=(31x )′=(x -3)′=-3x -3-1=-3x -4. (2)解:321313133131)()(--==''='x x x x y . 3.质点的运动方程是s=t 3(s 单位:m ,t 单位:s),求质点在t =3时的速度.解:v =s′=(t 3)′=3t 3-1=3t 2,当t =3时,v =3×32=27(m/s),∴质点在t =3时的速度为27 m/s.4.物体自由落体的运动方程是s =s (t )=221gt (s 单位:m ,t 单位:s,g =9.8 m/s 2),求t =3时的速度.解:gt t g gt t s v =⋅==='=-122221)21()(, 当t =3时,v =g·3=9.8×3=29.4(m/s),∴t =3时的速度为29.4 m/s.[师]该题也用到求导时系数可提出来,根据[Cf (x )]′=Cf ′(x )(C 是常数).这由极限的知识可以证得.xx f x x f C x x Cf x x Cf x Cf x x ∆-∆+=∆-∆+='→∆→∆)()(lim )()(lim ])([00=Cf ′(x ). 5.求曲线y =x 4在点P (2,16)处的切线方程.解:y ′=(x 4)′=4x 4-1=4x 3.∴y ′|x =2=4×23=32.∴点P (2,16)处的切线方程为y -16=32(x -2),即32x -y -48=0.Ⅳ.课时小结[学生总结]这节课主要学习了四个公式(①C ′=0(C 是常数),②(x n )′=nx n -1(n ∈R),③(sin x )′=cos x ,④(cos x )′=-sin x )以及变化率的概念:v 0=s ′(t 0)叫做位移s 在时刻t 0对时间t 的变化率,函数y =f (x )在点x 0的导数f ′(x 0)叫做函数f (x )在点x 0对自变量x 的变化率.Ⅴ.课后作业(一)课本P 116习题3.2 2,4,5.(二)1.预习内容:课本P 118~119和(或差)、积的导数.2.预习提纲:(1)和(或差)的导数公式、证明过程.(2)积的导数 公式、证明过程.(3)预习例1、例2、例3,如何运用法则1、法则2.板书设计§ 3.2 几种常见函数的导数公式1C ′=0(C 为常数)公式2(x n )′=nx n -1(n ∈R)公式3(sin x )′=cos x公式4(cos x )′=-sin xv 0=s ′(t 0)是位移s 在t 0对时间t 的变化率.函数y =f (x )在点x 0的导数叫做函数f (x )在点x 0对自变量x 的变化率.1.y =C (C 是常数),求y ′.2.y =x n (n ∈N *),求y ′.3.y =x -n (n ∈N *),求y ′.4.y =sin x ,求y ′.(两种方法)5.y =cos x ,求y ′.(两种方法) 课本例题(1)(x 3)′;(2)(21x)′;(3)(x )′. 例1.已知物质所吸收的热量Q =Q (T )(Q 单位:J ,T 单位:K),求热量对温度的变化率C (热容量).例2.质点P 在半径为10 cm 的圆上逆时针作匀角速运动,角速度为1 rad/s ,设A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度.课堂练习1.(口答)(1)(x 5)′;(2)(x 6)′;(3)(sin t )′;(4)(cos φ)′.2.(1) )1(3'x;(2)(3x )′. 3.质点运动方程是s=t 3,求t =3时的速度.4.221gt s =,求t =3时的速度. 5.求曲线y =x 4在P (2,16)处的切线方程.课后作业。
求导数的方法(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。
(2)几种常见函数的导数公式:①C'=0(C为常数);②(x^n)'=nx^(n-1) (n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e^x)'=e^x;⑥(a^x)'=a^xIna (ln为自然对数)⑦(Inx)'=1/x(ln为自然对数)(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱!导数公式及证明[编辑本段] 这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
导数的计算第一课时 几个常用函数的导数和基本初等函数的导数公式预习课本P81~83,思考并完成以下问题1.函数y =c,y =x,y =x -1,y =x 2,y =x 的导数分别是什么?能否得出y =x n的导数公式?2.正余弦函数的导数公式、指数函数、对数函数的导数公式是什么?[新知初探]1.几种常用函数的导数函数导数 f(x)=c(c 为常数)f′(x)=0 f(x)=x f′(x)=1 f(x)=x 2f′(x)=2x f(x)=1xf′(x)=-1x 2f(x)=xf′(x)=12x[点睛] 对几种常用函数的导数的两点说明(1)以上几个常用函数的导数是求解其他函数的导数的基础,都是通过导数的定义求得的,都属于幂函数的导数.(2)以上几个常见的导数公式需记牢,在求导数时,可直接应用,不必再用定义去求导. 2.基本初等函数的导数公式原函数 导函数 f(x)=c(c 为常数) f′(x)=0 f(x)=x α(α∈Q *) f′(x)=αxα-1f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x f(x)=a x(a>0且a≠1)f′(x)=a xln_a f(x)=e xf′(x)=e x f(x)=log a x(a>0且a≠1)f′(x)=1xln af(x)=ln xf′(x)=1x[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)若y =2,则y′=12×2=1( )(2)若f′(x)=sin x,则f(x)=cos x( ) (3)f(x)=1x 3,则f′(x)=-3x 4( )答案:(1)× (2)× (3)√ 2.下列结论不正确的是( )A .若y =0,则y′=0B .若y =5x,则y′=5C .若y =x -1,则y′=-x -2D .若y =x 12,则y′=12x 12答案:D3.若y =cos 2π3,则y′=( )A .-32B .-12C .0 D.12答案:C4.曲线y =e x在点(0,1)处的切线方程为________. 答案:y =x +1利用导数公式求函数导数[典例] 求下列函数的导数.(1)y =x 12;(2)y =1x 4;(3)y =5x 3;(4)y =3x;(5)y =log 5x.[解] (1)y′=(x 12)′=12x 11.(2)y′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -5=-4x 5.(3)y′=(5x 3)′=(x 35)′=35x -25.(4)y′=(3x)′=3x ln 3. (5)y′=(log 5x)′=1xln 5.求简单函数的导函数有两种基本方法(1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.[活学活用] 求下列函数的导数:(1)y =lg x ;(2)y =⎝ ⎛⎭⎪⎫12x;(3)y =x x ;(4)y =log 13x.解:(1)y′=(lg x)′=⎝⎛⎭⎪⎫ln x ln 10′=1xln 10.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2.(3)y′=(x x )′=(x 32)′=32x 12=32x.(4)y′=⎝ ⎛⎭⎪⎫log 13x ′=1xln 13=-1xln 3.导数公式的综合应用[典例] (1)曲线y =cos x 在点P ⎝ ⎛⎭⎪⎫π3,12处的切线与y 轴交点的纵坐标是( )A.12-3π9B.12+3π9C.12+3π6D.12-3π6(2)设曲线y =x 在点(2,2)处的切线与直线ax +y +1=0垂直,则a =( ) A.22B.24C .-2 2D .2 2[解析] (1)因为y′=-sin x,切点为P ⎝ ⎛⎭⎪⎫π3,12, 所以切线的斜率k =y′|x=π3=-sin π3=-32, 所以切线方程为y -12=-32⎝ ⎛⎭⎪⎫x -π3,令x =0,得y =12+3π6,故选C.(2)因为y =x =x 12,所以y′=12x -12=12x ,所以切线的斜率k =y′|x =2=122,由已知,得-a =-22,即a =22,故选D. [答案] (1)C (2)D1.利用导数的几何意义解决切线问题的两种情况(1)若已知点是切点,则在该点处的切线斜率就是该点处的导数.(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤1.曲线y =x 23在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为( )A.53B.89C.2512D.412解析:选C 可求得y′=23x -13,即y′|x =1=23,切线方程为2x -3y +1=0,与x 轴的交点坐标为⎝ ⎛⎭⎪⎫-12,0, 与x =2的交点坐标为⎝ ⎛⎭⎪⎫2,53, 围成三角形面积为12×⎝⎛⎭⎪⎫2+12×53=2512.2.当常数k 为何值时,直线y =x 与曲线y =x 2+k 相切?请求出切点. 解:设切点为A(x 0,x 20+k).∵y′=2x,∴⎩⎪⎨⎪⎧2x 0=1,x 20+k =x 0,∴⎩⎪⎨⎪⎧x 0=12,k =14,故当k =14时,直线y =x 与曲线y =x 2+k 相切,且切点坐标为⎝ ⎛⎭⎪⎫12, 12.层级一 学业水平达标1.若指数函数f(x)=a x(a >0,a≠1)满足f′(1)=ln 27,则f′(-1)=( ) A .2B .ln 3 C.ln 33D .-ln 3解析:选C f′(x)=a x ln a,由f′(1)=aln a =ln 27,解得a =3,则f′(x)=3xln 3,故f′(-1)=ln 33. 2.已知f(x)=x 2·x,则f′(2)=( ) A .4 2B .0 C. 2D .5 2解析:选D 原函数化简得f(x)=x 52,所以f′(x)=52·x 32,所以f′(2)=52×232=5 2.故选D.3.已知f(x)=x α,若f′(-1)=-2,则α的值等于( ) A .2B .-2C .3D .-3解析:选A 若α=2,则f(x)=x 2,∴f′(x)=2x, ∴f′(-1)=2×(-1)=-2适合条件.故应选A.4.若曲线y =x 在点P(a,a)处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是( ) A .4B .2C .16D .8解析:选A ∵y′=12x ,∴切线方程为y -a =12a(x -a).令x =0,得y =a2,令y =0,得x =-a, 由题意知12·a2·a=2,∴a =4.5. 曲线y =13x 3在x =1处切线的倾斜角为( )A .1B .-π4 C.π4 D.5π4解析:选C ∵y′=x 2,∴y′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.6.已知f(x)=1x ,g(x)=mx,且g′(2)=1f′2,则m =________.解析:∵f′(x)=-1x 2,∴f′(2)=-14.又∵g′(x)=m,∴g′(2)=m.由g′(2)=1f′2,得m =-4.答案:-47.曲线y =ln x 在点M(e,1)处的切线的斜率是________,切线方程为____________. 解析:∵y′=(ln x)′=1x ,∴y′|x =e =1e .∴切线方程为y -1=1e (x -e),即x -ey =0.答案:1ex -ey =08.设坐标平面上的抛物线C :y =x 2,过第一象限的点(a,a 2)作抛物线C 的切线l,则直线l 与y 轴的交点Q 的坐标为________.解析:显然点(a,a 2)为抛物线C :y =x 2上的点, ∵y′=2x,∴直线l 的方程为y -a 2=2a(x -a). 令x =0,得y =-a 2,∴直线l 与y 轴的交点的坐标为(0,-a 2). 答案:(0,-a 2) 9.求下列函数的导数:(1)y =x 8;(2)y =4x;(3)y =log 3x ;(4)y =sin ⎝⎛⎭⎪⎫x +π2;(5)y =e 2.解:(1)y′=(x 8)′=8x8-1=8x 7.(2)y′=(4x)′=4x ln 4. (3)y′=(log 3x)′=1xln 3.(4)y′=(cos x)′=-sin x. (5)y′=(e 2)′=0.10.已知P(-1,1),Q(2,4)是曲线y =x 2上的两点, (1)求过点P,Q 的曲线y =x 2的切线方程; (2)求与直线PQ 平行的曲线y =x 2的切线方程.解:(1)因为y′=2x,P(-1,1),Q(2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y′|x =-1=-2, 过Q 点的切线的斜率k 2=y′|x =2=4,过P 点的切线方程:y -1=-2(x +1),即2x +y +1=0. 过Q 点的切线方程:y -4=4(x -2),即4x -y -4=0. (2)因为y′=2x,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y′|x=x 0=2x 0=1, 所以x 0=12,所以切点M ⎝ ⎛⎭⎪⎫12,14, 与PQ 平行的切线方程为: y -14=x -12,即4x -4y -1=0.层级二 应试能力达标1.质点沿直线运动的路程s 与时间t 的关系是s =5t,则质点在t =4时的速度为( )A.12523 B.110523C.25523D.110523解析:选B ∵s′=15t -45.∴当t =4时,s′=15·1544=110523 .2.直线y =12x +b 是曲线y =ln x(x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2解析:选C ∵y =ln x 的导数y′=1x ,∴令1x =12,得x =2,∴切点为(2,ln 2).代入直线y =12x +b,得b =ln 2-1.3.在曲线f(x)=1x 上切线的倾斜角为34π的点的坐标为( )A .(1,1)B .(-1,-1)C .(-1,1)D .(1,1)或(-1,-1)解析:选D 因为f(x)=1x ,所以f′(x)=-1x 2,因为切线的倾斜角为34π,所以切线斜率为-1,即f′(x)=-1x 2=-1,所以x =±1,则当x =1时,f(1)=1;当x =-1时,f(1)=-1,则点坐标为(1,1)或(-1,-1). 4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A. 1nB.1n +1C.n n +1D .1解析:选B 对y =xn +1(n ∈N *)求导得y′=(n +1)x n. 令x =1,得在点(1,1)处的切线的斜率k =n +1,∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =n n +1, ∴x 1·x 2·…·x n =12×23×34×…×n -1n ×nn +1=1n +1, 故选B. 5.已知f(x)=a 2(a 为常数),g(x)=ln x,若2x[f ′(x)+1]-g′(x)=1,则x =________. 解析:因为f′(x)=0,g′(x)=1x ,所以2x[f ′(x)+1]-g′(x)=2x -1x =1.解得x =1或x =-12,因为x >0,所以x =1.答案:16.与直线2x -y -4=0平行且与曲线y =ln x 相切的直线方程是________. 解析:∵直线2x -y -4=0的斜率为k =2, 又∵y′=(ln x)′=1x ,∴1x =2,解得x =12.∴切点的坐标为⎝ ⎛⎭⎪⎫12,-ln 2. 故切线方程为y +ln 2=2⎝ ⎛⎭⎪⎫x -12.即2x -y -1-ln 2=0. 答案:2x -y -1-ln 2=07.已知曲线方程为y =f(x)=x 2,求过点B(3,5)且与曲线相切的直线方程. 解:设切点P 的坐标为(x 0,x 20). ∵y =x 2,∴y′=2x,∴k =f′(x 0)=2x 0, ∴切线方程为y -x 20=2x 0(x -x 0).将点B(3,5)代入上式,得5-x 20=2x 0(3-x 0), 即x 20-6x 0+5=0,∴(x 0-1)(x 0-5)=0,∴x 0=1或x 0=5, ∴切点坐标为(1,1)或(5,25),故所求切线方程为y -1=2(x -1)或y -25=10(x -5), 即2x -y -1=0或10x -y -25=0.8.求证:双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数.证明:设P(x 0,y 0)为双曲线xy =a 2上任一点. ∵y′=⎝ ⎛⎭⎪⎫a 2x ′=-a 2x 2. ∴过点P 的切线方程为y -y 0=-a2x 20(x -x 0).令x =0,得y =2a2x 0;令y =0,得x =2x 0.则切线与两坐标轴围成的三角形的面积为 S =12·⎪⎪⎪⎪⎪⎪2a 2x 0·|2x 0|=2a 2. 即双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a 2.。
三角函数的求导与反函数求导的计算方法三角函数在数学中起着重要的作用,而求导是研究函数变化率的重要工具。
本文将重点介绍三角函数的求导方法以及反函数求导的计算方法。
一、三角函数的求导方法在求解三角函数的导数时,我们需要掌握以下几个常见的三角函数及其导数:1. 正弦函数sin(x)的导数为cos(x),即 d/dx(sin(x)) = cos(x)。
2. 余弦函数cos(x)的导数为-sin(x),即 d/dx(cos(x)) = -sin(x)。
3. 正切函数tan(x)的导数为sec^2(x),即 d/dx(tan(x)) = sec^2(x)。
4. 余切函数cot(x)的导数为-csc^2(x),即 d/dx(cot(x)) = -csc^2(x)。
5. 正割函数sec(x)的导数为sec(x)*tan(x),即 d/dx(sec(x)) =sec(x)*tan(x)。
6. 余割函数csc(x)的导数为-csc(x)*cot(x),即 d/dx(csc(x)) = -csc(x)*cot(x)。
通过掌握以上导数公式,我们可以轻松地计算出给定函数的导数。
二、反函数的求导计算方法反函数指的是对于函数y = f(x),如果存在另一个函数x = g(y),使得对于f(x)的定义域内的任意x,g(f(x)) = x,且对于g(y)的定义域内的任意y,f(g(y)) = y,那么g(y)就是f(x)的反函数。
在求解反函数的导数时,有一个重要的定理可以应用,即反函数的导数等于原函数的导数的倒数。
即如果y = f(x)和x = g(y)是互为反函数,且f'(x) ≠ 0,则有:d/dy(g(y)) = 1 / (d/dx(f(x)))通过这个定理,我们可以利用三角函数的导数公式来计算反函数的导数。
三、示例分析为了更好地理解三角函数的求导与反函数求导的计算方法,我们来分别计算几个具体的例子。
例1:求解sin(x)的导数。
《几种常见函数的导数》教案完美版第一章:导数的基本概念1.1 引入导数的定义解释导数的定义:函数在某一点的导数是其在该点的切线斜率。
强调导数的重要性:导数可以用来描述函数在某一点的增减性、极值等性质。
1.2 导数的计算方法讲解导数的计算规则:常数函数的导数为0,幂函数、指数函数、对数函数的导数公式。
示例讲解:计算常见函数在某一点的导数,如f(x) = x^2, f(x) = e^x, f(x) = ln(x)。
第二章:线性函数和多项式函数的导数2.1 线性函数的导数引入线性函数的导数:线性函数的一般形式为f(x) = ax + b,其导数为f'(x) = a。
强调线性函数导数的简洁性:线性函数的导数恒为一个常数。
2.2 多项式函数的导数引入多项式函数的导数:多项式函数的一般形式为f(x) = a_nx^n + a_(n-1)x^(n-1) + + a_1x + a_0,其导数为f'(x) = na_nx^(n-1) + (n-1)a_(n-1)x^(n-2) + + a_1。
示例讲解:计算多项式函数在某一点的导数,如f(x) = x^3 + 2x^2 + 3x + 4。
第三章:指数函数和对数函数的导数3.1 指数函数的导数引入指数函数的导数:指数函数的一般形式为f(x) = a^x,其导数为f'(x) = a^x ln(a)。
强调指数函数导数的性质:指数函数的导数恒为一个正数。
3.2 对数函数的导数引入对数函数的导数:对数函数的一般形式为f(x) = ln(x),其导数为f'(x) = 1/x。
强调对数函数导数的性质:对数函数的导数在定义域内为正数。
第四章:三角函数的导数4.1 正弦函数的导数引入正弦函数的导数:正弦函数的一般形式为f(x) = sin(x),其导数为f'(x) = cos(x)。
强调正弦函数导数的周期性:正弦函数的导数也是一个周期函数。
4.2 余弦函数的导数引入余弦函数的导数:余弦函数的一般形式为f(x) = cos(x),其导数为f'(x) = -sin(x)。