中科大信息光学CHAP10
- 格式:pdf
- 大小:3.77 MB
- 文档页数:48
第一章 习题解答1.1 已知不变线性系统的输入为 ()()x x g c o mb= 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
第十章光学三维传感光学三维传感就是指用光学的手段获得物体三维空间信息的方法和技术,目前主要是指获得物体表面三维空间信息的方法和技术。
随着计算机技术、信息技术的迅速发展,极大的改变了传统的光学计量技术。
光学计量初期所采用的感光胶片记录方式已为固态摄象机技术所取代,高性能的微型计算机和图象处理系统使光学图象的计算机辅助分析技术迅速发展,这些信息获取和处理技术上的进步又给光学传感和计量方法上的革新和发展以新的活力,新的三维传感和计量方法不断涌现。
为此,国际光学学会1994年以信息光学的前沿为主题的年会上,首次将光学三维传感列为信息光学前沿七个主要领域和方向之一。
光学三维传感在机器视觉、实物仿形、工业检测、生物医学、影视特技、虚拟现实等领域,具有重要意义和广阔应用前景。
相信看过电影《侏罗纪公园》的人一定会对影片中那活灵活现的大恐龙感到疑惑,对片中大恐龙穿墙过壁、以假乱真的场面记忆犹新,这种影视特技到底是怎么做出来的呢?这就是三维传感技术的魅力。
在《侏罗纪公园》的特技制作中,技术人员先雕刻好一个恐龙的模型,然后用光学三维传感方法得到恐龙的三维彩色数字模型,再用三维动画软件使其做出各种动作,并完成与背景、人物的合成,最后才形成我们看到的惊心动魄场面。
获取三维面形信息的基本方法可以分为两大类:被动三维传感和主动三维传感。
被动三维传感采用非结构照明方式,从一个或多个摄像系统获取的二维图像中确定距离信息,形成三维面形数据。
从一个摄像系统获取的二维图像中确定距离信息时,人们必须依赖对于物体形态、光照条件等的先验知识。
如果这些知识不完整,对距离的计算可能产生错误。
从两个或多个摄像系统获取的不同视觉方向的二维图像中,通过相关或匹配等运算可以重建物体的三维面形。
双摄像机的传感系统如图10.1所示,它与人眼双目立体视觉的原理相似。
从两个多个摄像系统获取的不同视觉方向的二维图像中确定距离信息,常常要求大量的数据运算。
当被测目标的结构信息过分简单或过分复杂,以及被测目标上各点反射率没有明显差异时,这种计算变得更加困难。
信息光学复习提纲信息光学的特点Ch1. 线性系统分析1.矩形函数:①定义②图像③作用④傅里叶变换谱函数2.sinc函数:①定义②图像③作用④傅里叶变换谱函数3.三角函数:①定义②图像③作用④傅里叶变换谱函数4.符号函数:①定义②图像③作用④傅里叶变换谱函数5.阶跃函数:①定义②图像③作用④傅里叶变换谱函数6.余弦函数:①定义②图像③作用④傅里叶变换谱函数7. 函数:①三种定义②四大性质③作用8.梳状函数:①定义②图像③作用④傅里叶变换谱函数9.高斯函数:①定义②图像③作用④傅里叶变换谱函数10.傅里叶变换(常用傅里叶变换对)11.卷积:四大步骤,两大效应12.互相关、自相关的定义、物理意义13.傅里叶变换的基本性质和有关定理14.线性系统理论15.线性不变系统的输入输出关系,脉冲响应函数,传递函数16.抽样定理求抽样间隔Ch2. 标量衍射理论1. 标量衍射理论成立的两大条件2.平面波及球面波表达式:exp[(cos cos cos )]A ik x y z αβγ++(求平面波的空间频率))](2exp[]exp[22y x zik ikz z A + 3.惠更斯——菲涅耳原理:()⎰⎰∑=dsrikr K P U cQ U )exp()()(0θ 4.基尔霍夫衍射理论: ⎰⎰∑-=dsrikr r n r n r ikr a j Q U )exp(]2),cos(2),cos([)exp(1)(0000λ令()()θλK rikr j Q P h )exp(1,=所以()⎰⎰∑=ds Q P hP UQ U ,)()(0当光源足够远,且入射光在孔径平面上各点的入射角都不大时,(),1,cos 0≈r n(),1,cos ≈r n ().1≈∴θK故()z ikr j Q P h )exp(1,λ=,]})()[(211{20020zy y z x x z r -+-+≈ 5. 菲涅耳衍射——近场衍射:0000202000022)](2exp[)](2exp[),()](2exp[)exp(),(dy dx yy xx zj y x z jk y x U y x zjkz j jkz y x U +-++=⎰⎰∞∞-λπλ6. 夫琅禾费衍射——远场衍射:(根据屏函数求衍射光强分布)000000022)](2exp[),()](2exp[)exp(),(dy dx yy xx zj y x U y x zjkz j jkz y x U +-+=⎰⎰∞∞-λπλ 7.衍射的角谱理论:(角谱的传播,求角谱分布)Ch.3 光学成像系统的频率特性1.透镜的傅里叶变换性质: ①相位变换作用:)](2exp[),(),(22y x f jky x p y x t +-=(二次位相因子)②透镜的傅里叶变换特性:(满足条件?什么情况下实现准确傅立叶变换) a. 物在透镜前b.物在透镜后 2. 衍射受限系统的点扩散函数:⎰⎰∞∞--+--=--yd x d y y y x x x j y d x d P d K y y x x h i i i i ii i ~~]}~)~(~)~[(2exp{)~,~()~,~(002200πλλλ 光瞳相对于i d λ足够大时,理想情况:点物成点像)~,~()~,~(22o i o i i o i o i y y x x d K y y x x h --≅--δλ3. 相干照明下衍射受限系统的成像规律:),(),(~),(i i g i i i i i y x U y x h y x U *=其中,)]~,~([),(~y d x d P F y x h i i i i λλ=,),(1),(0My M x U M y x U i i i i g =4.衍射受限系统的相干传递函数(CTF ):()()ηλξληξi i d d P H ,,=(坐标轴反演)5. 截止频率:圆形光瞳:o c oc i c d DM d D λρρλρ2,2=== 正方形光瞳:不同方向的截止频率不同,45度时最大)22max ic d aλρ= 6. 衍射受限系统的非相干传递函数(OTF ) 7. OTF 与CTF 的关系Ch.4 光学全息1. 普通照相与全息照相的比较2. 全息照相的核心:波前记录和再现①方法:干涉法(标准方法,即将空间相位调制→空间强度调制) ②特点:全息图实际上就是一幅干涉图 ③全息图的分类:a 。
光信息处理(信息光学)复习提纲第一章线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?6.线性系统的定义7.线性系统的脉冲响应的表示式及其作用8.何谓线性不变系统9.卷积的物理意义10.线性不变系统的传递函数及其意义11.线性不变系统的本征函数第二章标量衍射理论1.衍射的定义2.惠更斯-菲涅耳原理3.衍射的基尔霍夫公式及其线性表示4.菲涅耳衍射公式及其近似条件5.菲涅耳衍射与傅立叶变换的关系6.会聚球面波照明下的菲涅耳衍射7.夫琅和费衍射公式8.夫琅和费衍射的条件及范围9.夫琅和费衍射与傅立叶变换的关系10.矩形孔的夫琅和费衍射11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数13.透镜焦距的判别14.物体位于透镜各个部位的变换作用15.几种典型的傅立叶变换光路第三章光学成象系统的传递函数1.透镜的脉冲响应2.相干传递函数与光瞳函数的关系3.会求几种光瞳的截止频率4.强度脉冲响应的定义5.非相干照明系统的物象关系6.光学传递函数的公式及求解方法7.会求几种情况的光学传递函数及截止频率第五章光学全息1.试列出全息照相与普通照相的区别2.简述全息照相的基本原理3.试画出拍摄三维全息的光路图4.基元全息图的分类5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么7.如何检测全息系统是否合格8.全息照相的基本公式9.全息中的物像公式及解题(重点)复 习第一章 线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?时间量 空间量22v T πωπ==22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期λ-----空间周期物理意义:由图1.7.3知:(设光在z x ,平面内传播,0=y )cos xd λα=, 又 ∵ 1x xf d =联立得:cos x f αλ=讨论:① 当090,,<γβα时0,,>z y x f f f ,表示k沿正方向传播;②标量性,当α↗时,αcos ↘→x f ↘→x d ↗ 当α↘时,αcos ↗→x f ↗→x d ↘ ③标量性与矢量性的联系条纹密x d ↘→x f ↗→α↘→θ↗x x f d 1=λαcos =x f 条纹疏x d ↗→x f ↘→α↗→θ↘2.空间频率分量的定义及表达式?{}γβαcos ,cos ,cos k k ={}z y x r ,,=)cos cos cos (γβαz y x k r k ++=⋅代入复振幅表达式:()()()[]γβαμcos cos cos ex p ,,,,0z y x jk z y x z y x U ++=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x z y ++=λπμ2ex p ,,0式中:λαcos =x f ,λβcos =yf ,λγcos =z f3.平面波的表达式和球面波的表达式?平面波()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0球面波()1,,jkr aU x y z e γ=()21212212121221⎪⎪⎭⎫ ⎝⎛++=++=z y x z z y x r近轴时()1,,U x y z ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛++=1221021exp z y x jkz r a()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jk jkz z a ⎪⎪⎭⎫ ⎝⎛+=12202exp z y x jkU若球面波中心不在坐标原点,上式改为:()1,,U x y z ()()⎥⎥⎦⎤⎢⎢⎣⎡++-=1202002exp z y y x x jkU4.相干照明下物函数复振幅的表示式及物理意义?设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),exp 2x yxyxyf x y F f f j f x f y df dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同()x y x y F f f df df 方向不同()cos ,cos xyf f αλβλ==的平面波相干迭加而成。