第五章热力学函数及其应用热力-USTC
- 格式:pdf
- 大小:3.79 MB
- 文档页数:111
2.6 热力学函数间的关系及应用2.6.1. 定义式与热力学基本方程(公式)根据定义,在P,T,V,S,U,H,A,G 等热力学函数之间有如下关系:pV U H +=TS U A -=pV A TS pV U TS H G +=-+=-=上列均为定义式。
据热力学第一、第二定律,,有:pdV Q dU R -=δ和TdS Q R =δ,两式结合得:pdV TdS dU -= 根据pV U H +=,微分后代入上式可得:Vdp TdS dH +=pdV SdT dA --=Vdp SdT dG +-=上列四个公式称为热力学基本方程,其应用条件均相同。
pdV TdS dU -=是第一定律与第二定律的联合公式,是适用于组成不变且不做非体积功的封闭体系的热力学基本公式. 尽管在导出该式时,曾引用可逆条件的TdS Q R =δ,但该公式中各量均为状态函数,无论实际过程如何,上式的积分皆存在.但只有在可逆过程中,TdS 才代表体系所吸的热。
该式既适用于内部平衡的无相变化和化学变化的任意状态变化的单相封闭体系,也适用于已达相平衡和化学平衡的体系中同时发生pVT 变化及相变化和化学变化的可逆过程.从以四个热力学基本可导出一下微分关系式,如:p V SH S U T )()(∂∂=∂∂= ; T S V F V U p )()(∂∂-=∂∂-= T S pG T H V )()(∂∂=∂∂= ; p V T G T F S )()(∂∂-=∂∂-=2.6.2. 麦克斯韦(Maxwell )关系式若用z 代表体系的任一状态函数,且z 是两个变量x 和y 的函数.因其变化与过程无关,在数学上称z 具有全微分的性质.即若: ),(y x f z =则有: Ndy Mdx dy yz dx x z dz x y +=∂∂+∂∂=)()( M 对y 微分,N 对x 微分,得xy z y M x ∂∂∂=∂∂2)(及y x z x N y ∂∂∂=∂∂2)(显然: y x xN y M )()(∂∂=∂∂ 根据全微分函数性质,基于上述四个热力学基本方程可得到:S V TV p S )()(∂∂-=∂∂, S p T p V S )()(∂∂=∂∂,可以用容易从实验测定的偏微商代替那些不易直接测定的偏微商.2.6.3 .吉布斯-亥姆霍兹方程——温度对自由能变的影响在讨论化学反应问题时,常须自某一反应温度的)(0T G r ∆求另一个温度时的)(T G r ∆.因为: 2)(])([T G T G T T T G p p -∂∂=∂∂ 而: S T G p -=∂∂)( 故: 22)(](G/T)[T H T G S T T p -=--=∂∂ 由于体系的各个状态函数的绝对值均无法得到,故常将各状态函数写成相对值形式.因而,上式又可写成:2])([T H T T G p ∆-=∂∆∂ 上列二式均为吉布斯-亥姆霍兹方程式.因其推导过程中引入了等压的条件,故只能在等压下使用. 将其移项积分得:⎰∆-=∆-∆21)(21122T T dT TH T G T G 同理可得: 2])([T U T T A V -=∂∂ 及 2])([TU T T A V ∆-=∂∆∂ 上列均称吉布斯-亥姆霍兹方程或吉布斯-亥姆霍兹公式.2.6.4 克拉佩龙方程(1).克拉佩龙方程设在一定的压力和温度下,某物质的两个相呈平衡.若温度改变dT ,相应地压力也改变dp ,两相仍呈平衡.根据在等温等压下平衡的条件:0=∆G ,则有:p T, )()(βαB B −−→←平衡 )(αG )(βG)(αdG ↓ )(βdG ↓dp p ++dT,T )()(βαB B −−→←平衡)()(ααdG G + )()(ββdG G + 因)()(βG αG =,故)()(βdG αdG =,据Vdp SdT dG +-=得:dp V dT S dp V dT S ββαα+-=+-整理即得: VT H V S V V S S dT dp βαβαβαβααβαβ∆∆∆∆==--= 此式即称为克拉佩龙方程式.其对任何纯物质的两相平衡体系都可使用.(2).克拉佩龙方程对于固-液、固-固平衡的应用如液-固两相平衡有: VT H dT dp fus fus ∆∆= 对凝聚体系的相变过程研究可知,其m fus V ∆和m fus H ∆与温度和压力的关系不大,可近似视为常数.因而有:12ln T T V H p fus fus ∆∆∆= 近似地有: 1111ln T T V H T T V H T T V H p fus fus fus fus fus fus ∆∆∆∆∆∆∆∆∆∆⨯≈⨯≈+==)( (3).克拉佩龙方程对于液-气、固-气平衡的应用---克劳修斯-克拉佩龙方程 若为气-液两相平衡,则有: VT H dT dp vap vap ∆∆= 对于有气相参加的两相平衡,固体和液体的体积远较相同物质的量的的同类气体物质的气态要大,故常可忽略,并常令其气体符合理想气体状态方程.则:p/RT H p /nRT *T H TV H V T H dT dp m vapvap )g (vap vap vap 2∆∆∆∆∆==≈= 即: 2ln RTH dT p d m vap ∆= 该式称为克劳修斯-克拉佩龙方程式.若m vap H ∆与温度无关或在小的温度范围内可视为常数,则上式积分得:'ln C RT H p mvap +∆-= 或 C TB p +-=lg 上列二式最初是经验公式,在这里得到了热力学上的证明.若作定积分则:)11(ln 2112T T R H p p m vap -∆= 对于极性不太高,沸点在150K 以上,且分子没有缔合现象的液体,近似的有: 1188--⋅⋅≈=mol K J S T H m vap bmvap ∆∆ 该式称为楚顿(Trouton)规则.例: 已知θp 时水的沸点为100℃,蒸发热为42 kJ.mol -1.现将高压锅内的水加热,使其压力达到θp ⨯2.试求此时水的沸点.解: 由 )11(ln 2112T T R H p p m vap -∆= 得: 1212ln 11p p H R T T m vap ∆-= 代入已知数据得:)(10542722ln 1042314518153731ln 111331212--⨯=⨯⨯-=-=K .p p ..p p H R T T m vap θθ∆所以: C 120)(283931054272132︒≈≈⨯=-K ..T例 冰在273.15K 时的摩尔熔化热、水的摩尔体积和冰的摩尔体积分别为1mol kJ 025.6-⋅=∆f H132,mol dm 108018.1--⋅⨯=l m V 132,mol dm 109652.1--⋅⨯=s m V求在273.15K 时,使水的凝固点降低1K 需增加多大压强?解 由式(1)得1351molm 10)9652.1(1.8018K 15.273mol J 6025---⋅⨯-⨯⋅=∆∆=m f V T H dT dp 1K kPa 068.13499-⋅-=计算结果表明,使水的凝固点降低1K 需增加压强kPa 068.13499。
大学物理课件:第五章学物理第五章总结热力学基础一、基本要求1.掌握功、热量、内能的概念,理解准静态过程。
2.掌握热力学第一定律,能分析、计算理想气体等值过程和绝热过程中功、热量、内能的改变量。
3.掌握循环过程和卡诺循环等简单循环效率的计算。
4.了解可逆过程和不可逆过程。
5.理解热力学第二定律及其统计意义,了解熵的玻耳兹曼表达式及其微观意义。
二、基本内容1. 准静态过程过程进行中的每一时刻,系统的状态都无限接近于平衡态。
准静态过程可以用状态图上的曲线表示。
2. 体积功功是过程量。
3. 热量系统和外界之间或两个物体之间由于温度不同而交换的热运动能量。
热量也是过程量。
4. 理想气体的内能式中为气体物质的量,为摩尔气体常量。
内能是状态量,与热力学过程无关。
5. 热容定体摩尔热容定压摩尔热容迈耶公式比热容比6.热力学第一定律(微分形式)7.理想气体热力学过程主要公式(1)等体过程体积不变的过程,其特征是体积=常量。
过程方程:常量系统对外做功:系统吸收的热量:系统内能的增量:(2)等压过程压强不变的过程,其特征是压强=常量。
过程方程:常量系统对外做功:系统吸收的热量:系统内能的增量:(3)等温过程温度不变的过程,其特征是温度常量。
过程方程:常量系统内能的增量:系统对外做功:系统吸收的热量:(4)绝热过程不与外界交换热量的过程,,其特点是。
过程方程:常量系统吸收的热量:系统内能的增量:系统对外做功:或8. 循环过程系统由某一平衡态出发,经过一系列变化过程又回到原来平衡态的整个过程叫做循环过程(简称循环)。
其特点,准静态循环在图上用一条闭合曲线表示。
正循环:系统从高温热源吸热,对外做功,向低温热源放热。
效率为逆循环:也称制冷循环,系统从低温热源吸热,接受外界做功向高温热源放热。
制冷系数9. 卡诺循环系统只和两个恒温热源进行热交换的准静态循环过程。
正循环的效率制冷系数10. 可逆和不可逆过程一个系统,由某一状态出发,经过某一过程到达另一状态,如果存在另一过程,它能使系统和外界完全复原,则原来的过程称为可逆过程;反之,如果用任何方法都不能使系统和外界完全复原,则称为不可逆过程。
第五讲热力学函数法讲授内容:教科书§1.9-10 学时:6教学方法:结合课件中的文字、画图、公式进行讲授;通过习题课使学生熟悉用热力学函数解决问题的方法教学目的:1使学生熟悉热力学基本方程和基本不等式的应用,掌握热力学函数法的基本精神,会在典型热效应之间建立联系,会用热力学方法计算简单系统的热力学函数。
教学重点:热力学函数法的基本精神教学难点:应用导数变换方法建立不同热效应之间的联系。
本讲吸取国内对此内容的教学经验,将问题归纳为几种典型,通过较多的练习和习题课,使难点得以突破。
教学过程:一热力学函数与典型过程(70分钟)(字幕)引言:通过前面的讨论,我们在热力学定律和统计规律的基础上引进了两个基本的态函数——内能和熵。
从原则上讲,利用这两个热力学函数再加上物态方程可以解决宏观热现象的一般问题。
然而在实际操作上并不都很方便。
例如在绝热过程中(字幕),外界对系统作的功等于系统内能的U A-U B=W (字幕)通过末态B与初态A内能之差可以直接得到功。
根据熵增原理dS≥0(字幕)可以判断不可逆绝热过程的进行方向(字幕)。
可是很多过程并不是绝热的,对于经常遇到的等温过程或等温等压过程就无法直接运用内能和熵解决上述问题。
本节将引入几个新的热力学函数使问题得到简洁地处理。
1焓与等压过程:(字幕)1.1等压过程中的功: (字幕)如果系统只有V 作为外参量,在等压过程中外界对系统的功W=-P 0(V B -V A )=-P 0ΔV (字幕)1.2焓与等压过程中的热量: (字幕)ΔU=U B -U A =Q-P 0ΔV (字幕)移项得Δ(U+P 0V)=Q (字幕)不管等压过程是否可逆,只要初末态是平衡态,系统在初末态的压强P =P 0,引入新的热力学函数——焓H=U+PV (字幕)则ΔH=Q (字幕) 对于初末态为平衡态的无穷小过程则有dH=δQ (字幕)焓是广延量,具有和内能相同的量纲。
焓具有明显的物理意义:在没有非体变功的等压过程中系统吸收的热量等于系统焓的增加,系统放出的热量等于系统焓的减少。
热力学中的热力学函数分析与应用热力学是一门研究物质能量转化的科学,它的基本原理和理论体系构成了自然界中物质和能量转移的基本规律。
而在热力学中,热力学函数是一项非常重要的概念,它们可以描述和分析系统的性质和状态的变化。
在本文中,我们将探讨热力学函数的分析与应用。
热力学函数是热力学系统运动状态的代数描述,它们旨在描述系统在各种条件下的行为。
其中最常见的热力学函数包括内能、焓、自由能和吉布斯自由能等。
这些函数以不同的方式描述了系统的能量、压力、温度和体积等性质,从而提供了研究系统状态变化的工具。
首先,内能是热力学函数中最基本的函数之一。
它代表了系统的总能量,包括分子的动能和势能。
内能可以通过测量系统的温度和压强来确定,通过热力学第一定律,即能量守恒定律,我们可以根据内能的变化来推断系统的状态变化。
其次,焓是热力学中另一个重要的函数。
它定义为系统的内能加上压力乘以体积的乘积,可以表示为H = U + PV。
焓的变化反映了系统状态的变化,它在化学反应和相变等过程中发挥着重要的作用。
例如,在恒定压力下的热化学反应中,焓变可以描述反应热的放出或吸收。
此外,自由能是热力学中最常用的函数之一。
它定义为系统的内能减去系统的熵乘以系统的温度,可以表示为F = U - TS。
自由能可以判断系统的平衡状态和稳定性。
在恒定温度和压力条件下,系统的自由能趋向于最小值。
因此,自由能的变化可以预测化学反应是否会发生以及反应的方向。
最后,吉布斯自由能是另一种重要的热力学函数,定义为系统的焓减去系统的熵乘以系统的温度,可以表示为G = H - TS。
吉布斯自由能可以判断系统的可逆过程和不可逆过程。
在恒定温度和压力条件下,系统的吉布斯自由能趋向于最小值。
因此,吉布斯自由能的变化可以预测系统是否发生可逆过程以及反应的推进方向。
除了以上介绍的常见热力学函数,还有其他一些函数如平衡常数、活动度等,在热力学的研究和应用中也具有重要的作用。
这些热力学函数不仅可以用于理论分析和计算,还可以作为实验测量的基础。