几个常用函数的导数(教案)
- 格式:doc
- 大小:612.00 KB
- 文档页数:3
几个常用函数的导数(教案)章节一:导数的基本概念教学目标:1. 理解导数的定义;2. 掌握导数的计算方法;3. 能够求解常见函数的导数。
教学内容:1. 导数的定义及几何意义;2. 导数的计算方法;3. 常见函数的导数。
教学步骤:1. 引入导数的定义,解释导数的几何意义;2. 引导学生通过极限的概念理解导数的计算方法;3. 举例讲解常见函数的导数;4. 练习求解常见函数的导数。
教学评估:1. 检查学生对导数定义的理解程度;2. 评估学生对导数计算方法的掌握情况;3. 检测学生求解常见函数导数的能力。
章节二:常数函数的导数教学目标:1. 掌握常数函数的导数;2. 能够求解常数函数的导数。
教学内容:1. 常数函数的导数定义;2. 常数函数导数的计算方法。
教学步骤:1. 引入常数函数的导数定义;2. 讲解常数函数导数的计算方法;3. 举例求解常数函数的导数;4. 练习求解常数函数的导数。
教学评估:1. 检查学生对常数函数导数定义的理解程度;2. 评估学生对常数函数导数计算方法的掌握情况;3. 检测学生求解常数函数导数的能力。
章节三:幂函数的导数教学目标:1. 掌握幂函数的导数;2. 能够求解幂函数的导数。
教学内容:1. 幂函数的导数定义;2. 幂函数导数的计算方法。
教学步骤:1. 引入幂函数的导数定义;2. 讲解幂函数导数的计算方法;3. 举例求解幂函数的导数;4. 练习求解幂函数的导数。
教学评估:1. 检查学生对幂函数导数定义的理解程度;2. 评估学生对幂函数导数计算方法的掌握情况;3. 检测学生求解幂函数导数的能力。
章节四:指数函数的导数教学目标:1. 掌握指数函数的导数;2. 能够求解指数函数的导数。
教学内容:1. 指数函数的导数定义;2. 指数函数导数的计算方法。
教学步骤:1. 引入指数函数的导数定义;2. 讲解指数函数导数的计算方法;3. 举例求解指数函数的导数;4. 练习求解指数函数的导数。
《几种常见函数的导数》教案完美版《几种常见函数的导数》教案教学目的:1.掌握四个公式,理解公式的证明过程.2.学会利用公式,求一些函数的导数.3.理解变化率的概念,解决一些物理上的简单问题教学重点:用定义推导常见函数的导数公式.教学难点:公式1)'(-=n n nx x )(Q n ∈的推导.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.导数的定义:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数()y f x =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即xy ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ?-?+=→?)()(lim)(0000/2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )处的切线的斜率)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为)(()(00/0x x x f x f y -=-3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim00函数)(x f y =在0x 处的导数0/x x y =就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数)(/x f 在0x 处的函数值,即0/x x y==(0/x f 所以函数)(x f y =在0x 处的导数也记作(0/x f导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值)(x f y =在点0x 处的导数就是导函数)(/x f 在点0x 的函数值4.可导: 如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导5. 可导与连续的关系:如果函数y =f (x )在点x 0处可导,那么函数y =f (x )在点x 0处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.6. 求函数)(x f y =的导数的一般方法:(1)求函数的改变量()(x f x x f y -?+=?(2)求平均变化率xx y ?=?? (3)取极限,得导数/y =()f x '=xy x ??→?0lim二、讲解新课: 1. 0'=C (C 为常数)说明:此公式可以叙述为:常函数的导数为零.其几何解释是:函数C y =的图象是平行于x 轴的直线,其上任一点的切线即为直线本身,所以切线的斜率都是0. 证明:()y f x ==C ,∴Δy =f (x +Δx )-f (x )=C -C =0∴x y=0,y '=C ′=xy x ??→?0lim =0,∴y '=0.2. 1)'(-=n nnx x (Q n ∈)说明:实际上,此公式对R n ∈都成立,但证明较复杂,所以课本只给出了*N n ∈的证明证明:()y f x ==nx∴Δy =f (x +Δx )-f (x )=()n nx x x +?- =n x +1C n 1n x -Δx +2C n 2n x-(Δx )2+…+n n C ()n x ?-nx=1C n 1n x-Δx +2C n 2n x - (Δx )2+…+n n C ·()nx ?xy ??=1C n 1n x -+2C n 2n x -Δx +…+n n C ·1()n x -?∴y '=()n x '=xy x ??→?0lim=0lim →?x (1C n 1n x-+2C n 2n x-Δx +…+n n C ·1()n x -?)=1C n 1n x-=n 1n x-∴y '=1)'(-=n n nx x 3. x x cos )'(sin =证明方法一:y =sin x ,Δy =sin(x +Δx )-sin x =sin x cos Δx +cos x sin Δx -sin xxxx x x x x y ?-?+?=sin sin cos cos sin ∴y '=xxx x x x x y x x ?-?+?=??→?→?sin sin cos cos sin lim lim000sin (cos 1)cos sin limx x x x xx→?-+?=?200sin (2sin )sin 2limlim cos x x xx x x x x ?→?→?-?=+?? 202sin 2lim(2sin )cos 4()2x x x x x x ?→??=-??+? =-2sin x ·1·0+cos x =cos x ∴y '=cos x证明方法二:x y sin =,2)(sin 2)(cos2sin )sin(xx x x x x x x x y -?++?+=-?+=?2sin2cos 2x x x ???? ?+=, 22sin2cos x xx x x y ????? ?+=??,∴ 0lim )'(sin '→?==x x y 22sin2cos lim 0x xx x x y x ????? ?+=??→? x x x x x x x cos 22sinlim 2cos lim 00=????? ?+=→?→?.4. x x sin )'(cos -=证明方法一:y =cos x ,Δy =cos(x +Δx )-cos x =cos x cos Δx -sin x sin Δx -cos xy '=xxx x x x x y x x ?-?-?=??→?→?cos sin sin cos cos lim lim 00 0cos (cos 1)sin sin limx x x x xx→?--?=?200cos (2sin )sin 2limlim sin x x xx x x x x→?→?-?=-??202sin 2lim(2cos )sin 14()2x x x x x x→??=-?-??2cos 10sin sin x x x =-??-=- ∴y '=-sin x 证明方法二:x y cos =,2)(sin 2)(sin 2cos )cos(xx x x x x x x x y -?++?+-=-?+=?2sin 2sin 2xx x ??+-=, 22sin2sin x xx x x y ????? ?+-=??,∴ 0lim )'(cos '→?==x x y 22sin2sin lim 0x xx x x y x ????? ?+-=??→? x x x x x x x sin 22sinlim 2sin lim 00-=????? ?+-=→?→?.∴y '=-sin x .第二种方法比较简便,所以求三角函数的极限时,选择哪一种公式进行三角函数的转化,要根据具体情况而定,选择好的公式,可以简化计算过程.我们把上面四种函数的导数可以作为四个公式,以后可以直接用三、讲解范例:例1 求(1)(x 3)′ (2)(21x)′ (3)(x )′解:(1) (x 3)′=3x 3-1=3x 2;(2) (21x)′=(x -2)′=-2x -2-1=-2x -3(3) xx x x x 212121)()(2112121==='='--例2质点运动方程是51t s =, 求质点在2=t 时的速度.解:∵ 51ts =,∴ 6555)()1(---='='='t t ts , ∴ 6452562-=?-='-=t s .答:质点在2=t 时的速度是645-.例3求曲线x y sin =在点A )21,6(π的切线方程.解:∵ x y sin = ∴ xx y cos )(sin ='='∴ 236cos6=='=ππx y ∴ 所求切线的斜率23=k ∴ 所求切线的方程为 )6(2321π-=-x y ,即 0361236=-+-πy x 答:曲线x y sin =在点A )21,6(π的切线方程为0361236=-+-πy x .四、课堂练习:1.(口答)求下列函数的导数:(1)y =x 5 (2)y =x 6 (3)x =sin t (4)u =cos ? 答案:(1)y ′=(x 5)′=5x 4;(2)y ′=(x 6)′=6x 5;(3)x ′=(sin t )′=cos t ;(4)u ′=(cos ?)′=-sin ? 2.求下列函数的导数:(1)y =31x(2)y =3x 答案:(1) y ′=(31x)′=(x -3)′=-3x -3-1=-3x -4(2321313133131)()(--=='='='x x x x y3.质点的运动方程是s =t 3,(s 单位m ,t 单位s),求质点在t =3时的速度.解:v =s ′=(t 3)′=3t 3-1=3t 2当t =3时,v =3×32=27 m/s ,∴质点在t =3时的速度为27 m/s 4.物体自由落体的运动方程是s =s (t )=21gt 2,(s 单位m ,t 单位s ,g =9.8 m/s 2),求t =3时的速度. 解:v =s ′(t )=(21gt 2)′=21g ·2t 2-1=gt . t =3时,v =g ·3=9.8·3=29.4 m/s ,∴t =3时的速度为29.4 m/s.5.求曲线y =x 4在点P (2,16)处的切线方程.解:y ′=(x 4)′=4x 4-1=4x 3.∴y ′|x =2=4·23=32∴点P (2,16)处的切线方程为y -16=32(x -2),即32x -y -48=0五、小结:这节课主要学习了四个公式:①C ′=0(C 是常数),②(x n )′=nx n -1(n ∈R ),③(sin x )′=cos x ,④(cos x )′=-sin x 六、课后作业:P127 1.2.3八、课后记:求三角函数的极限时,选择哪一种公式进行三角函数的转化,要根据具体情况而定,选择好的公式,可以简化计算过程.我们把上面四种函数的导数可以作为四个公式,以后可以直接用。
《几种常见函数的导数》教案完美版一、教学目标1. 理解导数的基本概念和物理意义。
2. 掌握几种常见函数的导数求导法则。
3. 能够熟练运用导数解决实际问题。
二、教学内容1. 导数的基本概念和物理意义。
2. 几种常见函数的导数。
3. 导数的求导法则。
三、教学重点与难点1. 教学重点:导数的基本概念、物理意义,几种常见函数的导数,导数的求导法则。
2. 教学难点:导数的求导法则的应用。
四、教学方法1. 采用讲解法,引导学生理解导数的基本概念和物理意义。
3. 采用案例分析法,让学生通过实际问题,运用导数解决实际问题。
五、教学过程1. 导入:以实际问题引入导数的概念,激发学生的学习兴趣。
2. 讲解导数的基本概念和物理意义,让学生理解导数的本质。
4. 讲解导数的求导法则,让学生能够熟练运用求导法则求解导数。
5. 利用案例分析,让学生运用导数解决实际问题,巩固所学知识。
6. 课堂练习:布置相关练习题,让学生巩固所学知识。
8. 布置作业:布置相关作业,让学生进一步巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,为下一节课的教学做好准备。
10. 学生反馈:收集学生对本节课教学的意见和建议,不断改进教学方法。
六、教学评价1. 评价内容:学生对导数基本概念和物理意义的理解,以及对几种常见函数导数的掌握情况。
2. 评价方式:课堂提问、作业批改、课后访谈等。
3. 评价标准:能准确理解导数概念,熟练掌握几种常见函数的导数,并能运用导数解决实际问题。
七、教学反思1. 反思内容:教学方法、教学内容、课堂氛围、学生参与度等。
2. 反思方式:教师自我反思、学生反馈、同行评价等。
3. 改进措施:针对反思结果,调整教学方法,优化教学内容,提高课堂活力,关注学生个体差异。
八、教学拓展1. 拓展内容:导数在其他领域的应用,如物理学、经济学等。
2. 拓展方式:查阅相关资料、邀请专家讲座、小组讨论等。
3. 拓展目标:让学生了解导数在实际生活中的广泛应用,提高学生的学习兴趣。
几个常用函数的导数教案导数是微积分中一个非常重要的概念,它表示函数在某一点的变化率。
对于常用函数,我们常常需要求它们的导数,这样可以帮助我们更好地理解函数的性质和解决一些实际问题。
下面是几个常用函数的导数教案。
一、常数函数的导数常数函数的导数很简单,因为函数的值在整个定义域上都是相同的,所以它的导数是0。
我们可以通过实例来说明这个问题:比如,函数y = 3的导数为dy/dx = 0。
因为无论x取任何值,y的值都是3,没有变化的趋势。
二、幂函数的导数幂函数是形如y = x^n (n为常数)的函数,它们的导数可以通过幂函数的求导公式来计算。
公式如下:dy/dx = n * x^(n-1)其中,n是幂函数中的指数。
我们可以通过实例来演示幂函数的导数计算:比如,函数y = x^3的导数为dy/dx = 3 * x^(3-1) = 3 * x^2三、指数函数的导数指数函数是形如y = a^x (a是常数)的函数,它们的导数可以通过指数函数的求导公式来计算。
公式如下:dy/dx = a^x * ln(a)其中,ln(a)是常数a的自然对数。
我们可以通过实例来演示指数函数的导数计算:比如,函数y = 2^x的导数为dy/dx = 2^x * ln(2)四、对数函数的导数对数函数是指形如y = log_a(x) (a是底数,x>0)的函数,它们的导数可以通过对数函数的求导公式来计算。
公式如下:dy/dx = 1 / (x * ln(a))我们可以通过实例来演示对数函数的导数计算:比如,函数y = log_2(x)的导数为dy/dx = 1 / (x * ln(2))五、三角函数的导数三角函数是常用的函数,包括正弦函数、余弦函数和正切函数等。
它们的导数可以通过三角函数的导数公式来计算。
公式如下:dy/dx = cos(x) [对于正弦函数]dy/dx = -sin(x) [对于余弦函数]dy/dx = sec^2(x) [对于正切函数]我们可以通过实例来演示三角函数的导数计算:比如,函数y = sin(x)的导数为dy/dx = cos(x)函数y = cos(x)的导数为dy/dx = -sin(x)函数y = tan(x)的导数为dy/dx = sec^2(x)通过上述教案,学生可以初步了解常数函数、幂函数、指数函数、对数函数和三角函数的求导规则,为后续学习提供基础。
几个常用函数的导数教案教案标题:几个常用函数的导数教案教案目标:1. 理解常用函数的导数概念;2. 掌握求解几个常用函数的导数的方法;3. 能够灵活运用导数概念解决实际问题。
教案内容和步骤:Step 1: 引入导数的概念及其意义 (5分钟)介绍导数的概念,解释导数与函数斜率和变化率的关系。
通过实例让学生理解导数的重要性,以及它在数学和其他学科中的应用。
Step 2: 导数定义的解释 (10分钟)给出导数的定义,并详细解释定义中的各个部分。
使用图形或示意图来帮助学生理解导数的计算过程,并强调导数表示函数在某一点的瞬时变化率。
Step 3: 常用函数的导数求解 (30分钟)针对以下几个常用函数:常数函数、幂函数、指数函数、对数函数、三角函数等,逐个讲解其导数的求法。
3.1 常数函数 f(x) = C 的导数求解 (5分钟)给出常数函数的导数定义,解释为什么常数函数的导数总是0,并举例说明。
3.2 幂函数 f(x) = x^n 的导数求解 (7分钟)介绍幂函数的导数求解公式,并通过几个具体的例子来演示求解过程。
3.3 指数函数 f(x) = a^x 的导数求解 (7分钟)解释指数函数导数求解的思路,引入自然指数函数e^x,并简要论述它的导数性质。
通过具体的例子来讲解指数函数导数的计算。
3.4 对数函数 f(x) = log_a(x) 的导数求解 (7分钟)介绍对数函数导数求解的方法,重点讲解自然对数函数ln(x)的导数。
通过例题让学生掌握对数函数导数的求取方法。
3.5 三角函数 f(x) = sin(x), cos(x), tan(x) 的导数求解 (7分钟)讲解三角函数的导数求解规则,并通过图形和实例说明求解过程,以及导数与三角函数属性之间的关系。
Step 4: 应用导数解决实际问题 (10分钟)列举一些实际问题,如最值问题、切线问题等,引导学生运用导数的知识解决这些问题。
同时,提供一些简单的练习题和习题让学生巩固所学知识。
几个常用函数的导数教案一、引言(150字)在微积分中,求一个函数的导数是非常重要的。
本教案将介绍几个常用函数的导数,并以详细的步骤和示例来说明。
导数的概念对理解变化率、速度和斜率等概念至关重要。
通过本教案,学生将学会计算常见函数的导数,培养微积分思维,为进一步深入学习奠定基础。
二、函数的导数的定义(200字)1.函数的导数表示函数在其中一点的变化率或速度。
2.函数的导数可以通过极限来定义,即函数在其中一点的导数是函数在该点的切线斜率的极限。
三、常见函数的导数(800字)1.常数函数的导数:a.常数函数f(x)=c,导数为0,表示函数在任何点的切线斜率都为0。
b.示例:f(x)=3,导数为0。
2.幂函数的导数:a.幂函数f(x)=x^n(n为常数),导数为f'(x)=n*x^(n-1)。
b.示例:f(x)=x^3,导数为f'(x)=3*x^23.指数函数的导数:a. 指数函数f(x)=a^x(a>0且a≠1),导数为f'(x)=ln(a)*a^x。
b. 示例:f(x)=2^x,导数为f'(x)=ln(2)*2^x。
4.对数函数的导数:a. 对数函数f(x)=log_a(x)(a>0且a≠1),导数为f'(x)=1/(x*ln(a))。
b. 示例:f(x)=log_2(x),导数为f'(x)=1/(x*ln(2))。
5.三角函数的导数:a. 正弦函数f(x)=sin(x),导数为f'(x)=cos(x)。
b. 余弦函数f(x)=cos(x),导数为f'(x)=-sin(x)。
c. 正切函数f(x)=tan(x),导数为f'(x)=sec^2(x)。
d. 示例:f(x)=sin(x),导数为f'(x)=cos(x)。
四、总结与拓展(150字)通过本教案,我们学习了常数函数、幂函数、指数函数、对数函数和三角函数的导数。
《几种常见函数的导数》教案完美版一、教学目标:1. 了解导数的定义和几何意义;2. 掌握几种常见函数的导数公式;3. 会求解函数在某一点的导数;4. 能够运用导数解决实际问题。
二、教学重点与难点:重点:1. 导数的定义和几何意义;2. 几种常见函数的导数公式;3. 求解函数在某一点的导数。
难点:1. 导数的几何意义的理解;2. 求解函数在某一点的导数的方法。
三、教学方法与手段:1. 采用讲解、示例、练习相结合的教学方法;2. 使用多媒体课件辅助教学,展示函数图像和导数几何意义;3. 引导学生通过自主学习、合作交流的方式探索和掌握导数的基本概念和求解方法。
四、教学内容与步骤:1. 导入新课:回顾函数的斜率概念,引出导数的定义;2. 讲解导数的定义和几何意义,示例演示;3. 引导学生总结几种常见函数的导数公式;4. 讲解求解函数在某一点的导数的方法,示例演示;5. 布置练习题,学生自主练习,教师巡回指导。
五、教学评价:1. 课堂讲解:关注学生的听课情况,提问学生掌握程度;2. 练习题:检查学生对几种常见函数导数的掌握程度;3. 课后作业:评估学生对课堂所学知识的运用能力;4. 学生互评:鼓励学生相互学习,共同进步。
教案示例:1. 导入新课:提问:我们在学习函数的时候,曾经学习了斜率的概念,斜率与函数有什么关系呢?引导学生思考,引出导数的定义。
2. 讲解导数的定义和几何意义:解释导数的定义:函数在某一点的导数,就是该点处函数图像的切线斜率。
展示函数图像,引导学生理解导数的几何意义。
3. 引导学生总结几种常见函数的导数公式:提问:我们如何求解函数在某一点的导数呢?引导学生总结几种常见函数的导数公式。
4. 讲解求解函数在某一点的导数的方法:示例演示:求解函数在某一点的导数。
讲解求解方法,引导学生掌握。
5. 布置练习题,学生自主练习,教师巡回指导:布置练习题,要求学生求解几种常见函数在某一点的导数。
教师巡回指导,解答学生疑问。
高中几个常用导数教案设计教案一:导数的定义与几何意义通过函数图像的动态展示,引导学生观察函数在某一点处的切线斜率,引出导数的几何意义——即函数在该点的瞬时变化率。
结合具体的例子,如直线、抛物线等基本函数,讲解导数的定义及其计算方法。
通过练习题巩固学生对导数定义和几何意义的理解。
教案二:导数的运算法则本节课的重点是教授导数的四则运算法则和复合函数的求导法则。
通过举例说明如何运用这些法则求解简单的导数问题。
例如,可以设计一个实验,让学生自己计算不同函数组合后的导数,并总结出相应的运算规则。
强调导数在实际问题中的应用,如物理中的速度和加速度问题,让学生了解学习导数的实际意义。
教案三:高阶导数的理解与应用高阶导数是导数概念的延伸,对于理解复杂函数的性质至关重要。
在这一部分,教师可以通过曲线的凹凸性和拐点等几何特性来引入二阶导数的概念。
通过实例分析,让学生学会如何求取函数的高阶导数,并解释其在图像上的表现。
同时,讨论高阶导数在物理学、工程学等领域的应用,增强学生的实践意识。
教案四:导数在优化问题中的应用导数在解决最值问题中扮演着重要角色。
在本节教案中,教师可以设计一系列的问题,引导学生使用导数来求解最大值和最小值问题。
通过实际问题的设置,如成本最小化、利润最大化等,让学生在解决问题的过程中理解导数在优化问题中的关键作用。
同时,也可以介绍无约束和有约束优化问题的解决方法。
教案五:导数与函数的极值本节教案的目的是帮助学生掌握利用导数判断函数极值的方法。
通过讲解函数的临界点、导数为零的判定条件等内容,使学生能够准确地找到函数的极大值和极小值。
结合实际例子,如气温变化、产品销量预测等,让学生在真实情境中应用所学知识,提高其分析和解决问题的能力。
3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一) 学 习 目 标核 心 素 养1.能根据定义求函数y =c,y =x,y =x 2,y =1x ,y=x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.(重点、难点)借助导数的定义求几个常用函数的导数,培养逻辑推理及数学运算的素养.1.几个常用函数的导数原函数 导函数 f(x)=c f′(x)=0 f(x)=x f ′(x)=1 f(x)=x 2f′(x)=2x f(x)=1xf′(x)=-1x2思考:根据上述四个公式,你能总结出函数y =x α的导数是什么吗? [提示] 若y =x α,则y′=αx α-1.2.基本初等函数的导数公式原函数 导函数 f(x)=c f′(x)=0 f(x)=x α(α∈Q *) f′(x)=αxα-1f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x f(x)=a xf′(x)=a xln_a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1xln a(a>0,且a≠1)f(x)=ln xf′(x)=1x1.函数f(x)=0的导数是( ) A .0 B .1 C .不存在D .不确定A [由基本初等函数的导数公式知(0)′=0,故选A .] 2.下列结论正确的个数为( ) ①f(x)=ln 2,则f′(x)=12;②g(x)=cos x,则g′⎝ ⎛⎭⎪⎫π6=-12; ③h(x)=2x,则h′(x)=2xln 2; ④φ(x)=log 5x,则φ′(x)=1xln 5. A .0 B .1 C .2D .3D [对①,f ′(x)=(ln 2)′=0;对②,g′(x)=-sin x,g′⎝ ⎛⎭⎪⎫π6=-sin π6=-12;对③,h′(x)=2x·ln 2;对④,φ′(x)=1xln 5.故选D .] 3.求下列函数的导数.(1)(2x)′=________;(2)(log 3 x)′=________;(3)(sin 30°)′=________;(4)⎝ ⎛⎭⎪⎫1x 4′=________. [答案] (1)2xln 2 (2)1xln 3 (3)0 (4)-4x5利用导数公式求函数的导数(1)y =x 12;(2)y =5x 3;(3)y =2sin x 2cos x 2;(4)y =log 12x ;(5)y =3x.[解] (1)y′=(x 12)′=12x12-1=12x 11.(2)y′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2.(3)∵y=2sin x 2cos x2=sin x,∴y′=cos x.(4)y′=(log 12x)′=1xln12=-1xln 2.(5)y′=(3x)′=3xln 3.用导数公式求函数导数的方法1若所求函数是基本初等函数,则直接利用公式求解. 2对于不能直接利用公式的类型,关键是将其进行合理转化为可以直接应用公式的基本函数的模式,如y =1x 4可以写成y =x -4,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.[跟进训练] 求下列函数的导数:(1)y =5x ;(2)y =-1x 5;(3)y =ln 3;(4)y =x x 3.[解] (1)y′=(5x)′=5xln 5. (2)y′=-(x -5)′=5x -6=5x 6.(3)y′=(ln 3)′=0. (4)∵y=x x 3,∴y=x 52,∴y′=⎝ ⎛⎭⎪⎫x 52′=52x 52-1=52x 32=5x x2.利用导数公式求曲线的切线方程【例2】 已知点P(-1,1),点Q(2,4)是曲线y =x 2上两点,求与直线PQ 平行的曲线y =x 2的切线方程. [思路点拨] 直线PQ 的斜率⇒所求切线的斜率⇒切点坐标⇒所求切线方程. [解] 因为y′=(x 2)′=2x,设切点为M(x 0,y 0),则y′|x=x 0=2x 0,又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ,所以k =2x 0=1,即x 0=12.所以切点为M ⎝ ⎛⎭⎪⎫12,14.所以所求切线方程为y -14=x -12,即4x -4y -1=0.1.本例中,是否存在与直线PQ 垂直的切线?若存在,求出切线方程,若不存在,说明理由.[解] 假设存在与直线PQ 垂直的切线,因为PQ 的斜率为k =4-12+1=1,所以与PQ 垂直的切线斜率k =-1, 设切点为(x 1,y 1), 则y′|x=x 1=2x 1,令2x 1=-1,则x 1=-12,y 1=14,切线方程为y -14=-⎝ ⎛⎭⎪⎫x +12,即4x +4y +1=0. 2.若本例中曲线改为y =ln x,试求与直线PQ 平行的切线方程. [解] 设切点为(a,b), 因为k PQ =1,则由f′(a)=1a=1,得a =1,故b =ln 1=0,则与直线PQ 平行的切线方程为y =x -1,即x -y -1=0.解决切线问题,关键是确定切点,要充分利用: 1切点处的导数是切线的斜率; 2切点在切线上;3切点又在曲线上这三个条件联立方程解决.1.利用常见函数的导数公式可以比较简便地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y =1-2sin 2 x 2的导数.因为y =1-2sin 2 x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.1.判断正误(1)(log 3π)′=1πln 3.( ) (2)若f(x)=1x,则f′(x)=ln x .( ) (3)因为(sin x)′=cos x,所以(sin π)′=cos π=-1.( )[答案] (1)× (2)× (3)×2.已知直线y =kx 是曲线y =ln x 的切线,则k =________. 1e [y′=(ln x)′=1x ,则1x =k. 所以x =1k ,所以y =k×1k=1.所以曲线y =ln x 过点1k ,1,即1=ln 1k ,所以k =1e.]3.曲线y =e x在点(0,1)处的切线方程为__________.x -y +1=0 [y′=e x,y′|x =0=e 0=1,故切线方程为y -1=x,即x -y +1=0.]4.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a,b,c 的值. [解] 因为y =ax 2+bx +c 过点(1,1), 所以a +b +c =1.y′=2ax +b,曲线在点(2,-1)的切线的斜率为4a +b =1. 又曲线过点(2,-1), 所以4a +2b +c =-1. 由⎩⎪⎨⎪⎧a +b +c =1,4a +b =1,4a +2b +c =-1,解得⎩⎪⎨⎪⎧a =3,b =-11,c =9.所以a,b,c 的值分别为3,-11,9.。
《几种常见函数的导数》教案完美版一、教学目标1. 理解导数的定义和几何意义。
2. 掌握几种常见函数的导数公式。
3. 会求函数在某一点的导数。
4. 能够运用导数解决实际问题,如运动物体的瞬时速度、加速度等。
二、教学重难点1. 重点:几种常见函数的导数公式。
2. 难点:导数的应用,如求函数在某一点的导数,解决实际问题。
三、教学方法1. 采用讲解法,引导学生理解导数的定义和几何意义。
2. 运用归纳法,让学生掌握几种常见函数的导数公式。
3. 利用例题讲解法,培养学生求函数在某一点的导数的能力。
4. 采用问题驱动法,激发学生运用导数解决实际问题的兴趣。
四、教学准备1. 课件:几种常见函数的导数公式及例题。
2. 练习题:巩固所学知识。
五、教学过程1. 导入:回顾导数的定义和几何意义。
2. 新课:讲解几种常见函数的导数公式,如常数函数、幂函数、指数函数、对数函数等。
3. 例题:求函数在某一点的导数,如f(x) = x^2,在x=1时的导数。
4. 练习:让学生独立完成练习题,巩固所学知识。
5. 拓展:运用导数解决实际问题,如求运动物体的瞬时速度、加速度等。
6. 小结:总结本节课的主要内容和知识点。
7. 作业:布置作业,让学生进一步巩固所学知识。
8. 课后反思:根据学生的课堂表现和作业情况,对教学进行总结和调整。
六、教学评价1. 评价目标:检查学生对导数定义和几何意义的理解,以及几种常见函数导数的掌握情况。
2. 评价方法:课堂问答、练习题、小组讨论。
3. 评价内容:a. 学生能否准确描述导数的定义和几何意义。
b. 学生是否能熟练运用几种常见函数的导数公式。
c. 学生是否能独立求出给定函数在某一点的导数。
d. 学生是否能运用导数解决实际问题。
七、教学反馈1. 课堂问答:通过提问,了解学生对导数概念和公式的理解程度。
2. 练习题:收集学生作业,分析其解答过程和结果,评估掌握情况。
3. 小组讨论:组织学生进行小组讨论,促进互动交流,提高解决问题的能力。
1、2、1《几个常用函数的导数》(导学案)班级_________ 组别_________姓名_________学习目标:(1)能够用定义求五个常见函数y c =、y x =、2y x =、1y x=,x y =的导数 能利用它们解决简单的问题;(2)通过本节的学习,巩固导数的定义求导数的方法;(3)利用导数的的几何意义解释函数的图象变化情况,利用物理意义解释物体运动状态;(4)在学习中体会模仿,转化,数形结合的数学思想和方法。
一、知识回顾:1、一般地,函数()x f y =在0x x =处的瞬时变化率x yx ∆∆→∆0lim =_叫做()x f y =在0x x =处的导数,记作()0'x f 。
当x 变化时,()x f '便是x 的一个函数,我们称它为()x f y =的导函数,即()x f '=________________________;2、导数的几何意义: ()x f y =在0x x =处的导数()0'x f 表示_______________________;3、练习:已知函数()22x x f =,则函数在x x ∆+≤≤11上的函数值的增量y ∆=_______,平均变化率为_________,在1=x 处的导数()1'f =__________,函数在点(1,2)处的切线方程为________;二、自主学习:1、求下列几个常用函数的导数()x f ':(1)()c x f = (c 为常数) (2)()x x f =(3)()2x x f = (4)()xx f 1=(5)x x f =)(2、阅读教材P 12-13,从导数的几何意义和物理意义的角度解释(1)(2)(3)三、问题探究:1、由函数()x x f =,()2x x f =,()1-=x x f 的导数,你能不能猜测出函数()3x x f y ==的导数?从而得出一般的结论是什么?探究结论:2、画出函数xy 1=的图象,根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程。
《几种常见函数的导数》教案完美版第一章:导数的基本概念1.1 引入导数的定义解释导数的概念,强调导数表示函数在某点的瞬时变化率。
通过图形和实际例子演示导数的意义。
1.2 导数的几何意义解释导数表示切线的斜率,通过图形展示导数与切线的关系。
强调导数与函数图像的切线有关,而不仅仅是函数值的变化。
1.3 导数的计算法则介绍导数的四则运算法则,包括加减乘除和复合函数的导数。
强调导数的计算法则在求导过程中的应用。
第二章:常数函数和幂函数的导数2.1 常数函数的导数证明常数函数的导数为0,强调常数函数的瞬时变化率为0。
2.2 幂函数的导数引入幂函数的导数公式,解释指数对导数的影响。
通过例子展示不同指数幂函数的导数计算方法。
2.3 指数函数和对数函数的导数引入指数函数的导数公式,解释指数函数的瞬时变化率。
引入对数函数的导数公式,解释对数函数的瞬时变化率。
第三章:三角函数的导数3.1 正弦函数的导数引入正弦函数的导数公式,解释正弦函数的瞬时变化率。
3.2 余弦函数的导数引入余弦函数的导数公式,解释余弦函数的瞬时变化率。
3.3 正切函数的导数引入正切函数的导数公式,解释正切函数的瞬时变化率。
第四章:反三角函数的导数4.1 反正弦函数的导数引入反正弦函数的导数公式,解释反正弦函数的瞬时变化率。
4.2 反余弦函数的导数引入反余弦函数的导数公式,解释反余弦函数的瞬时变化率。
4.3 反正切函数的导数引入反正切函数的导数公式,解释反正切函数的瞬时变化率。
第五章:复合函数的导数5.1 链式法则介绍链式法则,解释复合函数的导数计算方法。
5.2 反函数的导数引入反函数的导数概念,解释反函数的导数与原函数的关系。
5.3 复合函数的导数应用通过例子展示复合函数的导数在实际问题中的应用。
第六章:高阶导数6.1 导数的重复求导解释高阶导数的概念,即函数导数的导数。
演示如何求二阶、三阶等高阶导数。
6.2 求导法则在高阶导数中的应用强调高阶导数求导法则,如链式法则、乘积法则在高阶导数计算中的应用。
§1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)内容要求 1.能根据定义,求函数y=c,y=x,y=x2,y=1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数. 3.会使用导数公式表.知识点1几个常用函数的导数原函数导函数f(x)=c f′(x)=0f(x)=x f′(x)=1f(x)=x2f′(x)=2xf(x)=1x f′(x)=-1x2f(x)=x f′(x)=1 2x【预习评价】思考根据上述五个公式,你能总结出函数y=xα的导数是什么吗?提示y=xα的导数是y′=αxα-1.知识点2基本初等函数的导数公式原函数导函数f(x)=c f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x f′(x)=a x ln__a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1x ln a(a>0,且a≠1)f (x )=ln xf′(x )=1x求下列函数的导数:(1)f (x )=4x 5;(2)g (x )=cos π4;(3)h (x )=3x . 解 (1)f (x )=x 54,∴f ′(x )=54x 14; (2)g (x )=cos π4=22,∴g ′(x )=0; (3)h ′(x )=3x ln 3.题型一 利用导数定义求函数的导数【例1】 利用导数的定义求函数f (x )=2 019x 2的导数. 解 f ′(x )=0limx ∆→2 019(x +Δx )2-2 019x 2x +Δx -x=0lim x ∆→2 019[x 2+2x ·Δx +(Δx )2]-2 019x 2Δx=0lim x ∆→4 038x ·Δx +2 019(Δx )2Δx =0lim x ∆→(4 038x +2 019Δx )=4 038x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤.(2)当Δx 趋于0时,k ·Δx (k ∈R ),(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 【训练1】 利用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=0lim x ∆→(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=0lim x ∆→x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -bΔx=0lim x ∆→2x ·Δx +a ·Δx +(Δx )2Δx=0lim x ∆→ (2x +a +Δx )=2x +a .题型二 利用导数公式求函数的导数 【例2】 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3; (5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4; (4)y ′=(4x3)′=(x 34)′=34x -14=344x; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较烦琐;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【训练2】 求下列函数的导数: (1)y =x 13; (2)y =4x ; (3)y =sin x ; (4)y =15x 2.解 (1)y ′=(x 13)′=13x 13-1=13x 12; (2)y ′=(4x )′=(x 14)′=14x 14-1=14x -34;(3)y ′=(sin x )′=cos x ; (4)y ′=(15x 2)′=(x -25)′=-25x -25-1=-25x -75.方向1 利用导数求曲线的切线方程【例3-1】 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与在这点处的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23(x -π6),即2x +3y -32-π3=0. 方向2 切线方程的综合应用【例3-2】 设P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 解 如图,设l 是与直线y =x 平行,且与曲线y =e x 相切的直线,则切点到直线y =x 的距离最小.设与直线y =x 平行的直线l 与曲线y =e x 相切于点P (x 0,y 0). 因为y ′=e x ,所以e x 0=1,所以x 0=0. 代入y =e x ,得y 0=1,所以P (0,1). 所以点P 到直线y =x 的最小距离为|0-1|2=22. 规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.【训练3】 (1)求曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程;(2)求曲线y =sin ⎝ ⎛⎭⎪⎫π2-x 在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线方程.解 (1)∵y =cos x ,∴y ′=-sin x ,y ′|x =π6=-sin π6=-12.∴曲线在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即6x +12y -63-π=0. (2)∵sin ⎝ ⎛⎭⎪⎫π2-x =cos x ,∴y ′=(cos x )′=-sin x .∴曲线在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线的斜率为k =-sin ⎝ ⎛⎭⎪⎫-π3=32.∴切线方程为y -12=32⎝ ⎛⎭⎪⎫x +π3,即33x -6y +3π+3=0.课堂达标1.已知f (x )=x 2,则f ′(3)等于( ) A.0B.2xC.6D.9解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 答案 C2.函数f (x )=x ,则f ′(3)等于( ) A.36B.0C.12xD.32解析 ∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.答案 A3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角α的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B.[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 解析 ∵(sin x )′=cos x ,∴k l =cos x ,∴-1≤tan α≤1,又∵α∈[0,π), ∴α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×|-e 2|=12e 2. 答案 12e 25.已知f(x)=52x2,g(x)=x3,若f′(x)-g′(x)=-2,则x=________.解析因为f′(x)=5x,g′(x)=3x2,所以5x-3x2=-2,解得x1=-13,x2=2.答案-13或2课堂小结1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin 2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.基础过关1.函数y=3x在x=2处的导数为()A.9B.6C.9ln 3D.6ln 3解析y′=(3x)′=3x ln 3,故所求导数为9ln 3.答案 C2.下列结论中,不正确的是()A.若y=1x3,则y′=-3x4B.若y=3x,则y′=3x3C.若y=1x2,则y′=-2x-3D.若f(x)=3x,则f′(1)=3 解析由(x n)′=nx n-1知,选项A,y=1x3=x-3,则y′=-3x-4=-3x4;选项B ,y =3x =x 13,则y ′=13x -23≠3x3;选项C ,y =1x 2=x -2,则y ′=-2x -3; 选项D ,由f (x )=3x 知f ′(x )=3, ∴f ′(1)=3.∴选项A ,C ,D 正确.故选B. 答案 B3.已知f (x )=cos x ,f ′(x )=-1,则x 等于( ) A.π2B.-π2C.π2+2k π,k ∈ZD.-π2+2k π,k ∈Z解析 ∵f ′(x )=-sin x ,则sin x =1, ∴x =π2+2k π,k ∈Z . 答案 C4. 曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +15.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 解析∵y =x -12,∴y ′=-12x -32,∴曲线在点(a ,a -12)处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 答案 646.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1. 由f ′(x )+g ′(x )≤0, 得-sin x +1≤0, 即sin x ≥1, 但sin x ∈[-1,1],∴sin x =1,∴x =2k π+π2,k ∈Z .7.求下列函数的导数:(1)y =5x 3;(2)y =1x 4;(3)y =-2sin x 2(1-2cos 2x 4);(4)y =log 2x 2-log 2x .解 (1)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2. (2)y ′=⎝⎛⎭⎫1x 4′=(x -4)=-4x -4-1=-4x -5=-4x 5. (3)∵y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4 =2sin x 2⎝⎛⎭⎫2cos 2x 4-1=2sin x 2cos x2=sin x , ∴y ′=(sin x )′=cos x .(4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2. 能力提升8.函数f (x )=x 3的斜率等于1的切线有( ) A.1条 B.2条 C.3条D.不确定解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处分别有斜率为1的切线.答案 B9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B.-1e C.-eD.e解析y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0,y 0=e x0,k =e x 0,∴e x 0=e x 0·x 0,∴x 0=1,∴k =e. 答案 D10.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 解析 ∵y ′=1x ,∴y ′|x =a =1a =1. ∴a =1. 答案 111.若y =10x ,则y ′|x =1=________. 解析 y ′=10x ln 10,∴y ′|x =1=10ln 10. 答案 10ln 1012.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =⎪⎪⎪⎪⎪⎪12-14-22=728, 所以抛物线上的点到直线x -y -2=0的最短距离为728.创新突破13.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,试求f 2 019(x ). 解 ∵f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,∴f n +4(x )=f n (x ),可知f (x )的周期为4,∴f 2 019(x )=f 3(x )=-cos x .。
2019-2020年高二数学选修2-2几种常见函数的导数教案新课标人教版教学目的使学生应用由定义求导数的三个步骤推导四种常见函数的导数公式,掌握并能运用这四个公式正确求函数的导数.教学重点和难点掌握并熟记四种常见函数的求导公式是本节的重点.正整数幂函数及正、余弦函数的导数公式的推导是本节难点.教学过程一、复习提问1.按定义求导数有哪几个步骤?2.用导数的定义求下列各函数的导数:(1)y=x5;(2)y=c.二、新课1.引言:由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,本节课根据导数定义先来证明几个常见函数的导数公式.2.几个常见函数的导数公式.(1)设y=c(常数),则y'=0.此公式前面已证.下面我们还可以用几何图象对公式加以说明(图2-6).因为y=c的图象是平行于x轴的直线,其上任一点的切线即为直线本身,所以切线的斜率都是0.此公式可叙述成“常数函数的导数为零”.(2)(x n)'=nx n-1(n为正整数).“正整数幂函数的导数等于幂指数n与自变量的(n-1)次幂的乘积”.(3)(sinx)'=cosx.证明:y=f(x)=sinx,在学生推导过程中,教师要步步追问根据及思路.如:此公式可叙述成“正弦函数的导数等于余弦函数”.(4)(cosx)'=-sinx.此公式证明由学生仿照公式(3)独立证明.此公式可叙述成“余弦函数的导数等于正弦函数前面添一个负号”.三、练习(课文练习)四、小结四种常见函数的导数公式1.(c)'=0(c为常数),2.(x n)'=nx n-1,3.(sinx)'=cosx, 4.(cosx)'=-sinx.五、布置作业。
§3.2.1几个常用函数导数1.通过阅读P83用心记忆基本初等函数的导数公式;(重点)2.通过阅读P83例1、例2,学会利用公式,会求一些函数的导数;(重点)3.通过老师讲解例3,会求曲线)(x f y =上点()(,00x f x )处的切线 的斜率及切线方程;(难点):曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为复习2:求函数)(x f y =的导数的一般方法:(1)求函数的改变量y ∆= (2)求平均变化率yx∆=∆ (2)(3)取极限,得导数/y =()f x '=xyx ∆∆→∆0lim=二、学习新课环节一:函数()y f x c ==的导数.(针对目标一) 问题:如何求函数()y f x c ==的导数 学生分组分析归纳得出:0y '=表示函数y c =图象上每一点处的切线斜率为 .若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.试一试: 求函数()y f x x ==的导数学生分组分析归纳得出:1y '=表示函数y x =图象上每一点处的切线斜率为 .若y x =表示路程关于时间的函数,则y '= ,可以解释为 环节二:函数()y f x cx ==的导数.(针对目标一)问题:如何求在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.学生分组分析归纳得出(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关?环节三: 典型例题(针对目标二、三) 例1 求函数1()y f x x==的导数变式: 求函数2()y f x x ==的导数学生分组分析老师带领学生归纳得出:利用定义求导数是最基本的方法,必须熟记求导数的三个步骤:作差,求商,取极限.例2 画出函数1y x=的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.变式1:求出曲线在点(1,2)处的切线方程.变式2:求过曲线上点(1,1)且与过这点的切线垂直的直线方程.学生分组分析老师带领学生归纳得出:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的. 动手试试练1. 求曲线221y x =-的斜率等于4的切线方程. 三、学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.当堂检测(时量:5分钟 满分:10分)计分:1.()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定2.已知2()f x x =,则(3)f '=( ) A .0 B .2x C .6 D .93. 在曲线2y x =上的切线的倾斜角为4π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)244. 过曲线1y x=上点(1,1)且与过这点的切线平行的直线方程是5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 .课后作业1. 已知圆面积2S r π=,根据导数定义求()S r '.2.《世纪金榜》P57类型二的典例、P58易错案例的典例§3.2.2基本初等函数的导数公式及导数的运算法则学习目标1.通过阅读P84两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;(重点)2.通过阅读P84两个函数的积(或商)的导数法则,学会用法则求一些函数的导数.(难点):0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=; ()ln (0)x x a a a a '=>;()x x e e '=;1()(0,ln log ax a x a'=>且1)a ≠;1(ln )x x '=.复习2:根据常见函数的导数公式计算下列导数(1)6y x = (2)y (3)21y x =(4)(或差)积商的导数(针对目标一)新知:[()()]()()f x g x f x g x '''±=± [()()]()()()()f x g x f x g x f x g x '''=+2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 问题:根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.学生分组分析归纳得出:函数在某点处导数的大小表示函数在此点附近变化的快慢. 环节二:典型例题(针对目标二) 例1. 求下列函数的导数:(1)2log y x =; (2)2x y e =;(3)522354y x x x =-+-; (4)3cos 4sin y x x =-.例2. 求下列函数的导数:(1)32log y x x =+;(2)n xy x e =;(3)31sin x y x-=学生分组分析归纳得出:一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.三、学习小结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误. 当堂检测(时量:5分钟 满分:10分)计分:1. 函数1y x x =+的导数是( )A .211x -B .11x -C .211x +D .11x+2. 函数sin (cos 1)y x x =+的导数是( )A .cos 2cos x x -B .cos 2sin x x +C .cos 2cos x x +D .2cos cos x x +3. cos xy x =的导数是( ) A .2sin x x - B .sin x - C .2sin cos x x xx +- D .2cos cos x x x x +-4. 函数2()138f x x =-,且0()4f x '=,则0x =5.曲线sin xy x=在点(,0)M π处的切线方程为课后作业1. 求描述气球膨胀状态的函数()r V =. 2. 已知函数ln y x x =. (1)求这个函数的导数;(2)求这个函数在点1x =处的切线方程.3.《世纪金榜》P60类型二的典例;P61易错案例的典例§3.3.1函数的单调性与导数学习目标1.通过阅读课本的P89感知函数的单调性的原理的形成过程,会利用导数判断函数的单调性;(重点)2.通过课本P91例题的讲解,总结出利用导数判断函数单调性的方法(难点).对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有= ,那么函数f (x )就是区间I 上的 函数.复习2: 'C = ;()'n x = ;(sin )'x = ;(cos )'x = ;(ln )'x = ;(log )'a x = ; ()'x e = ; ()'x a = ;二、学习新课环节一:函数的导数与函数的单调性的关系(针对目标一)问题:我们知道,曲线()y f x =的切线的斜率就是函数()y f x =的导数.从函数342+-=x x y 的图像来观察其关系:在区间(2,∞+)内,切线的斜率为 ,函数()y f x =的值随着x 的增大而 ,即0y '>时,函数()y f x =在区间(2,∞+)内为函数;在区间(∞-,2)内,切线的斜率为 ,函数()y f x =的值随着x 的增大而 ,即/y <0时,函数()y f x =在区间(∞-,2)内为 函数.学生分组分析归纳得出:一般地,设函数()y f x =在某个区间内有导数,如果在这个区间内0y '>,那么函数()y f x =在这个区间内的增函数;如果在这个区间内0y '<,那么函数()y f x =在这个区间内的减函数.环节二:典型例题(针对目标一、二)例1.判断下列函数的的单调性,并求出单调区间: (1)3()3f x x x =+; (2)2()23f x x x =--;(3)()sin ,(0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+.学生分组分析归纳得出:用导数求函数单调区间的三个步骤:①求函数f (x )的导数()f x '.②令()0f x '>解不等式,得x 的范围就是递增区间. ③令()0f x '<解不等式,得x 的范围就是递减区间.例2. 已知导函数的下列信息: 当14x <<时,()0f x '>;当4x >,或1x <时,()0f x '<;当4x =,或1x =时,()0f x '=. 试画出函数()f x 图象的大致形状.变式:函数()y f x =的图象如图所示,试画出导函数()f x '图象的大致形状.练1 如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图象.学生分组分析归纳得出:一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些. 如图,函数()y f x =在(0,)b 或(,0)a 内的图象“陡峭”,在(,)b +∞或(,)a -∞内的图象“平缓”.三、学习小结用导数求函数单调区间的步骤:①求函数f (x )的定义域;②求函数f (x )的导数()f x '.③令()0f x '=,求出全部导数等零的点;④导数等零的点把定义域分成几个区间,列表考查在这几个区间内()f x '的符号,由此确定()f x 的单调区间注意:列表时,要注意将定义域的“断点”要单独作为一列考虑.当堂检测(时量:5分钟 满分:10分)计分:1. 若32()(0)f x ax bx cx d a =+++>为增函数,则一定有( )A .240b ac -<B .230b ac -<C .240b ac ->D .230b ac -> 2. (2004全国)函数cos sin y x x x =-在下面哪个区间内是增函数( )A .3(,)22ππB .(,2)ππC .35(,)22ππD .(2,3)ππ3. 若在区间(,)a b 内有()0f x '>,且()0f a ≥,则在(,)a b 内有( )A .()0f x >B .()0f x <C .()0f x =D .不能确定 4.函数3()f x x x =-的增区间是 ,减区间是 5.已知2()2(1)f x x xf '=+,则(0)f '等于 课后作业1. 判断下列函数的的单调性,并求出单调区间:(1)32()f x x x x =+-;(2)3()3f x x x =+;(3)()cos ,(0,)2f x x x x π=+∈.2. 《世纪金榜》P62类型二的典例;P64易错案例的典例§3.3.2函数的极值与导数 学习目标 1.理解极大值、极小值的概念 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤.y=f(x) 在某个区间内有导数,如果在这个区间内0y '>,那么函数y=f(x) 在这个区间内为 函数;如果在这个区间内0y '<,那么函数y=f(x) 在为这个区间内的 函数.复习2:用导数求函数单调区间的步骤:①求函数f (x )的导数()f x '. ②令 解不等式,得x 的范围就是递增区间.③令 解不等式,得x 的范围,就是递减区间 . 二、新课导学 ※ 学习探究 探究任务一:问题1:如下图,函数()y f x =在,,,,,,,a b c d e f g h 等点的函数值与这些点附近的函数值有什么关系?()yf x =在这些点的导数值是多少?在这些点附近,()y f x =的导数的符号有什么规律?看出,函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其它点的函数值都 ,()f a '= ;且在点x a =附近的左侧()f x ' 0,右侧()f x ' 0. 类似地,函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其它点的函数值都 ,()f b '= ;而且在点x b =附近的左侧()f x ' 0,右侧()f x ' 0. 新知:我们把点a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;点b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.极值反映了函数在某一点附近的 ,刻画的是函数的 . 试试:(1)函数的极值 (填是,不是)唯一的. (2) 一个函数的极大值是否一定大于极小值.(3)函数的极值点一定出现在区间的 (内,外)部,区间的端点 (能,不能)成为极值点.总结:极值点与导数为0的点的关系:导数为0的点是否一定是极值点. 比如:函数3()f x x =在x=0处的导数为 ,但它(是或不是)极值点. 即:导数为0是点为极值点的 条件. ※ 典型例题例1 求函数31443y x x =-+的极值.变式1:已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(1,0),(2,0),如图所示,求 (1) 0x的值(2)a ,b ,c 的值.小结:求可导函数f (x )的极值的步骤:(1)确定函数的定义域;(2)求导数f ′(x );(3)求方程f ′(x )=0的根(4)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值.变式2:已知函数32()3911f x x x x =--+. (1)写出函数的递减区间;(2)讨论函数的极大值和极小值,如有,试写出极值;(3)画出它的大致图象.※ 动手试试练1. 求下列函数的极值: (1)2()62f x x x =--;(2)3()27f x x x =-;(3)3()612f x x x =+-;(4)3()3f x x x =-.练2. 下图是导函数()y f x '=的图象,试找出函数()y f x =的极值点,并指出哪些是极大值点,哪些是极小值点.三、总结提升 ※ 学习小结1. 求可导函数f (x )的极值的步骤;2. 由导函数图象画出原函数图象;由原函数图象画导函数图象. ※ 知识拓展函数在某点处不可导,但有可能是该函数的极值点.由些可见:“有极值但不一定可导” ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数232y x x =--的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大C .既有极大值又有极小值D .既无极大值也极小值2. 三次函数当1x =时,有极大值4;当3x =时,有极小值0,且函数过原点,则此函数是( )A .3269y x x x =++B .3269y x x x =-+C .3269y x x x =--D .3269y x x x =+- 3. 函数322()f x x ax bx a =--+在1x =时有极值10,则a 、b 的值为( )A .3,3a b ==-或4,11a b =-=B .4,1a b =-=或4,11a b =-=C .1,5a b =-=D .以上都不正确4. 函数32()39f x x ax x =++-在3x =-时有极值10,则a 的值为5. 函数32()3(0)f x x ax a a =-+>的极大值为正数,极小值为负数,则a 的取值范围为课后作业1. 如图是导函数()y f x '=的图象,在标记的点中,在哪一点处(1)导函数()y f x '=有极大值?(2)导函数()y f x '=有极小值?(3)函数()y f x =有极大值?(4)导函数()y f x =有极小值?2. 求下列函数的极值:(1)2()62f x x x =++;(2)3()48f x x x =-.§3.3.3函数的最大(小)值与导数 学习目标⒈理解函数的最大值和最小值的概念; ⒉掌握用导数求函数最值的方法和步骤.复习1:若0满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 点,)(0x f 是极 值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的 点,)(0x f 是极 值复习2:已知函数32()(0)f x ax bx cx a =++≠在1x =±时取得极值,且(1)1f =-,(1)试求常数a 、b 、c 的值;(2)试判断1x =±时函数有极大值还是极小值,并说明理由.二、新课导学 ※ 学习探究探究任务一:函数的最大(小)值问题:观察在闭区间[]b a ,上的函数)(x f 的图象,你能找出它的极大(小)值吗?最大值,最小值呢?在图1中,在闭区间[]b a ,上的最大值是 ,最小值是 ;在图2中,在闭区间[]b a ,上的极大值是 ,极小值是 ;最大值是 ,最小值是 .新知:一般地,在闭区间[]b a ,上连续的函数)(x f 在[]ba ,上必有最大值与最小值. 试试:上图的极大值点 ,为极小值点为 ; 最大值为 ,最小值为 .图1 图2反思:1.函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.2.函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的 条件3.函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,可能一个没有.※ 典型例题例1 求函数31()443f x x x =-+在[0,3]上的最大值与最小值.小结:求最值的步骤(1)求()f x 的极值;(2)比较极值与区间端点值,其中最大的值为最大值,最小的值为最小值.例2 已知23()log x ax b f x x++=,x ∈(0,+∞).是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f 在(0,1)上是减函数,在[1,)+∞上是增函数;(2))(x f 的最小值是1; 若存在,求出a b 、,若不存在,说明理由.变式:设213a <<,函数323()2f x x ax b =-+在区间[1,1]-上的最大值为1,最小值为,求函数的解析式.小结:本题属于逆向探究题型.解这类问题的基本方法是待定系数法,从逆向思维出发,实现由已知向未知的转化,转化过程中通过列表,直观形象,最终落脚在比较极值点与端点值大小上,从而解决问题.※ 动手试试练1. 求函数3()3,[1,2]f x x x x =-∈的最值.练2. 已知函数32()26f x x x a =-+在[2,2]-上有最小值37-.(1)求实数a 的值;(2)求()f x 在[2,2]-上的最大值.三、总结提升※ 学习小结设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.※ 知识拓展利用导数法求最值,实质是在比较某些函数值来得到最值,因些我们可以在导数法求极值的思路的基础上进行变通.令()0f x '=得到方程的根1x ,2x , ,直接求得函数值,然后去与端点的函数值比较就可以了,省略了判断极值的过程.当然导数法与函数的单调性结合,也※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若函数3()3f x x x a =--在区间[0,3]上的最大值、最小值分别为M 、N ,则M N -的值为( )A .2B .4C .18D .202. 函数32()3(1)f x x x x =-< ( )A .有最大值但无最小值B .有最大值也有最小值C .无最大值也无最小值D .无最大值但有最小值3. 已知函数223y x x =--+在区间[,2]a 上的最大值为154,则a 等于( ) A .32- B .12 C .12- D .12或32-4. 函数y x =-[0,4]上的最大值为5. 已知32()26f x x x m =-+(m 为常数)在[2,2]-上有最大值,那么此函数在[2,2]-上的最小值是1. a为常数,求函数3=-+≤≤的最大值.f x x ax x()3(01)2. 已知函数32()39=-+++,(1)求()f x x x x a-上f x的单调区间;(2)若()f x在区间[2,2]的最大值为20,求它在该区间上的最小值.。
几个常用函数的导数(教案)章节一:导数的基本概念1.1 引入:解释导数的定义强调导数的重要性1.2 导数的定义:引入极限的概念解释导数的定义:函数在某一点的导数是其在该点的切线斜率1.3 导数的计算:强调导数的计算方法介绍导数的计算规则章节二:常数函数的导数2.1 常数函数的导数:解释常数函数的导数是0通过实例进行验证章节三:幂函数的导数3.1 幂函数的导数:引入幂函数的概念解释幂函数的导数规则3.2 幂函数的导数计算:强调幂函数的导数计算方法通过实例进行计算和验证章节四:指数函数的导数4.1 指数函数的导数:引入指数函数的概念解释指数函数的导数是它本身的导数4.2 指数函数的导数计算:强调指数函数的导数计算方法通过实例进行计算和验证章节五:对数函数的导数5.1 对数函数的导数:引入对数函数的概念解释对数函数的导数是它本身的导数5.2 对数函数的导数计算:强调对数函数的导数计算方法通过实例进行计算和验证强调学生需要掌握的导数概念和计算方法几个常用函数的导数(教案)章节六:三角函数的导数6.1 三角函数的导数:引入三角函数的概念解释三角函数的导数规则6.2 三角函数的导数计算:强调三角函数的导数计算方法通过实例进行计算和验证章节七:反三角函数的导数7.1 反三角函数的导数:引入反三角函数的概念解释反三角函数的导数规则7.2 反三角函数的导数计算:强调反三角函数的导数计算方法通过实例进行计算和验证章节八:复合函数的导数8.1 复合函数的导数:引入复合函数的概念解释复合函数的导数规则8.2 复合函数的导数计算:强调复合函数的导数计算方法通过实例进行计算和验证章节九:高阶导数9.1 高阶导数的概念:解释高阶导数的定义强调高阶导数的重要性9.2 高阶导数的计算:介绍高阶导数的计算方法通过实例进行计算和验证回顾整个教案的重点内容强调学生需要掌握的导数概念和计算方法10.2 练习:提供一些相关的习题供学生练习鼓励学生进行自主学习和思考参考资料:提供一些参考资料供学生进一步学习鼓励学生进行深入研究和探索对教案的一些补充和说明强调学生需要积极参与课堂讨论和实践活动重点和难点解析章节一:导数的基本概念补充和说明:引导学生通过图形直观理解导数表示的是函数在某一点的切线斜率,而非曲线本身的信息。
3.2.1几个常用函数导数
教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式;
2、能利用导数公式求简单函数的导数。
教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 教学过程:
【合作探究】
探究任务一:函数()y f x c ==的导数.
问题:如何求函数()y f x c ==的导数?
新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.
试试:求函数()y f x x ==的导数
反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .
若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数
定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?
(3)函数(0)y kx k =≠增(减)的快慢与什么有关?
【典型例题】
1.函数()y f x c ==的导数
根据导数定义,因为()()0y f x x f x c c x x x
∆+∆--===∆∆∆ 所以00
lim lim 00x x y y x ∆→∆→∆'===∆ 函数 导数
y c = 0y '=
0y '=表示函数y c =图像上每一点处的切线的斜率都为0.
若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数()y f x x ==的导数
因为()()1y f x x f x x x x x x x
∆+∆-+∆-===∆∆∆ 所以00
lim lim11x x y y x ∆→∆→∆'===∆ 函数 导数
y x = 1y '=
1y '=表示函数y x =图像上每一点处的切线的斜率都为1.
若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.
3.函数2
()y f x x ==的导数 因为22()()()y f x x f x x x x x x x
∆+∆-+∆-==∆∆∆ 222
2()2x x x x x x x x
+∆+∆-==+∆∆ 所以00
lim lim(2)2x x y y x x x x ∆→∆→∆'==+∆=∆ 函数 导数
2y x = 2y x '=
2y x '=表示函数2y x =图像上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x
=增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速
运动,它在时刻x 的瞬时速度为2x .
4.函数1()y f x x
==的导数 因为11()()y f x x f x x x x x x x
-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x
-+∆==-+∆∆+⋅∆ 所以220011lim lim()x x y y x x x x x
∆→∆→∆'==-=-∆+⋅∆ 函数 导数
1y x =
21y x '=- 5.函数y x =
6.推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'=
【反思总结】
1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .
2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.
【当堂检测】
1.()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
2.已知2()f x x =,则(3)f '=( )
A .0
B .2x
C .6
D .9
3. 在曲线2y x =上的切线的倾斜角为
4
π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24
4. 过曲线1y x
=上点(1,1)且与过这点的切线平行的直线方程是 5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 .
【板书设计】 1.函数()y f x c ==的导数 3.函数2()y f x x ==的导数 5.函数y x =
2.函数()y f x x ==的导数 4.函数1()y f x x
==的导数 6.推广:
【课后作业】P82 探讨。