电磁感应中的能量关系正式版
- 格式:pptx
- 大小:198.06 KB
- 文档页数:15
电磁感应中的能量关系1、如图所示,竖直面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则()A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率2、如图所示,在水平绝缘平面上固定足够长的平行光滑金属导轨(电阻不计),导轨左端连接一个阻值为R的电阻,质量为m的金属棒(电阻不计)放在导轨上,金属棒与导轨垂直且与导轨接触良好.整个装置放在匀强磁场中,磁场方向与导轨平面垂直,在用水平恒力F把金属棒从静止开始向右拉动的过程中,下列说法正确的是( ) A.恒力F做的功一定等于电路中产生的电能与金属棒获得的动能之和B.恒力F做的功一定等于克服安培力做的功与电路中产生的电能之和C.恒力F做的功一定等于克服安培力做的功与金属棒获得的动能之和D.恒力F与安培力做的功之和等于电路中产生的电能与金属棒获得的动能和3、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻。
将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示。
除电阻R 外其余电阻不计。
现将金属棒从弹簧原长位置由静止释放.则( )A.释放瞬间金属棒的加速度等于重力加速度gB.金属棒向下运动时,流过电阻R 的电流方向为a→bC.金属棒的速度为v时.所受的安培力大小为F =B2L2v/RD.电阻R 上产生的总热量等于金属棒重力势能的减少4.如图所示,平行金属导轨与水平面成θ角,导轨与两相同的固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面。
有一导体棒ab,质量为m,导体棒的电阻R =2R1,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,固定电阻R1消耗的热功率为P,此时A.整个装置因摩擦而产生的热功率为μmgcosθ vB.整个装置消耗的机械功率为μmgcosθ vC.导体棒受到的安培力的大小为8P/VD.导体棒受到的安培力的大小为10P/V5、水平固定放置的足够长的U形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab,开始时ab棒以水平初速度v0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程 ( )A.安培力对ab棒所做的功不相等B.电流所做的功相等C .产生的总内能相等D .通过ab 棒的电量相等6、如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于( )A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R 上放出的热量7、如图所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为 ( ) A .2mgL B .2mgL +mgH C .2mgL +34mgH D .2mgL +74mgH 8.如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 长为l 的导体棒从ab 位置获得平行于斜面的,大小为v 的初速度向上运动,最远到达a′b′的位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.则A .上滑过程中导体棒受到的最大安培力为B 2l 2v RB .上滑过程中电流做功发出的热量为12mv 2-mgs(sin θ+μcos θ) C .上滑过程中导体棒克服安培力做的功为12mv 2 D .上滑过程中导体棒损失的机械能为12mv 2-mgssin θ 9、如图所示,ef 、gh 为水平放置的足够长的平行光滑导轨,导轨间距为L=1m ,导轨左端连接一个R =2Ω的电阻,将一根质量为0.2kg 的金属棒cd 垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B =2T 的匀强磁场中,磁场方向垂直导轨平面向下,现对金属棒施加一水平向右的拉力F ,使棒从静止开始向右运动,解答以下问题。
物理总复习:电磁感应中的能量问题【考纲要求】理解安培力做功在电磁感应现象中能量转化方面所起的作用。
【考点梳理】考点、电磁感应中的能量问题要点诠释:电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。
分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。
电能求解的主要思路:(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。
(2)利用能量守恒求解:机械能的减少量等于产生的电能。
(3)利用电路特征求解:通过电路中所产生的电流来计算。
【典型例题】类型一、根据能量守恒定律判断有关问题例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将()A.往复摆动B.很快停在竖直方向平衡而不再摆动C.经过很长时间摆动后最后停下D.线圈中产生的热量小于线圈机械能的减少量【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。
【答案】B【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。
根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。
【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。
上述线圈所出现的现象叫做电磁阻尼。
用能量转化和守恒定律解决此类问题往往十分简便。
h 电磁感应中的能量问题【知识要点】1、理解功与能的关系合力做功=动能的改变(动能定理)重力做功=重力势能的改变。
重力做正功,重力势能减少;重力做负功,重力势能增加。
弹力做功=弹性势能的改变。
弹力做正功,弹性势能减少;弹力做负功,弹性势能增加。
电场力做功=电势能的改变。
电场力做正功,电势能减少;电势能做负功,电势能增加。
安培力做功=电能的改变。
安培力做正功,电能转化为其他形式的能;安培力做负功(即克服安培力做功),其他形式的能转化为电能。
2、电磁感应中的能量转化和守恒产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。
对切割磁感线产生的电磁感应现象,导体在达到稳定状态之前,外力移动导体所做的功,一部分消耗于克服安培力做功,转化为产生感应电流的电能或最后在转化为焦耳热,另一部分用于增加导体的动能,即当导体达到稳定状态(作匀速运动时),外力所做的功,完全消耗于克服安培力做功,并转化为感应电流的电能或最后在转化为焦耳热在较复杂的电磁感应现象中,经常涉及求解耳热的问题。
尤其是变化的安培力,不能直接由Q=I 2 Rt 解,用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解,而用能量的转化与守恒观点,只需从全过程考虑,不涉及电流的产生过程,计算简便。
这样用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。
【典型例题】例1、如图所示,质量为m ,高度为h 的矩形导体线框在竖直面内由静止开始自由下落.它的上下两边始终保持水平,途中恰好匀速通过一个有理想边界的匀强磁场区域,则线框在此过程中产生的热量为( )A.mghB.2mghC.大于mgh ,小于2mghD.大于2mgh例2、长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。
将线圈以向右的速度v 匀速拉出磁场的过程中,求⑴拉力F 大小; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。
电磁感应中的能量问题1.思路:从能量转化和守恒着手,运用动能定理或能量守恒定律。
①根本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.②能量转化特点:其它能〔如:机械能〕−−−−−−→安培力做负功电能−−−−−→电流做功内能〔焦耳热〕 2.电能求解的三种方法:①功能关系:电磁感应过程产生的电能等于该过程克制安培力所做功:Q =-W 安②能量守恒:电磁感应过程中产生的电能等于该过程中其他形式能的减少量:Q =ΔE 其他③利用电流做功:电磁感应过程中产生的电能等于通过电路中电流所做的功:Q=I 2Rt 【例1】如下图,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 长为l 的导体棒从ab 位置获得平行于斜面的,大小为v 的初速度向上运动,最远到达a ′b ′的位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.那么( )A .上滑过程中导体棒受到的最大安培力为B 2l 2vRB .上滑过程中电流做功发出的热量为12mv 2-mgs sin θC .上滑过程中导体棒克制安培力做的功为12mv 2D .上滑过程中导体棒损失的机械能为12mv 2-mgs sin θ【例2】如下图,AB 、CD 为两个平行的水平光滑金属导轨,处在方向竖直向下,磁感应强度为B 的匀强磁场中.AB 、CD 的间距为L ,左右两端均接有阻值为R 的电阻.质量为m 长为L 且不计电阻的导体棒MN 放在导轨上,与导轨接触良好,并与轻质弹簧组成弹簧振动系统.开场时,弹簧处于自然长度,导体棒MN 具有水平向左的初速度v 0,经过一段时间,导体棒MN 第一次运动到最右端,这一过程中AC 间的电阻R 上产生的焦耳热为Q ,那么( C )A .初始时刻导体棒所受的安培力大小为B 2L 2v 0RB .从初始时刻至导体棒第一次到达最左端的过程中,整个回路产生的焦耳热为2Q 3C .当导体棒第一次到达最右端时,弹簧具有的弹性势能为12mv 20-2QD .当导体棒再次回到初始位置时,AC 间电阻R 的热功率为B 2L 2v 20R【例3】如下图,在倾角为θa b 边到达gg ’与ff ’中间位置时,线框又恰好做匀速运动,那么:(1)当a b 边刚越过ff ′时,线框加速度的值为多少?(2)求线框开场进入磁场到a b 边到达gg ′与ff ′中点的过程中产生热量是多少?【例4】如下图,空间分布着水平方向的匀强磁场,磁场区域的水平宽度d=,,竖直方向足够长,磁感应强度B =0.5T 。
电磁感应中的能量转化电磁感应是电磁学中的一项基本原理,它描述了当导线或线圈中的磁通量发生变化时,会在导线中产生电流。
而在电磁感应的过程中,能量会从磁场转化为电场和电流。
本文将探讨电磁感应中的能量转化及其应用。
一、电动势的产生与能量转化根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,会在回路中产生电动势。
电动势的产生导致了电子在回路中运动,从而产生了电流。
在电流的产生过程中,磁场中的能量被转化为了电场和动能。
二、感应电动势的大小与方向感应电动势的大小与磁通量的变化率有关,符合以下公式:ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
根据该公式可以得知,感应电动势与磁通量的变化率成正比。
感应电动势的方向遵循楞次定律,根据楞次定律可得:感应电动势的方向总是与产生它的磁场变化趋势相反,从而保持能量守恒。
三、电磁感应的应用1. 发电机发电机是电磁感应最常见的应用之一。
通过将导线绕制成线圈,并放置在磁场中,当线圈旋转或磁场发生变化时,线圈内部会产生感应电动势,从而驱动电流的产生。
发电机将机械能转化为了电能,广泛应用于发电站、汽车发电系统等领域。
2. 变压器变压器也是电磁感应的一种应用。
变压器由一个或多个圈数不同的线圈组成,它利用电磁感应将交流电能从一个线圈传输到另一个线圈。
在变压器中,交流电流在一侧线圈产生磁场,该磁场通过铁芯作用于另一侧的线圈,从而在其内部产生感应电动势。
变压器实现了电能的变压和传输,广泛应用于能源输送、电力系统中。
3. 电感耦合无线传输电感耦合无线传输是一种将电能通过电磁感应无线传输的技术。
它利用共振线圈之间的电磁耦合,在发射线圈中通过交流电流产生磁场,而接收线圈则通过感应电动势将磁场转化为电能。
电感耦合无线传输在无线充电、电子设备之间的数据传输等领域都有广泛应用。
四、电磁感应中的能量损耗在电磁感应过程中,存在能量损耗,主要来自于导线的电阻效应、磁场的散失以及涡流损耗。
电磁感应中的能量守恒规律电磁感应中的能量守恒规律电磁感应是指在磁场变化或者电路中有电流变化时,会在导体中产生感应电动势,并引发电流的现象。
电磁感应广泛应用于发电机、变压器、电动机等电器设备中,是现代电力工业的重要基础。
在电磁感应中,能量守恒规律起着至关重要的作用。
根据能量守恒,能量既不能被创造也不能被消灭,只能转化形式或者从一个物体传递到另一个物体。
在电磁感应中,能量也遵循这一规律。
当磁场的变化引起导体中的感应电动势时,能量从磁场传递到导体中。
根据法拉第电磁感应定律,感应电动势的大小与磁场的变化率成正比。
如果磁场的变化速度增大,感应电动势也会增大,从而导致更大的能量传递到导体中。
同样地,如果磁场的变化速度减小,感应电动势也会减小,能量的传递则相应减少。
在电磁感应中,导体中的电流流动导致能量的转化和传递。
感应电动势引发电流的产生,从而导致导体中的电子在导线中流动。
这些流动的电子会产生热能,使导体发热。
因此,能量从磁场转化为电流能量,然后转化为热能。
另外,根据洛伦兹力的作用,当导体中的电流通过磁场时,会受到力的作用。
这个力会对导体做功,将其中的电能转化为机械能。
这就是电动机的工作原理,将电能转化为机械能,实现机械运动。
通过以上分析可以得出结论,电磁感应中的能量守恒规律是非常重要的。
在电磁感应过程中,能量从磁场转化为电能或机械能,实现能量的传递和转化。
同时,也会有部分能量转化为热能,造成能量的损失。
因此,在电磁感应的实际应用中,我们需要尽可能减少能量的损失,提高能量的利用效率。
总之,电磁感应中的能量守恒规律是能量不能被创造或消灭,只能转化或传递的基本定律。
了解和应用这一规律,可以帮助我们更好地理解电磁感应现象,并在实际应用中提高能量利用效率。