2拉伸试验
- 格式:doc
- 大小:14.60 MB
- 文档页数:19
拉伸试验试验方法概述- Jerry©转载引用请注明出处部分步骤图片已删除,学习和交流可联系*****************依据:GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》工具:钢尺、剪刀、小刀、橡皮筋、设备配套引伸计、内六角扳手等,依据试验项目部分选用。
5.1 样品基本要求样品整体要求无影响其性能的明显缺陷,如凹陷、毛刺、非圆滑过渡、形状公差过大等,否则将导致试验结果偏差。
同时样品试验过程中应保持清洁,不允许表面附有任何影响试验的附着物,如油污、标签纸等,应将其去除。
具体尺寸及形状公差参照GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》附录B、附录C、附录D、附录E。
截面形状区分尺寸/mm 适用附录0.1≤a<3 B薄板、板材、扁材a≥3 D<4 C线材、棒材、型材≥4 D管材----- E5.2 板材类尺寸参数示意备注:尺寸参数对于不同截面形状会有变化,详细参考GB/T 228.1-2010第22页至第25页。
6.检测步骤6.2试验准备6.2.1 样品准备观察样品类型与形状,是否符合步骤5中所需要求。
若样品不符合要求,则需要对样品进行加工,使其尺寸要求满足步骤5。
加工方式一般有车削、线切割等,对于薄铝板等可用剪刀裁剪至规定尺寸,加工需注意避免缺陷、弯折。
对于同一样品,切割方向可能会影响材料的拉伸性能,需要参考具体标准规定,若无相应规定,一般切割方向为纵向。
6.2.2 尺寸测量对满足步骤5的样品,测量每个样本尺寸参数,一般在不同位置测量3次,精确到小数点后两位,并在原始记录中记录平均值。
对于板材,测量其平行长度的厚度和宽度;对于棒材,测量其平行长度的直径;对于管材,测量其外径和壁厚;对于管材的纵向切割弧形试样,测量其宽度、外径和壁厚;对于异形试样,测量并计算其横截面积。
6.2.3 原始标距刻画判断拉伸试验检测项目,对于需要检测断后伸长率的项目,需要对样品标识出原始标距L0。
碳钢与铸铁的拉伸、压缩实验(实验一)一、实验目的1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。
2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。
二、实验设备微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。
三、实验试祥1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示:图1用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。
必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ52、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内:1≤d h≤3为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑。
四、实验原理图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限:0A Ps S =σ图2屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。
以试样的初始横截面面积A 。
除P b 得强度极限为0A P b b =σ延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 %100001⨯-=l l l δ断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。
机械学基础实验指导书力学实验中心金属材料的拉伸与压缩实验1.1 金属材料的拉伸实验拉伸实验是材料力学实验中最重要的实验之一。
任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。
材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。
通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。
例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。
除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。
我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。
这个实验是研究材料在静载和常温条件下的拉断过程。
利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。
试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。
例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。
为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。
按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式:图1-11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =45Sd 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。
此外,试件的表面要求一定的光洁度。
光洁度对屈服点有影响。
因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。
一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
低碳钢拉伸实验一、实验目的σ1、测定铸铁的强度极限b2、观察低碳钢和铸铁在拉伸实验过程中的各种现象3、分析比较低碳钢和铸铁拉伸的力学性能特点及试样破坏特征。
二、实验仪器设备CMT5000微机控制电子万能材料试验机、试样划线器、低碳钢拉伸试样、铸铁拉伸试样三、实验原理金属材料在拉伸实验时,将材料拉伸试样装夹在试验机的拉伸夹头上,启动试验机施加载荷(施加的载荷必须通过试样的轴线,以确保材料试样处于单向应力状态),并在加载过程中自动绘制出试样承受的载荷(P)与产生∆)间的关系曲线,即拉伸图。
拉伸图形象的描述了材料的变形特征变形(L及各阶段承受载荷与变形的关系,并可由该图形的状态来判断材料弹性与塑性的好坏、断裂时的韧性与脆性程度及不同变形条件下的承载能力。
1、铸铁拉伸实验铸铁材料属典型的脆性材料,其拉伸图如图1-1-7所示。
由拉伸图的P–△L 曲线可知,铸铁在拉伸的过程中既无屈服阶段,也无颈缩现象,只是在较小变形下突然断裂,故铸铁拉伸时仅研究其力学性能的强度指标,即σ。
测定其强度载荷后,计算强度极限b2、拉伸试样破坏断口特征拉伸试样破坏断口如图1-1-8 所示,低碳钢试样拉伸破坏后,在试样的两个断面上各呈凸凹状,称为杯状断口。
断口中间部分的材料成晶粒状,四周则呈纤维状。
铸铁试样拉伸破坏后,试样断口的两个断面基本平齐,断口上的材料呈晶粒状,材料呈晶粒状是脆性断裂的断口特征,纤维状是韧性的断口特征。
四、实验步骤本实验通过 CMT5000 微机控制电子万能材料实验机完成低碳钢、铸铁拉伸试样的加载、测量过程,实验操作前,必须详细了解实验机的使用操作方法,并仔细阅读实验中所用仪器设备的注意事项。
1、试样刻线使用试样刻线机,在低碳钢拉伸试样上划出标距线和十等分分格线,刻线过程中,线痕能分辨即可,过深易造成应力集中,影响实验测量结果。
2、原始数据测量测定低碳钢和铸铁拉伸试样原始工作直径d0及低碳钢拉伸试样的原始标距L0。
目录一、金属材料室温拉伸试验方法 (2)二、试样的形状要求 (2)三、制样规范及弯曲要求 (3)四、拉伸试验操作 (4)五、弯曲试验原理 (5)六、弯曲试验操作 (5)七、冷弯试验结果的评定等级 (6)八、牌号和化学成份 (7)九、钢中的杂质元素及其影响 (8)十、钢号命名规则 (8)十一、弯曲试验原理 (10)十二、产品质量及标准 (11)十三、铁合金质量证明书 (13)一、拉伸试验操作1、试样准备(1)对试样进行外观检查,依照委托单顺序将试样排好,查对编号,并填写原始记录,如不符合制样规定者不列入试验,要求重新取样,对板状试样,挫掉试样所带毛刺。
(2)测量试样原始尺寸,圆试样直径d0用精度,0.01的千分尺测量,板坯试样和圆状试样都分别在标距长度的中部及两端处分三部分进行测量,圆形试样应在两个相互垂直方向上各测一次,取其平均值,选用三处测得横截面积中的最小值,计算试样的横截面积(保留四位有效数字)。
(3)试样的尺寸公差和形状公差应符合有关要求。
(4)根据横截面积,按要求打上相应长度的标距。
2、顺序开机运行软件,进入联机状态;3、进入试验窗口选择设置好的试验方案;4、设置好试验用户参数;5、装好合适的夹块,根据试样长度调整下横梁位置;6、启动油泵电机;7、先夹紧试样的一端,然后升降下横梁到合适的位置,力值清零,然后夹紧试样的别一端。
位移或变形值清零;8、点击试验窗口“运行”按钮,进入试验状态,顺时针旋转手动阀手轮进行加荷,直至试样断裂。
9、启动油泵,取下试样,再逆时针旋转手动阀手轮,使活塞退回到底,10、开、关机必须按照正确顺序进行:开机:显示器—打印机—计算机—DCS控制器—启动试验软件—液压源关机:液压源—退出试验软件—DCS控制器—计算机—显示器—打印机二、钢中的杂质元素及其影响在钢的冶炼过程中,不可能除尽所有的杂质,所以实际使用的碳钢中除碳以外,还含有少量的硅、磷、氧、氢、氮等元素,它们的存在,会影响钢的质量和性能。
实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。
工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。
不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。
低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。
低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。
低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。
因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。
铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。
铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。
铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。
通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。
一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。
2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。
3.掌握材料试验机等实验设备和工具的使用方法。
二、 实验设备和工具1. 液压摆式万能材料试验机。
2. 游标卡尺(0.02mm)。
三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。
试验表明,试件的尺寸和形状对试验结果有一定影响。
为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。
JIS K 6251 :2004JIS K 6251:2004 版本号:1硫化橡胶和热可塑性橡胶—拉伸特性的试验方法序文本标准是对翻译的1994年第3版发行的ISO 37:1994 ,Rubber, vulcanized or thermoplastic —Determination of tensile stress —strain propertics 进行技术性内容的修改而制定的日本工业标准。
说明: 本标准加有下划虚线的地方是修改了的原国际标准事项。
变更一览表及其说明见附件。
警告本标准的使用者必须是熟悉一般试验室作业的人员。
本标准并未就其使用的所有安全问题提出处理意见。
所以,使用本标准的人员必须按照各自的责任对安全和健康采取适宜的措施。
1. 适用范围本标准适用于硫化橡胶和热可塑性橡胶(下称硫化橡胶)的拉伸强度、断裂时的延伸率、屈服点延伸率和拉伸应力的证明方法。
备注本标准的采用国际标准如下:说明:采用程度的记号源自ISO/IEC Guide 21,IDT(等同)、MOD修改)、NEQ非等效)。
ISO 37:1994 ,Rubber,vulcanized or thermoplastic —Determinationof tensile stress-strain properties(MOD)2. 引用标准以下所列是本标准的引用标准,是构成本标准规定的一部分。
在这些引用标准中,注有发行年份的,表示只有这个年份的版本才是本标准的构成部分,其后所有的修订版和补充都不适用。
未注生效年份的引用标准,则表示适用其最新版(包括补充)。
JIS K 6200 橡胶术语JIS K 6250 橡胶—物理试验方法通则备注JIS K 6250 橡胶—物理试验方法通则的各个项目等同于以下国际标准的各个项目。
1JIS K 6251:2004 版本号:1ISO 471:1995 Rubber —Temperatures, humidities and times forconditioning and testingISO 3383:1985 Rubber —General directions for achieving elevatedor subnormal temperatures for test purposesISO 4648:1991 Rubber,vulcanized or thermoplastic —Determinationof dimensions of test pieces and products for testpurposesISO 4661-1:1993 Rubber, vulcanized or thermoplastic —Preparationof samples and test pieces —Part 1: Physical tests JIS K 6272 橡胶—拉伸、弯曲及压缩试验机(定速) —规格要求备注ISO 5893:2002 Rubber and plastics test equipment —Tensileflexural and compression types (constant rate of traverse) —Description 引用的事项等同于本标准的相应事项。
拉伸实验报告
实验目的,通过拉伸实验,了解材料在受力作用下的力学性能,掌握拉伸实验的基本操作技能。
实验仪器,拉伸试验机、标尺、试样。
实验原理,拉伸试验是通过对试样施加拉伸力,使其在拉伸过程中产生应力和应变,从而研究材料的力学性能。
拉伸试验的基本参数包括抗拉强度、屈服强度、断裂伸长率等。
实验步骤:
1. 准备试样,根据实验要求,选择合适的试样,对其尺寸进行测量,并在试样上标记好测量点。
2. 安装试样,将试样安装到拉伸试验机上,并调整好试验机的参数。
3. 进行拉伸实验,启动拉伸试验机,施加拉伸力,记录试验过程中的拉伸力和试样的变形情况。
4. 数据处理,根据实验记录的数据,计算出试样的抗拉强度、屈服强度等力学性能参数。
实验结果:
经过拉伸实验,我们得到了试样的拉伸力-应变曲线。
从曲线上可以看出,试样在拉伸过程中出现了线性阶段和非线性阶段。
在线性阶段,试样的应变随拉伸力的增加呈线性增长,而在非线性阶段,试样的应变增长速度加快,最终导致试样的断裂。
根据拉伸力-应变曲线,我们计算出了试样的抗拉强度为XXX,屈服强度为XXX,断裂伸长率为XXX。
这些数据反映了材料在拉伸过程中的力学性能,为材料的工程应用提供了重要参考。
实验总结:
通过本次拉伸实验,我们深入了解了材料在受力作用下的力学性能,掌握了拉伸实验的基本操作技能。
同时,我们也发现了材料在拉伸过程中的一些特点,对材料的工程应用具有重要的指导意义。
在今后的学习和工作中,我们将继续深入研究材料的力学性能,不断提高实验操作技能,为材料工程领域的发展做出更大的贡献。
拉伸实验报告到此结束。
拉伸试验可测量__强度____和__塑性_____两个方面的力学性能指标。
2、拉伸试验时,试样拉断前能承受的最大应力称为材料的___A___A、抗拉强度B、弹性极限C、屈服强度D、条件屈服应力3、用拉伸试验不可以测定的材料性能指标是__B___A、抗拉强度B、硬度C、塑性D、屈服强度4、常用的退火方法有_完全退火___、_球化退火__和_去应力退火__。
5、退火的目的是降低_硬度_,提高_塑性__,以利于_切削加工__和冷变形加工,消除_残余应力__,防止工件_变形__和_开裂__。
6、去应力退火过程中钢的组织不发生变化。
(√)7、冷却速度越快,物质所产生的内应力越大。
(ⅹ)8、正火周期短,成本低,性能好,所以正火完全可以取代退火。
(ⅹ)9、为改善T12钢的切削加工性能,宜采用的热处理方法是__C__A、完全退火B、球化退火C、正火D、回火10、为细化组织,提高力学性能,改善切削加工性,常对低碳钢零件进行_A__A、完全退火B、正火C、去应力退火D、再结晶退火11、为改善20钢的切削加工性能,通常采用的热处理方法是___C___A、完全退火B、球化退火C、正火D、去应力退火12、常用的淬火冷却介质为__水__、_油__、_盐水_和_各种硝盐或碱液__13、根据回火温度的不同,回火可分为_低温回火_、_中温回火_和_高温回火_。
14、合金钢的淬透性比碳钢好。
(ⅹ)淬火内应力是造成工件变形和开裂的原因。
(√)15、钢在一定条件下淬火后,获得萃硬层深度的能力称为( B )A、淬硬性B、淬透性C、耐磨性D、回火稳定性16、45钢按用途可属于_碳素结构_钢,按质量分属于_优质碳素钢_,按含碳量分属于_中碳钢__17、硫是钢中的有益元素,它能使钢的脆性下降。
(ⅹ)18、T10A钢的含碳量为10%。
(ⅹ)19、GCr15钢的平均含铬量为_B__A、0.15%B、1.5%C、15%D、1 50%20、在下列钢号中,__C___是不锈钢。
薄膜双向拉伸中试试验机(小型实验室双向拉伸设备)详细说明薄膜双向拉伸中试试验机(小型实验室双向拉伸设备)可实现双轴拉伸(同时同步或异步张拉)试验,可作为实验室双拉试验线使用,是一种正交拉伸试验机(实验机)可实现同时双向拉伸和分步双向拉伸,本机能将约120 mm 厚度小于1.2mm 见方的双向拉伸薄膜材料厚膜样片,按所需的拉伸比,拉伸成薄膜样膜,供实验室测试分析。
对种类繁多的添加剂和配方,先用本机进行样膜试验分析,再确定配方和拉伸倍数温度速率。
然后应用到生产线上,可大大降低试制成本。
任何可双向拉伸的聚烯烃材料,制成厚片,都可在本机进行静态拉伸,如PET, PP,PE,EVA BOPP.BOPET等。
包括PE双向拉伸电池隔膜,PVDF双向拉伸太阳能电池隔膜,双向拉伸微孔透气膜。
一、适用范围本机能将约120 mm 厚度小于1.2mm 见方的双向拉伸薄膜材料厚膜样片,按所需的拉伸比,拉伸成薄膜样膜,供实验室测试分析。
对种类繁多的添加剂和配方,先用本机进行样膜试验分析,再确定配方和拉伸倍数温度速率。
然后应用到生产线上,可大大降低试制成本。
任何可双向拉伸的聚烯烃材料,制成厚片,都可在本机进行静态拉伸,如PET, PP,PE,EVA 等等;二、技术要求(1)、可实现同时双向拉伸和分步双向拉伸;(2)、各方向的拉伸倍率可调,最大拉伸6×6(8×8)倍,即每个方向最大拉伸6(8)倍;(3)、各方向的拉伸速度可调,最高拉伸速度~0.4 米/秒(按每秒脉冲的角度计算);(4)、覆盖整个拉伸6×6(8×8)倍区域的温度场控温均匀,温度最高达到200 ℃±1.5℃,三、性能参数(1)、厚片尺寸:最小边长120 mm × 120 mm,最大厚度 1.2 mm;(2)、加热功率:22 Kw;(3)、加热箱温度:最高200 ℃±1.5℃,可调,(4)、加热时间:3.5 分钟(对190μPET 厚片而言),可调;(5)、静压箱:2 个(6)、设备电源:三相380 v,50 Hz,总装机功率:25 Kw(电源由甲方提供)(7)、夹体气源:钢瓶氮气,使用气压2.5 Mpa;(钢瓶氮气由甲方提供)(8)、试验机外型尺寸:长约 3.0 米, 宽约 2.0 米, 高约1.4 米;(9)、总重:约1400 Kg。