必修一数学第二章知识点总结
- 格式:docx
- 大小:13.54 KB
- 文档页数:5
指数运算公式一、根式 1、()()02≥=a a a2、⎪⎪⎩⎪⎪⎨⎧<-=>==0,0,00,2a a a a a a a3、()()0≥=a n a a nn 为偶数时要求当4、⎪⎩⎪⎨⎧=为偶数为奇数n a n a a nn,,二、指数幂 1、()010≠=a a 2、()aaa a ann1011=≠=--特别: 3、n n a a =14、n m nm a a =5、nmnm nm aaa11==-6、n m n ma a a+=⋅7、n m n ma a a-=÷8、()nm nm aa =9、()nnnba b a ⋅=⋅注:① 0的0次幂没有意义,0没有负指数幂.②负数没有偶次方根.(即负数不能开偶次方)对数运算公式对数的底数大于0且不等于1,真数大于01、指对互换:()10log ≠>=⇔=a a y x a y a x且2、01log =a3、1log =a a4、()对数恒等式N aNa =log5、()N M N M a a a log log log +=⋅6、N M NMa a alog log log -= 7、b mnb a na mlog log =公式7是如下两个公式的结合:()()b mb bn b a a a na ml o g 1l o g 2l o g l o g 1== 8、换底公式:ab bc c al o g l o g l o g = 换底公式的常用变形:()()1l o g l o g 2l o g 1l o g 1=⋅=a b ab b a b a常用的代数恒等式1、平方差公式:()()b a b a b a -+=-222、完全平方公式:()()⎪⎩⎪⎨⎧+-=-++=+22222222bab a b a bab a b a 3、十字相乘法公式(不用背,要求会方法): ()()()ab x b a x b x a x +++=++2 4、立方和(差)公式:()()()()⎪⎩⎪⎨⎧++-=-+-+=+22332233bab a b a b a bab a b a b a 5、完全立方公式:()()⎪⎩⎪⎨⎧-+-=-+++=+32233322333333bab b a a b a b ab b a a b a 6、三元完全平方公式:()ca bc ab c b a c b a 2222222+++++=++。
必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<。
2.恒成立的不等式:一般地,∀R b a ∈,,有ab b a 222≥+,当且仅当b a =时等号成立。
说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。
3.等式的性质:性质1:若a =b ,则b =a ;性质2:若a=b,b=c,则a=c;性质3:若a=b ,则a±c=b±c;性质4:若a=b ,则ac=bc;性质5:若a=b ,c≠0,则cb c a = 4.不等式的性质:性质1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。
说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。
性质2:若a b >,b c >,则a c >。
不等式的传递性。
性质3:若a b >,则a c b c +>+。
性质4:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。
性质5:若,,a b c d a c b d >>+>+且则。
性质6:如果0>>b a 且0>>d c ,那么bd ac >。
性质7:如果0>>b a , 那么n n b a > )1(>∈n N n 且。
2.2 基本不等式1. 如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。
数学必修一第二章知识点总结第二章是数学必修一中的基本几何知识章节,主要包括了点、线、面及其相互关系的基础概念和性质。
下面是对该章节的知识点进行总结。
1. 点、线、面的定义:- 点:几何中最基本的概念,没有实际长度、宽度和高度,仅有位置。
用大写字母表示,如A、B、C。
- 线:两个点之间的直线连接,是没有实际宽度的。
用小写字母表示,如a、b、c。
- 面:由多条线围成的平面图形,具有宽度和高度。
用大写字母表示,如∆ABC、□ABCD。
2. 直线的表示方法:- 两点式:通过两个点来确定一条直线,可以使用直线上的两个点的坐标(x1, y1)、(x2, y2)来表示。
- 斜截式:使用直线的斜率k和截距b来表示,形如y=kx+b。
- 截距式:使用直线在y轴和x轴上的截距a、b来表示,形如y=ax+b。
- 一般式:使用直线一般方程Ax+By+C=0来表示。
3. 直线的性质:- 平行:两条直线的斜率相等且不相交。
- 垂直:两条直线的斜率乘积为-1。
- 相交:两条直线有且仅有一个交点。
- 重合:两条直线完全一致,有无穷多个交点。
4. 角的概念与分类:- 角:由两条射线共享一个端点而成的图形。
- 顶点:两条射线共享的端点。
- 两条射线的初始边:分别是与顶点相交的两条射线。
- 内角:在两条射线之间的角,其度数小于180°。
- 外角:在两条射线的延长线之间的角,其度数大于180°。
- 全周角:两条相互垂直的圆弧与其相应的圆心连线构成的角,度数为360°。
- 直角:角的度数为90°。
- 锐角:角的度数小于90°。
- 钝角:角的度数大于90°。
5. 角的性质:- 互补角:两个角的度数之和为90°。
- 余补角:两个角的度数之和为180°。
- 同位角:两条直线被一条截线交叉形成的对应角。
- 内错角:两条平行线被一条截线交叉形成的对应角。
- 垂直交角:两条直线垂直交叉形成的对应角。
高中数学人教版必修一第二章知识点总结.txt高中数学人教版必修一第二章知识点总结本文档总结了高中数学人教版必修一第二章的知识点。
1.函数与方程函数的概念:函数是一种具有特定输入和输出关系的规则或方法。
记作y = f(x),其中x为输入,y为输出。
函数的性质:单调性、奇偶性、周期性等。
一次函数:y = kx + b,其中k为斜率,b为截距。
二次函数:y = ax^2 + bx + c,其中a、b、c为常数,且a≠0.指数函数:y = a^x,其中a为底数。
对数函数:y = loga(x),其中a为底数。
三角函数:正弦函数、余弦函数、正切函数等。
方程的解:方程的解是使方程成立的未知数的值,分为实数解和复数解。
2.基本函数图像与性质常数函数:y = k,k为常数。
图像为一条水平直线。
线性函数:y = kx,k为常数。
图像为通过原点的直线。
平方函数:y = x^2.图像为开口向上的抛物线。
绝对值函数:y = |x|。
图像为一条以原点为顶点的V形线段。
幂函数:y = x^p,其中p为常数。
图像形状与p的正负有关。
三角函数图像:正弦函数、余弦函数、正切函数等的图像。
3.函数的平移、伸缩和反转平移:改变函数图像在坐标平面上的位置。
伸缩:改变函数图像在坐标平面上的大小。
反转:改变函数图像关于某个直线的对称性。
4.二次函数与一元二次方程二次函数的图像特征:开口方向、顶点坐标、对称轴等。
一元二次方程的解:求解一元二次方程的根的方法。
5.无理方程与证明无理方程:包含无理数的方程。
无理方程的解:求解无理方程的方法。
数学证明:使用已知的数学定理或方法推导出结论。
以上是高中数学人教版必修一第二章的知识点总结。
希望对你的学习有所帮助!。
高中必修(一)(二)数学知识点总结高中必修(一)(二)数学知识点总结高中必修(一)(二)数学知识点总结必修一集合与函数知识点讲解1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:(1)集合a1,a2,,an 的所有子集的个数是2n;4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于x的不等式的取值范围。
ax 5 0的解集为M,若3 M且5 M,求实数a x2 a(∵3 M,∴a3 5 032 aa5 5 025 a5 a 1,9,25 )3 ∵5 M,∴补充:数轴标根法解不等式5. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)6 . 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)7. 求函数的定义域有哪些常见类型?例:函数y x4 xlg x 3 2的定义域是(答:0,2 2,3 3,4 )8. 如何求复合函数的定义域?如:函数f(x)的定义域是a,b,b a 0,则函数F(x) f(x) f( x)的定高中必修(一)(二)数学知识点总结义域是_____________。
(答:a,a)9. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?如:f令t2x 1 ex x,求f(x). t 0 ∴x t 1∴f(t) et2 1 t2 1∴f(x) ex2 1 x2 1 x 010. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)1 x 如:求函数f(x)2 x1 x 0 的反函数x 0 x 1 x 1 (答:f(x) )x x 011. 反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;③设y f(x)的定义域为A,值域为C,a A,b C,则f(a)=b f(b) a f 1 1 f(a) f 1(b) a,f f 1(b) f(a) b12. 如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?(y f(u),u (x),则y f (x)(外层)(内层)当内、外层函数单调性相同时f (x) 为增函数,否则f (x) 为减函数。
数学必修一第二章知识点总结3篇数学必修一第二章知识点总结3篇高一数学必修一的学习,需要大家对知识点进行总结,这样大家最大效率地提高自己的学习成绩。
下面数学必修一第二章知识点总结是小编为大家整理的,在这里跟大家分享一下。
下面就让小编给大家带来数学必修一第二章知识点总结,希望大家喜欢!数学必修一第二章知识点总结1一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:X Kb 1.C om非负整数集(即自然数集) 记作:N正整数集:N或 N+整数集: Z有理数集: Q实数集: R1)列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x R|x-3 2} ,{x|x-3 2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A A② 真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或B A)③ 如果 A B, B C ,那么 A C④ 如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一必修一数学第二章知识点总结高一的数学学习是一个新的开始,它需要我们重新理解和掌握一些基础知识,其中第二章是一个很重要的章节。
在这一章中,我们主要学习了一元二次函数、二次函数的图象和性质以及解一元二次方程的方法。
本文将对这些知识点进行总结和归纳。
一、一元二次函数一元二次函数是数学中常见的一类函数,它的一般形式是y=ax²+bx+c。
其中,a、b、c是常数,a不等于0。
主要学习了以下几个内容:1. 解析式:一元二次函数的解析式就是上述的一般形式,它可以描述函数的性质和特点。
2. 坐标系与图像:通过建立直角坐标系,我们可以绘制一元二次函数的图像。
根据a的正负和b的正负,可以得出函数的开口方向和对称轴。
同时,我们还可以通过平移、伸缩等方式来改变函数的图像。
3. 零点:一元二次函数的零点即方程y=0的解。
它们对应了函数图像与x轴的交点。
通过求解一元二次方程,可以求得函数的零点。
二、二次函数的图象和性质在学习了一元二次函数的基本知识后,我们进一步深入了解了二次函数的图象和性质。
主要学习了以下内容:1. 零点和顶点:二次函数的零点和顶点是图象的重要特征。
零点对应函数与x轴的交点,顶点是图像的最低(或最高)点。
通过求解一元二次方程,可以求得函数的零点,而顶点则通过平移、伸缩等变换得到。
2. 对称轴:对称轴是二次函数图像的重要特征之一。
它是图像的中线,可以通过求解一元二次方程得到。
对称轴将图像分为左右对称的两部分。
3. 判别式和函数的性质:通过判别式来分析二次函数的零点情况和图像形状。
当判别式大于0时,函数有两个不同的零点,图像为开口向上的抛物线;当判别式等于0时,函数有一个重根,图像为与x轴相切的抛物线;当判别式小于0时,函数没有实数根,图像位于x轴上方或下方。
三、解一元二次方程的方法在处理实际问题时,我们经常需要解一元二次方程。
学习了一元二次函数后,我们掌握了以下几种解法:1. 因式分解法:当二次方程可以被因式分解时,我们可以利用分解得到的二次因式为0的性质,求得方程的解。
第二章函数2.1 函数1. 函数(1)函数的定义传统定义:在某一个变化过程中有两个变量x和y,如果对于在某一个范围内的任一个x的值,都有唯一的y值与它对应,则称y是x的函数,x叫做自变量,y叫做因变量。
近代定义:给定两个非空数集A和B,如果按照某个对应关系f,对于A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在A 上的函数,记作A→B,或y=f(x),x∈A,此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)|x∈A}叫做函数的值域,习惯上我们称y是x的函数。
两个定义间的联系:函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合的观点出发。
这样,就不难得知函数的实质是从非空数集A到非空数集B的一个特殊对应。
(2)函数概念的理解①A、B都是非空数集,因此定义域(或值域)为空集的函数不存在。
②在现代定义中,B不一定是函数的值域,如函数y=x2+1可称为实数集R到实数集R的函数,但值域为[1,+∞)。
③对应关系、定义域、值域是函数的三要素,缺一不可,其中对应关系是核心,定义域是根本,当定义域和对应关系已确定,则值域也就确定了。
④函数符号f(x)的含义:f(x)是表示一个整体,一个函数,而记号“f”可以看作是对“x”施加的某种法则(或运算),如f(x)=x2-2x+3,当x=2时,可看做是对“2”施加了这样的运算法则:先平方,再减去它与2的积,再加上3;当“x”为某个代数式(或某一个函数记号)时,则左右两边的所有x都用同一个代数式(或函数记号)代替,如f(2x-1)=(2x-1)2-2(2x-1)+3,f[g(x)]=[g(x)]2-2g(x)+3等,f(a)与f(x)的区别就在于前者是函数值,是常数;而后者是因变量,是变量。
(3)函数的定义域函数的定义域是自变量x的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约。
高一数学必修一第二章知识点总结本文将总结高一数学必修一第二章的知识点,帮助学生们对这一章内容有一个清晰的概述。
2.1 向量的概念与表示- 向量是有大小和方向的量,用于表示平面或空间中的位移、速度等概念。
通常用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
- 向量的表示方式有两种:用坐标表示和用定点与方向向量表示。
坐标表示方式将向量表示为一组有序数的组合,定点与方向向量表示方式则将向量表示为起点和终点之间的位移。
- 向量的相等与数量乘法:两个向量相等表示大小和方向相同,向量的数量乘法是将向量的大小与一个实数相乘。
2.2 向量的加减- 向量的加法:两个向量相加得到一个新的向量,新向量的大小是两个向量大小的和,方向由两个向量的夹角决定。
- 向量的减法:两个向量相减得到一个新的向量,新向量的大小是两个向量大小的差,方向由两个向量的夹角决定。
2.3 平行向量和共线向量- 平行向量:如果两个向量的方向相同或相反,那么这两个向量是平行的。
- 共线向量:如果两个向量在同一直线上,那么这两个向量是共线的。
2.4 向量与数的乘法- 向量与数的乘法:用一个实数乘以一个向量,得到的新向量大小等于原向量大小的绝对值与这个实数的乘积,方向与原向量相同或相反,取决于实数的正负。
- 数的乘法具有分配律、结合律等性质,方便在向量的计算中进行运算。
2.5 平面向量的线性运算- 平面向量的线性运算:指将两个向量进行加法和数量乘法得到一个新的向量。
- 加法满足交换律和结合律,而数量乘法满足分配律。
以上就是高一数学必修一第二章的主要知识点总结。
希望这份总结能够帮助同学们快速回顾并掌握这一章的知识,为接下来的学习打下坚实的基础。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
高中数学必修1知识点总结 第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)空集的特性①空集是不含任何元素的集合.②空集是任何集合的子集,是任何非空集合的真子集.③空集单独使用时当集合的,但是放在集合里面又可以当元素使用,如{Φ}【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇Φ=A C U UA C U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f 叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a yc y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.o⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系. 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法增;若y f =则[()]y f g x =为减.(2)函数()(0)af x x a x=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作m x f =)(min .【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.若0)0(≠f ,则0=x 必不在)(x f 的定义域上③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n示;当n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对. (0,)+∞上为减函p,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --.②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b qa->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = (Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.高中数学必修1知识点总结第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高一数学必修一第二章知识点第二章:函数与方程在高一数学必修一中,第二章是关于函数与方程的内容。
函数与方程是数学中重要的概念,它们在数学和实际生活中都有广泛的应用。
本章将介绍函数的基本概念、性质和常见类型,以及方程与不等式的解法。
1. 函数的基本概念函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
在函数中,自变量通常用x表示,因变量通常用y表示。
函数可以用图象、公式或表达式来表示。
函数具有单值性,即对于一个特定的自变量,对应的因变量只有一个值。
2. 函数的性质函数的性质包括定义域、值域和图象。
定义域是指函数中自变量的取值范围,值域是指函数中因变量的取值范围。
图象是函数在坐标系中的表示,它是自变量与因变量之间对应关系的可视化。
3. 常见函数类型常见的函数类型包括线性函数、二次函数、指数函数、对数函数和三角函数等。
线性函数的图象是一条直线,二次函数的图象是一个抛物线,指数函数的图象是一个递增或递减的曲线,对数函数的图象是一个反比例曲线,三角函数的图象是正弦曲线、余弦曲线或正切曲线等。
4. 方程的解法方程是数学中常见的等式,通常包含未知数和已知数。
解方程就是找到满足等式的未知数的值。
常见的方程类型包括一元一次方程、一元二次方程等。
解方程的方法包括合并同类项、移项、因式分解、开方等。
5. 不等式的解法不等式是数学中表示大小关系的符号,包括大于、小于、大于等于、小于等于等。
解不等式就是找到满足不等式关系的变量的取值范围。
常见的不等式类型包括一元一次不等式、一元二次不等式等。
解不等式的方法包括合并同类项、移项、因式分解、试验法等。
总结:通过学习函数与方程,我们可以更好地理解数学的应用和实际问题的解决。
函数与方程是数学中的基础知识,它们在代数、几何、概率等数学领域中有广泛的应用。
掌握函数与方程的概念、性质和解法,可以为我们今后的学习和工作打下坚实的数学基础。
希望同学们能够认真学习、彻底理解,并能够灵活运用到实际问题中。
高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n −个真子集,有21n −个非空子集,它有22n −非空真子集.(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈ (1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U AA U =逻辑语言1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
高一数学必修一第二章知识点归纳高一数学必修一第二章知识点1方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学必修一第二章知识点2空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高一数学必修一第二章知识点3(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
高一数学必修一第二章知识点总结在高一学习数学的过程中,必修一是重要的基础课程之一。
第二章是其中的一个重要部分,以下是对该章节的知识点总结。
1. 二次函数二次函数是高中数学中的重要内容,它是由形如y=ax^2+bx+c的函数所组成。
其中,a、b、c分别代表二次函数的系数,a决定了二次函数的开口方向,b决定了抛物线的位置,c决定了二次函数的纵坐标截距。
需要特别注意的是,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 二次函数的图像与性质二次函数的图像是一个抛物线,其形状和位置与二次函数的系数有关。
可以通过求解二次函数的顶点、轴对称线、零点等内容来探究二次函数的性质。
顶点是抛物线的最低点(最高点),轴对称线是通过顶点的一条垂直线,零点是函数与x轴的交点。
利用顶点坐标可以得到二次函数的最值,即最大值或最小值。
3. 二次函数的变化规律通过改变二次函数的系数,可以观察到其图像的变化规律。
例如,改变a的值可以改变抛物线的开口方向;改变b的值可以改变抛物线的位置;改变c的值可以改变抛物线的纵坐标截距。
此外,二次函数还可以通过平移、伸缩等变换来改变其图像。
4. 二次函数的解及其应用解二次函数的方法包括配方法和求根公式。
通过配方法,将二次函数转化为完全平方的形式,然后求解方程。
求根公式是通过根据二次函数的系数来计算零点的方法。
在实际应用中,二次函数经常用于解决最值、距离、速度等问题。
5. 二次函数与一次函数的关系一次函数是高中数学中的基础内容,而二次函数可以看作是一次函数的补充和扩展。
可以通过观察二次函数与一次函数的图像和性质,探讨二者之间的关系。
一次函数的图像是一条直线,而二次函数则是一个抛物线。
此外,二次函数与一次函数的图像有关系。
以上是高一数学必修一第二章的知识点总结。
通过对这些知识点的理解和掌握,同学们可以更好地应对数学学习和应用中的问题。
希望同学们在学习数学的过程中,能够更加深入地理解和应用这些内容,提升数学思维能力。
必修一数学第二章知识点总结第二章是《函数与导数》,是高中数学必修一中的重要章节之一、本章主要讲述了函数的基本概念和性质,以及导数的概念和计算方法。
下面是本章的知识点总结。
1.函数的概念和表示方法:-函数的定义:函数是一个从一个集合到另一个集合的映射关系。
通常用f(x)表示函数,其中f是函数名,x是自变量。
-自变量和因变量:函数中自变量的值经映射得到相应的因变量的值。
-函数的表示方法:集合表示法、解析表示法、图像表示法。
2.函数的性质:-定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的值的集合。
-奇偶性:函数f在对称中心O处满足f(-x)=f(x)或f(-x)=-f(x)时,称函数f是偶函数或奇函数。
-单调性:函数的单调性可以是递增的、递减的或者常数函数。
-周期性:周期函数的值在一定区间内具有循环性,满足f(x+T)=f(x),其中T是函数的周期长度。
3.导数的概念和性质:-导数的定义:函数在其中一点的导数表示函数在该点的变化率。
导数可以用极限来定义,也可以用差商表示。
-导数的几何意义:导数表示函数在特定点处的切线斜率。
-导数的计算方法:常数的导数为0,幂函数的导数为指数乘以底数的幂次减1-导数的基本性质:导数与函数的线性运算、导数与函数的乘积法则、导数与函数复合的链式法则。
-导数与函数的单调性、奇偶性、最值和极值。
4.导数的应用:-切线和法线:切线的斜率等于函数导数的值,法线的斜率为导数的倒数的负值。
-凸函数与凹函数:函数的导数是单调递增或递减的,可以判断函数的凸凹性。
-极值点和极值:极值点是函数在其中一区间内取得最大值或最小值的点。
-函数图像的绘制:通过求解函数在定义域各点处的导数和极值来绘制函数的图像。
以上是第二章《函数与导数》的主要知识点总结。
掌握这些知识点对于理解函数的基本概念、性质和导数的计算方法非常重要,也是以后学习高级数学的基础。
必修一数学第二章知识点总结
必修一数学第二章知识点总结
函数简介
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对
A中的元素x施加对应法则f,记作f(x),得到另一数集B,假
设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。
函数概念含有三个要素:定义域A、值域B和对应法则f。
其
中核心是对应法则f,它是函数关系的本质特征。
函数最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。
之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数〞,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
一、一次函数定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通
过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数
的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)
数学集合与集合之间的关系知识点
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
空集是任何集合的子集,是任何非空集的真子集。
任何集合是它本身的子集。
子集,真子集都具有传递性。
(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A B。
若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。
中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。
所有男人的集合是所有人的集合的真子集。
)
高中数学的学习方法
多看辅导书
老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍,做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。
我经常买和课程有关的辅导书籍看,每一门
课程我都有好几本相关的辅导书籍。
定期整理归纳
每学完一章的内容,我都要进行小结。
把这章的内容归纳一下,把定义、定理、公式和这个定义、定理、公式有代表行的练习题写出来,最后就是用几句话把这一章的内容概括一下,目的是方便记忆。
我写在一张纸上,放在口袋里,随时会拿出这张纸来看一下。
我一般不看完,只看前面几个字,然后去想后面的内容,实在想不出来才再看一下的。
考试前每一科目我都是把内容归纳后,写在纸上放在口袋里,跑到没人的大树底下,一会看一下归纳的纸条,背诵内容和例题。