1998年北京市中学生数学竞赛
- 格式:doc
- 大小:1.06 MB
- 文档页数:10
1998数学竞赛摘要:1.1998 年数学竞赛的背景和意义2.1998 年数学竞赛的难度和范围3.1998 年数学竞赛的获奖情况4.1998 年数学竞赛对我国数学教育的影响正文:【1998 年数学竞赛的背景和意义】1998 年数学竞赛,全名为1998 年全国高中数学竞赛,是我国高中阶段最高水平的数学竞赛之一。
该竞赛自1980 年代开始举办,每年一次,旨在选拔和培养优秀的数学人才,激发学生学习数学的兴趣,提高我国数学教育水平。
【1998 年数学竞赛的难度和范围】1998 年数学竞赛分为初试和复试两轮。
初试主要包括代数、几何、三角函数、概率统计等基本数学知识,难度适中。
复试则在初试基础上增加了一些高等数学内容,如微积分、线性代数、概率论等,难度相对较大。
竞赛范围涵盖了高中数学的全部内容,以及部分高等数学基础知识。
【1998 年数学竞赛的获奖情况】1998 年数学竞赛共有来自全国各地的1000 多名学生参加。
经过激烈的角逐,最终选拔出了50 名一等奖获得者、100 名二等奖获得者和200 名三等奖获得者。
其中,一等奖获得者多为各地区优秀高中生,他们凭借出色的数学才华和扎实的基本功,获得了这一殊荣。
【1998 年数学竞赛对我国数学教育的影响】1998 年数学竞赛的成功举办,对我国数学教育产生了积极影响。
首先,竞赛激发了学生学习数学的兴趣,提高了他们的数学素养。
其次,竞赛选拔出了一批优秀的数学人才,为我国高校和科研机构输送了大量后备力量。
最后,竞赛促进了数学教育的改革和发展,为提高我国数学教育整体水平做出了贡献。
总之,1998 年数学竞赛在我国数学教育史上具有重要意义。
初中各种杯赛介绍一、“华杯”杯赛介绍:“华罗庚金杯”少年数学邀请赛(以下简称“华杯赛”)是以华罗庚名字命名的数学竞赛。
始于1986年是纪念我国著名数学家华罗庚始创的,有中国优选法统筹法和经济数学研究会中国少年报,全国性大型少年数学竞赛活动至2008年以有14届。
“华杯赛”的宗旨是:教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学。
“华杯赛”至今已成功地举办了十五届,全国有近100个城市,3000多万少年儿童参加了比赛。
“华杯赛”已经成为教育、鼓舞一代又一代青少年勇攀科学高峰和奋发向上的动力,深受广大学生、教师、家长的喜爱。
日本、韩国、马来西亚、新加坡、蒙古国等国家和香港、澳门、台湾地区也相继派队参赛。
华杯赛分为小学组(6年级)与初一组“华杯赛”一贯坚持“普及性、趣味性、新颖性”相结合的命题原则。
赛制为每年一届,每两年举办一次总决赛。
“华杯赛”从一开始就受到中央领导和老一辈革命家的重视与关怀。
1986年中共中央总书记胡耀邦亲自为“华罗庚金杯”题写杯名。
“华杯赛”的成功举办,得到了新闻单位的密切配合和支持。
新华社、中央电视台、中国教育电视台、中央人民广播电台、人民日报、中国教育报、中国教师报、中国青年报、中国少年报、中国中学生报、科技日报等新闻媒体每届均相继报道“华杯赛”的消息。
把“华杯赛”的发展与青少年素质教育紧密地结合起来,将科学的发展寄希望于未来,我们相信“华杯赛”将会吸引越来越多的青少年投入到学科学、爱科学的行列中来。
经过不懈的努力,“华杯赛”必将迈向国际舞台。
奖项设置:1、决赛(1)设个人一、二、三等奖和“优秀教练员”、“优秀辅导员”奖;获决赛个人一、二、三等奖比例为本市参加决赛人数的36%。
其中:一等奖为参加决赛人数的6%,二等奖为参加决赛人数的12%,三等奖为参加决赛人数的18%。
(2)获决赛一、二等奖选手的基层辅导教师荣获“优秀教练员”奖,获决赛三等奖选手的基层辅导教师荣获“优秀辅导员”奖。
第6讲 整式的概念和整式的加减知识方法扫描整式的概念1. 单项式与多项式统称整式.2.单项式由数与字母的积组成的代数式叫做单项式,单独一个字或数也是单项式.单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数3. 多项式几个单项式的和叫做多项式.在多项式中的每个单项式叫做多项式项,其中,不含字母的项叫做常数项.一个多项式有几项就叫做几项式,次数最高的项的次数就叫做多项的次数. 把一个多项式的各项按照某一个字母的指数从大到小(或从小到大) 的顺序排列叫做降(或升)幂排列法.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数也是同类项.2.合并同类项:把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.整式的加减实际就是合并同类项。
3. 灵活地去(添)括号括号前面去掉(或添上)“+”号,括号里各项都不变;括号前面去掉 (或添上)“-”号,括号里各项都变号,若有多层括号,去括号有三种方法:一是可以从里向外去;二是可以 从外向里去;三是可以里外同时去,同时在去括号后,在不影响计算结果 的前提下,也可以边去括号边合并同类项,从而简化计算,经典例题解析例1 (1997年北京市初二数学竞赛试题)同时都含有字母a ,b ,c ,且系数为1的7次单项式共有( ).(A)4个 (B) 12个 (C) 15个 (D) 25个解:设满足条件的单项式为p n m c b a 的形式,其中m 、n 、p 为自然数,且m+n+p=7.指数m ,n ,p 只能有如下四组可能: 1,1,5; l,2,4; 1,3,3; 2,2,3.所以满足条件的单项式有;,,;,,334242555c b a bc a c ab bc a c ab abc ;,,244224c b a c b a c ab .,,;,,223232322333333c b a c b a c b a c b a bc a c ab 总计有15个.故选(D )例2.(1993年第4届“希望杯”邀请赛试题)在多项式42123431993---++m n n m n m n m y x v u y x v u (其中m ,n 为正整数)中,恰有两项是同类项,则m·n=解 若n m v u 1993与n m v u 23是同类项,则m=0,n=0,与已知条件矛盾。
1998年全国高中数学竞赛1998年的全国高中数学竞赛标志着我国数学教育的迅速发展和高中学生数学水平的提高。
这次竞赛不仅考查了学生对基本知识的理解和掌握,还注重提高学生的数学问题解决能力和创新思维。
在本文中,我们将回顾这场竞赛的一些亮点和特点,并介绍一些高分选手的解题思路。
第一部分:竞赛概述1998年的全国高中数学竞赛共有三个阶段,分别是区域赛、省级赛和全国总决赛。
比赛题目涵盖了数学的各个分支,如代数、几何、数论等。
与以往相比,这一年的竞赛题目更加注重考查学生的综合能力和深刻理解。
不仅需要学生具备扎实的基础知识,还要求他们能够进行分析和推理,灵活运用所学知识解决实际问题。
第二部分:亮点和特点1. 提高问题解决能力:相比以往的竞赛,1998年的数学竞赛更加强调学生的问题解决能力。
题目不仅仅是简单的计算,更多地融入了实际情境,要求学生进行建模和推导。
这无疑对学生的思维能力提出了更高要求。
例如,在一个实际情境中,要求学生利用已知条件推导出未知量的表达式,从而解决问题。
2. 强调创新思维:竞赛题目中增加了一些开放性问题,对学生的创新思维进行考察。
这样的设计不仅可以考察学生的数学思维能力,还可以培养学生的创新意识和探索精神。
同时,这也为那些世界级的数学问题培养了后备力量。
第三部分:高分选手的解题思路以下是一些高分选手在1998年全国高中数学竞赛中的解题思路的介绍。
1. 高考满分选手李明:在一道组合数学的题目中,李明通过分析题目要求,利用排列组合知识构建了一个数学模型,然后灵活运用公式和逻辑推理,最终得出了正确答案。
他的解题思路清晰,步骤完整,充分展示了他扎实的数学基础知识和优秀的问题解决能力。
2. 常州赛区冠军张磊:在一道几何题中,张磊通过仔细观察图形的性质,找到了关键的几何特征,并利用相似三角形和角平分线的性质进行推导。
他的解题过程准确无误,体现了对几何知识的深刻理解和应用能力。
第四部分:竞赛的影响和启示1998年的全国高中数学竞赛为我国数学教育的发展做出了积极的贡献。
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY信利杯”全国初中数学竞赛试题 (17)2004年“TRULY信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
一、选择题(本题满分36分,每小题6分)1. 若a > 1, b > 1, 且lg(a + b )=lg a +lg b , 则lg(a –1)+lg(b –1) 的值( ) (A )等于lg2 (B )等于1(C ) 等于0 (D ) 不是与a , b 无关的常数2.若非空集合A={x |2a +1≤x ≤3a – 5},B={x |3≤x ≤22},则能使A ⊆A ∩B 成立的所有a 的集合是( )(A ){a | 1≤a ≤9} (B ) {a | 6≤a ≤9} (C ) {a | a ≤9} (D ) Ø6.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中, 共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37 二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.1.若f (x ) (x ∈R )是以2为周期的偶函数, 当x ∈[ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 . 2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P , Q , R .当P , Q , R 不共线时,以线段PQ , PR 为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________.3.从0, 1, 2, 3, 4, 5, 6, 7, 8, 9这10个数中取出3个数, 使其和为不小于10的偶数, 不同的取法有________种.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100, 这样的数列至多有_______项.5.若椭圆x 2+4(y -a )2=4与抛物线x 2=2y 有公共点,则实数a 的取值范围是 .6.∆ABC 中, ∠C = 90o , ∠B = 30o, AC = 2, M 是AB 的中点. 将∆ACM 沿CM 折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于__________.三、(本题满分20分)已知复数z=1-sinθ+i cosθ(π2<θ<π),求z的共轭复数-z的辐角主值.四、(本题满分20分)设函数f (x) =ax 2 +8x +3 (a<0).对于给定的负数a , 有一个最大的正数l(a) ,使得在整个区间 [0, l(a)]上, 不等式| f (x)| ≤ 5都成立.问:a为何值时l(a)最大? 求出这个最大的l(a).证明你的结论.五、(本题满分20分)已知抛物线y2= 2px及定点A(a, b), B( –a, 0) ,(ab≠ 0, b2≠ 2pa).M是抛物线上的点, 设直线AM, BM与抛物线的另一交点分别为M1, M2.求证:当M点在抛物线上变动时(只要M1, M2存在且M1 ≠M2),直线M1M2恒过一个定点.并求出这个定点的坐标.第二试二、(满分50分)设a1,a2,…,a n,b1,b2,…,b n∈[1,2]且nΣi=1a2i=nΣi=1b2i,求证:nΣi=1a3ib i≤1710nΣi=1a2i.并问:等号成立的充要条件.三、(满分50分)对于正整数a、n,定义F n(a)=q+r,其中q、r为非负整数,a=qn+r,且0≤r<n.求最大的正整数A,使得存在正整数n1,n2,n3,n4,n5,n6,对于任意的正整数a≤A,都有F n6(F n5(F n4(F n3(F n2(F n1(a))))))=1.证明你的结论.一九九八年全国高中数学联赛解答 第一试一.选择题(本题满分36分,每小题6分)2.若非空集合A={x |2a +1≤x ≤3a – 5},B={x |3≤x ≤22},则能使A ⊆A ∩B 成立的所有a 的集合是( )(A ){a | 1≤a ≤9} (B ) {a | 6≤a ≤9} (C ) {a | a ≤9} (D ) Ø 【答案】B【解析】A ⊆B ,A ≠Ø.⇒ 3≤2a +1≤3a -5≤22,⇒6≤a ≤9.故选B .4.设命题P :关于x 的不等式a 1x 2 + b 1x 2 + c 1 > 0与a 2x 2+ b 2x + c 2 > 0的解集相同;命题Q :a 1a 2=b 1b 2=c 1c 2. 则命题Q ( )(A ) 是命题P 的充分必要条件(B ) 是命题P 的充分条件但不是必要条件 (C ) 是命题P 的必要条件但不是充分条件(D ) 既不是是命题P 的充分条件也不是命题P 的必要条件【答案】D【解析】若两个不等式的解集都是R ,否定A 、C ,若比值为-1,否定A 、B ,选D .5.设E , F , G 分别是正四面体ABCD 的棱AB ,BC ,CD 的中点,则二面角C —FG —E 的大小是( )(A ) arcsin 63 (B ) π2+arccos 33 (C ) π2-arctan 2 (D ) π-arccot226.在正方体的8个顶点, 12条棱的中点, 6个面的中心及正方体的中心共27个点中, 共线的三点组的个数是( )(A ) 57 (B ) 49 (C ) 43 (D )37【答案】B【解析】8个顶点中无3点共线,故共线的三点组中至少有一个是棱中点或面中心或体中心.⑴ 体中心为中点:4对顶点,6对棱中点,3对面中心;共13组; ⑵ 面中心为中点:4×6=24组;⑶ 棱中点为中点:12个.共49个,选B .二、填空题( 本题满分54分,每小题9分) 各小题只要求直接填写结果.1.若f (x ) (x ∈R )是以2为周期的偶函数, 当x ∈[ 0, 1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 .2.设复数z=cos θ+i sin θ(0≤θ≤180°),复数z ,(1+i )z ,2-z 在复平面上对应的三个点分别是P , Q , R .当P , Q , R 不共线时,以线段PQ , PR 为两边的平行四边形的第四个顶点为S , 点S 到原点距离的最大值是___________. 【答案】3【解析】 →OS =→OP +→PQ +→PR =→OP +→OQ -→OP +→OR -→OP =→OQ +→OR -→OP=(1+i )z +2-z -z=iz +2-z=(2cos θ-sin θ)+i (cos θ-2sin θ).∴ |OS |2=5-4sin2θ≤9.即|OS |≤3,当sin2θ=1,即θ=π4时,|OS |=3.4.各项为实数的等差数列的公差为4, 其首项的平方与其余各项之和不超过100, 这样的数列至多有_______项.【答案】8【解析】设其首项为a ,项数为n .则得a 2+(n -1)a +2n 2-2n -100≤0.△=(n -1)2-4(2n 2-2n -100)=-7n 2+6n +401≥0.∴ n ≤8. 取n=8,则-4≤a ≤-3.即至多8项.(也可直接配方:(a +n -12)2+2n 2-2n -100-(n -12)2≤0.解2n 2-2n -100-(n -12)2≤0仍得n ≤8.)6.∆ABC 中, ∠C = 90o , ∠B = 30o, AC = 2, M 是AB 的中点. 将∆ACM 沿CM 折起,使A ,B 两点间的距离为 2 2 ,此时三棱锥A -BCM 的体积等于 .【答案】223【解析】由已知,得AB=4,AM=MB=MC=2,BC=23,由△AMC 为等边三角形,取CM 中点,则AD ⊥CM ,AD 交BC 于E ,则AD=3,DE=33,CE=233.折起后,由BC 2=AC 2+AB 2,知∠BAC=90°,cos ∠ECA=33. ∴ AE 2=CA 2+CE 2-2CA ·CE cos ∠ECA=83,于是AC 2=AE 2+CE 2.⇒∠AEC=90°.∵ AD 2=AE 2+ED 2,⇒AE ⊥平面BCM ,即AE 是三棱锥A -BCM 的高,AE=263. S △BCM =3,V A —BCM =223.三、(本题满分20分)2223222EBCAMD23222AEMDCB四、(本题满分20分)设函数f (x) =ax2 +8x+3 (a<0).对于给定的负数a , 有一个最大的正数l(a) ,使得在整个区间 [0, l(a)]上, 不等式| f (x)| 5都成立.问:a为何值时l(a)最大? 求出这个最大的l(a).证明你的结论.五、(本题满分20分)已知抛物线y 2 = 2px 及定点A (a , b ), B ( – a , 0) ,(ab ≠ 0, b 2≠ 2pa ).M 是抛物线上的点, 设直线AM , BM 与抛物线的另一交点分别为M 1, M 2. 求证:当M 点在抛物线上变动时(只要M 1, M 2存在且M 1 ≠ M 2.)直线M 1M 2恒过一个定点.并求出这个定点的坐标.第二试一、(满分50分)如图,O 、I 分别为△ABC 的外心和内心,AD 是BC 边上的高,I 在线段OD 上。
98年北京市中考试题班级____ 学号____ 姓名____ 得分____一、单选题(1-4每题3分, 5-20每题4分, 共76分)1. 3的相反数是[ ]2. 要了解一批灯泡的使用寿命,从中任取50个灯泡进行试验.在这个问题中,50个灯泡的使用寿命是[ ]A.个体B.总体C.样本容量D.总体的一个样本3. (a2)3计算结果是[ ]A.a6B.a5C.a8D.a94. 如果两圆的公切线只有两条,那么这两个圆的位置关系是[ ]A.相交B.外离C.内切D.外切6. 0.009887用科学记数法表示为[ ]A.0.9887×10-2B.9.887×10-2C.9.887×10-3D.98.87×10-47. 点P(-1,-3)关于y轴对称的点的坐标是[ ]A.(-1,3)B.(1,3)C.(3,-1)D.(1,-3)A.1个B.2个C.3个D.4个A.x≠0 B.x≠-3 C.x≠3 D.x>-311. 为了了解某区初一年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下面说法中正确的是[ ]A.7000名学生是总体B.每个学生是个体C.500名学生是所抽取的一个样本D.样本的容量是50012. 如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为[ ]A.120°B.80°C.60°D.40°14. 如果一个多边形的内角和等于720°,那么这个多边形是[ ]A.四边形B.五边形C.六边形D.七边形15. 在半径为12cm的圆中,150°的圆心角所对的弧长等于[ ]16. 如果正四边形的边心距为2,那么这个正四边形的外接圆的半径等于[ ]17. 如果圆柱的母线长为10cm,侧面积为60πcm2,那么圆柱的底面半径等于[ ] A.3cm B.6cm C.9cm D.12cm18. 如果⊙O中弦AB与直径CD垂直,垂足是E,且AE=4,CE=2,那么⊙O的半径等于[ ]20. 如果x1x2是两个不相等的实数,且满足x12-2x1=1,x22-2x2=1,那么x1·x2等于[ ]A.2 B.-2 C.1 D.-1二、计算题( 5分)三、解答题(1-2每题5分, 第3小题7分, 第4小题8分, 第5小题9分, 共34分)2. 列方程或方程组解应用题:A、B两地间的路程为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分后,乙车从B地出发开往A地,每小时行驶48km.两车相遇后,各自仍按原速度原方向继续行驶.那么相遇以后两车相距100km时,甲车从出发开始共行驶了多少小时?3. 如图,在△ABC中,∠C=90°,D是BC边上一点,DE⊥AB于E,∠ADC=45°,若DE∶AE=1∶5,BE=3,求△ABD的面积.4. 如图,AB为半圆的直径,O为圆心,AB=6,延长BA到F,使FA=AB.若P为线段AF上的一个动点(P点与A点不重合),过P点作半圆的切线,切点为C,作CD⊥AB,垂足为D.过B点作BE⊥PC,交PC的延长线于点E.连结AC、DE.(1)判断线段AC、DE所在直线是否平行,并证明你的结论;(2)设AC为x,AC+BE为y,求y 与x 的函数关系式,并写出自变量x 的取值范围.5. 已知二次函数y=x2-(2m+4)x+m2-4(x为自变量) 的图象与y轴的交点在原点的下方,与x轴交于A、B两点,点A在点B的左边,且A、B两点到原点的距离AO、OB 满足3(OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图象的一个交点为P,且锐角∠POB的正切值为4.(1)求这个二次函数的解析式;(2)确定直线y=kx+k的解析式.四、证明题( 5分)已知:如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠ADF=∠CBE.。
历届中国数学奥赛
中国数学奥林匹克竞赛是一个全国性的数学竞赛,旨在发掘和培养数学人才,自1985年开始每年举办。
以下是历届中国数学奥赛的
简要回顾:
1985年:首届中国数学奥赛在上海举行,共有20个省市的88
名学生参加,比赛分为初赛和决赛两个阶段。
1992年:第八届中国数学奥赛在北京举办,吸引了来自全国24
个省市的200余名选手参加。
1999年:第十五届中国数学奥赛在重庆举行,共有来自全国31
个省市的340名学生参赛,同时也是历届中国数学奥赛中规模最大的一次。
2006年:第22届中国数学奥赛在广西南宁举行,共有来自全国29个省市和港澳台地区的近400名优秀学生参加。
2013年:第29届中国数学奥赛在广东梅州举行,共有来自全国31个省市的400多名学生参赛,比赛中涵盖了初中和高中两个阶段。
2019年:第35届中国数学奥赛在四川成都举行,共有来自全国31个省市的424名学生参赛,其中包括中国大陆、港澳台地区和海
外华人。
历届中国数学奥赛的题目难度逐年提高,内容也逐渐涵盖了数论、代数、几何、概率等多个数学领域,为数学爱好者们提供了一个锻炼自己的平台。
- 1 -。
10向量与向量方法(一)1.(2004年上海春季高考题)在ΔABC 中,有命题①AB AC BC -=;②0AB BC CA ++=;③若()()0AB AC AB AC +⋅-=,则ΔABC 为等腰三角形;④若0AC AB ⋅>,则ΔABC 为锐角三角形.上述命题正确的是 ( )A .① ②B .① ④C .② ③D .② ③ ④2.已知O 为坐标原点,OM =(-1,1),NM =(-5,-5),集合A ={OR ||RN|=2},OP 、OQ ∈A ,(, 0)MP MQ R λλλ=∈≠,则MP ·MQ =_________________.3.已知向量a =-e 1+3e 2+2e 3,b =4e 1-6e 2+2e 3,c =-3e 1+12e 2+11e 3,问a 能否表示成a =λ1b +λ2c 的形式?若能,写出表达式;若不能,说明理由.4.已知a ,b 是两非零向量,若a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,试求a ,b 的夹角.5.设向量a ,b 满足|a |=|b |=1及|3a -2b |=3. 求|3a +b |的值.引申 已知向量a ,b 满足|a |=|b |=r ,11||a b λμ+=R ,试求22||a b λμ+的值.6.设A 、B 、C 、D 是坐标平面上的四点,它们的坐标分别为:A(A x ,A y ),B(B x ,B y ), C(C x ,C y ),D(D x ,D y ),且它们中任意三点不共线.试证明:四边形ABCD 为正方形的充要条件为 (B x -A x ,B y -A y )=(C x -D x ,C y -D y ), 且(B x -A x )(C x -B x )+(B y -A y )(C y -B y )=0.7.如图,设四边形P 1P 2P 3P 4是圆O 的内接正方形,P 是圆O 上的任意点. 求证:22221234||||||||PP PP PP PP +++为定值.OPP 1P 4P 38.如图,设P1,P2,P3,…,P n,是圆O内接正n边形的顶点,P是圆O上的任意点,求证:22212nPP PP PP+++为定值.9.空间有十个点A1,A2,…,A10,试求一个点P,使2221210PA PA PA+++为最小.10.如图,空间四边形ABCD中,点E分AB及点F分DC所成的比均为λ,则111EF AD BCλλλ=+++.11.一个物体受到同一个平面内三个力F1、F2、F3的作用,沿北偏东45°的方向移动了8m,其中|F1|=2N,方向为北偏东30°;|F2|=4N,方向为东偏北30°;|F3|=6N,方向为西偏北60°,求合力所作的功.12.设M、N分别是正六边形ABCDEF的对角线AC、CE的内分点,且AM CNAC CE==λ,若B、M、N共线,求λ的值.HGFEDCBAF·BCDENMyxO13.如图,在ΔOAB 中,OC OA =14,OD OB =12,AD 与BC 交于M 点,设OA a =, OB b =. (1)用a ,b 表示OM ;(2)已知线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE pOA =,OF qOB =,求证:p q+=13177.14. (2002年高考试题)已知两点M(-1,0),N(1,0),且点P 使MP ·MN ,PM ·PN ,NM ·PN 成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 的坐标是(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.(二)1.已知,a b R +∈,,m n R ∈,222222m n a m b n >+,令2M m n 2=+,N a b =+.则MD ABC EFOM与N 的大小关系是 ( )A .M>NB .M<NC .M =ND .M 、N 间的大小关系不能确定(2000年河北省高中数学竞赛试题) 2.实数, , x x x 123满足x x x ++=12311123,及x x x ++=22212311323,则x 3的最小值是______________________. (1993年上海市高三数学竞赛试题)3.(证明恒等式)(1)已知2222222()()()x y z a b c ax by cz ++++=++,且x 、y 、z 、a 、b 、c 为非零实数,求证:x y za b c==.4.(求值)(1)已知22(1)(1)3(21)x y xy ++=-,试求1()y x y-的值。
2018年北京市中学生数学竞赛初二年级获奖名单一等奖(94名)姓名学校年级姓名学校年级唐锦琪人大附中初一樊骏一人大附中初一袁浩然人大附中初二杨丽鸿清华附中初二陈竞帆人大附中初二段睿思清华附中初二关乃粼人大附中早六宋知轩清华附中初一张世奇人大附中初二沈芸伍清华附中初二张世潇北师大实验中学初一许易清华附中初二赵亦阳十一学校初二张一锐清华附中初二王浩霖人大附中初一潘宇锐北京一零一中初二廖昱博人大附中初一陈昕宇北京一零一中初二李永一人大附中初一李昊轩人大附中初一王原北大附中初二苗硕人大附中初二邹听雨十一学校初一黄安辀人大附中初一张书豪十一学校初二梁恒睿人大附中分校初一黄亦骐人大附中早六王俣涵北大附中初二宋嘉玺人大附中初二武正坤人大附中初一胡殊闻人大附中早六卢远人大附中初一王誉墨北师大实验中学初二谢昊霖人大附中初一贾博暄人大附中初二黄鹤鸣人大附中初一黄子萌北师大实验中学初二曲兆轩牛栏山一中实验学校初二张涵之人大附中初二阮宗泽人大附中初一陈嘉雪人大附中初二王慕涵人大附中初二徐健十一学校初一许睿泽北师大实验中学初二徐文昕人大附中初一许远航北京一零一中初二周亚琪清华附中初二刘若易北师大实验中学初二肖子健清华附中初一李海峰清华附中初一孙胤博人大附中初一许子涵人大附中初一王小龙人大附中早六朱祎然北京二中分校初二陈吉轲人大附中初二张元之清华附中初二李思学北大附中初二郭逸远北京一零一中初一廖原北京五中分校初二吴迪北师大实验中学初二王默涵清华附中初一钟沐阳人大附中初二刘星彤清华附中初二陈宇轩人大附中早六张皓翔北京一零一中初一蓝漩十一学校初二张章北京一零一中初二邓宇晨人大附中初一修时雨人大附中初二邓怡馨人大附中初一游天宇人大附中初一刘馨阳人大附中初一孙晓森清华附中初二吕博涵清华附中初二刘睿韬清华附中初一高子昂清华附中初一邹岳桐人大附中初二虞明达清华附中初一何翰韬十一学校初一李祖豫人大附中早六徐烨堃十一学校初二王中天人大附中初二张翔宇人大附中初二左泽成北师大实验中学初二张皓天北师大实验中学初一吴紫菱北师大实验中学初二张远洋人大附中初一罗天择人大附中初二高梓博人大附中初二卢天戈北大附中初二陈坤宁人大附中初二范唯楚清华附中初一张庭语人大附中初一付紫成人大附中初一二等奖(144名)姓名学校年级姓名学校年级范天舒人大附中初二齐锴人大附中初一张家铭人大附中初二李安之北京二中分校初二蔡振浩人大附中初二肖翊宸人大附中初一王凤怡人大附中初二袁籁人大附中初一孟博彰人大附中初一张泰然人大附中初一晁一沣人大附中初二彦昕人大附中初一王培阳清华附中初一孙嘉鸿人大附中初一毛嘉琛人大附中初一郭尉含章人大附中初二刘一铭清华附中初一栗选丞人大附中早六陈胤彤清华附中初二葛皓天人大附中初一李汝诚清华附中初二董亦麟人大附中初二曾广宇清华附中初二查益清华附中初二曹硕清华附中六年顾芸萌北师大实验中学初二张邵博清华附中初一丛诗雨北京一零一中初二张智清人大附中初二于天润北京一零一中初二王梓畅人大附中初一王梓翔人大附中初一杨昊源北京一零一中初二刘俊宏人大附中初一李宗润北师大实验中学初二洪维清华附中初一张一博北师大实验中学初二蒋辰昊人大附中初一刘以诺清华附中初二高慈欣北京一零一中初二吴梦晗清华附中初二董昀翱人大附中初一刘嫁新清华附中初二张天意北师大实验中学初二孙嘉阳清华附中初一翟凌飞人大附中早六夏海闻北师大实验中学初一朱泽睿人大附中初二陈宇奇人大附中初一周以端十一学校初二董天诺人大附中初二张煦恒人大附中初一吴飞扬人大附中初二李易铭人大附中初一段文博人大附中初二李飞跃十一学校初二郑元彬人大附中初二王羽健十一学校初二夏一桐人大附中初一斯文人大附中初二苗可明人大附中初一吴奕涵人大附中初一钱海天人大附中初一赵宸宇北京二中分校初二陆雪松人大附中初二李佳俊清华附中初二肖旭磊十一学校初一陈彦旭清华附中初二李春进人大附中早六王子兮清华附中初二乔铎北京亦庄实验中学初二李子豪清华附中初一郭俊游人大附中早六常三思人大附中初一黄俊维人大附中早六吕逍依人大附中初一王雨晗十一学校初二王镜廷人大附中早六龙韬智十一学校初二祝世博十一学校初二吴青阳人大附中初二陆洲锋北京二中分校初二龚云锋牛栏山一中实验学校初二黄兆屹人大附中分校初二方郑琦牛栏山一中实验学校初二张广源清华附中初一徐定坤人大附中初二刘一晨北京一零一中初二周蔚然人大附中初二张致远北京二中分校初二崔焱扬北京二中分校初二陈炫东北大附中初二张逸轩北大附中初一赵泽昕人大附中分校初二陈灵钧北京五中分校初二肖惠文清华附中六年黎丹宇北大附中初二张殊赫北京一零一中初二申君皓清华附中初二李依桐北京一零一中初二赵培源清华附中初二汪远北京一零一中初二韩羽霄清华附中初二姚亦嵩北京一零一中初二关清元人大附中初一李思颖北京一零一中初二余凌越清华附中初二李奕含北师大实验中学初二卞皓晨北师大实验中学初二吕彦荣北师大实验中学初二陈霁芸人大附中早六田昊霖人大附中初一耳昶玮人大附中初二孟晙阳北京二中分校初二王子初北京二中分校初二刘语玹人大附中初二刘任达北京四中初二郭晟毓十一学校初二申奕坤人大附中初二徐皓天人大附中初二马迹昀十一学校初一胡晓君人大附中初二阮家琪人大附中初一张子睿人大附中分校初一王子鸣人大附中初一徐金人大附中初二吴雨轩人大附中初二王子涵人大附中早六李铭泽清华附中初一陈智谦人大附中初二徐启鑫清华附中初一董雪瑞北大附中初二郑睿阳清华附中初二杨子谦北京五中分校初二杨舒涵清华附中初二付浩辰十一学校初二刘语涵清华附中初一赵柯人大附中初一荆明健清华附中初二蒋穆清人大附中初一李浩明北师大实验中学初一许景粟人大附中初一张涵钰清华附中初一郑睿阳清华附中初二三等奖(123名)姓名学校年级姓名学校年级刘相卿清华附中初二赵天珺十一学校-初二杜胤臻清华附中初二杨成科人大附中初一钱铭阳清华附中初二李卓言北京五中分校初二张文健清华附中初二李天圣北大附中初一陈楚瑜清华附中初二陈桢懿北大附中初二董予人大附中初一陈灿首师大附中初二赵一辰北师大实验中学初二张逸扬北京二中分校初二陈誉霄人大附中初二蔡泊屹北大附中初一周子昂人大附中初二马昊宇十一学校初二张雪桢北京二中分校初二苗瀚文人大附中初一王帅烨人大附中早六鲍俊辰清华附中初二张冰喆人大附中初一张宁远清华附中初二王泽尘人大附中初二张天翼清华附中初二田笑冰北京五中分校初二贺家琦北师大实验中学初一李昀濠清华附中初一张雨桐北京一零一中初二李金宸清华附中初一余瑶北师大实验中学初二孙一文清华附中初一张杰辰北京一零一中初二陆宜行十一学校初二杨谨毓北京一零一中初一周雪阳清华附中初一梁毓北师大实验中学初二孙家瑞人大附中初二杨博涵北师大实验中学初二李一申北京五中分校初二诸晨岳清华附中初二韩沛瑾人大附中初一郭馨锴清华附中初二康恺文牛栏山实验中学初二王一飞清华附中初二梁宸菲牛栏山实验中学初二关澜清华附中初二张喆人大附中初二宋清岳清华附中初二李诗均北大附中初一许赫男清华附中初一杜恒奕北京二中分校初二杨凡楷清华附中初二卢思翰人大附中早六吕桉驰清华附中初二杨紫雄人大附中初二汪佳萱北师大实验中学初二朱炯亦首师大附中初一李子闻北师大实验中学初一匡天一北京二中分校初二杨润欣北师大实验中学初一王彦翔北京四中初二刘孟歆北师大实验中学初一石家霖人大附中初二徐鼎新人大附中分校初一徐隽镕人大附中早六姬奕晨北京一零一中初二罗嘉祺北京一零一中初二高飞人大附中初二张亦鑫人大附中初一张沁月北大附中初二汪宁北京二中分校初二贾天歌人大附中初一王雨桉北京四中初二吴道宁人大附中初一张童开首师大附中初二李思海人大附中初一丁牧云北京市第十二中学初二魏梦萱人大附中初一刘涵柞人大附中初二邢琬瑜人大附中早六高欢瑜人大附中早六方大容人大附中初一何思远清华附中初二陈瑞泽首师大附中初一任墨也人大附中初二郑文博首师大附中初二王禹腾清华附中初二里正阳北京四中初二陈禹铭清华附中初二何阳松人大附中初二侯博文十一学校初一许昊翔人大附中早六东紫昭十一学校初二丁天岚人大附中初一王润山十一学校初一王泽芃北京四中初二隋远昊十一学校初一陈子璐北京一零一中初二史洪毓人大附中初一高江山清华附中初二杨佳营北京五中分校初二纪明悦清华附中初二迟嘉会北京五中分校初二李熙民北师大实验中学初二张语轩人大附中初二战治成师达中学初二王众一人大附中初二张斗和人大附中初二温雪岭人大附中初二王心睿人大附中初二刘羿镝人大附中初二孟繁钰人大附中初二张皓翔人大附中初二张婧婷十一学校初一刘俊扬人大附中初一闫岳霖牛栏山一中实验学校初二张戈飞人大附中早六张天艺牛栏山一中实验学校初二侯梓超人大附中初二杨卓然首师大附中初二陈含哲北京一零一中初二。
1988年全国高中数学联赛试题第一试(10月16日上午8∶00——9∶30)一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分):1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x +y=0对称,那么,第三个函数是( )A .y=-φ(x )B .y=-φ(-x )C .y=-φ-1(x )D .y=-φ-1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1<k <1 D .0<|k |<1 3.平面上有三个点集M ,N ,P :M={(x ,y )| |x |+|y |<1}, N={(x ,y )|+<2(x -\f (1,2))2+(y +\f (1,2))2(x +\f (1,2))2+(y -\f (1,2))2},2 P={(x ,y )| |x +y |<1,|x |<1,|y |<1}.则A .M P NB .M N PC .P N MD .A 、B 、C 都不成立⊂ ≠⊂ ≠⊂ ≠⊂ ≠⊂ ≠⊂≠4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a ,β∩γ=b ,γ∩α=c .若有 命题甲:θ>;π3命题乙:a 、b 、c 相交于一点.则A .甲是乙的充分条件但不必要B .甲是乙的必要条件但不充分C .甲是乙的充分必要条件D .A 、B 、C 都不对5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠Ø. ⑶ M ≠Ø. ⑷ P ≠Ø中,正确的表达式的个数是A .1B .2C .3D .4 二.填空题(本大题共4小题,每小题10分):1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3a 2-a 1= .2.(+2)2n +1的展开式中,x 的整数次幂的各项系数之和为 .x 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则= .DEBC4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 .三.(15分)长为,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.2四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置.五.(15分)已知a 、b 为正实数,且+=1,试证:对每一个n ∈N *,1a 1b(a +b )n -a n -b n ≥22n -2n +1.1988年全国高中数学联赛二试题一.已知数列{a n },其中a 1=1,a 2=2,a n +2={5a n+1-3a n (a n ·a n +1为偶数),a n +1-a n (a n ·a n +1为奇数).)试证:对一切n ∈N*,a n ≠0.二.如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:>.S ∆PQR S∆ABC 29三.在坐标平面上,是否存在一个含有无穷多直线l 1,l 2,……,l n ,…的直线族,它满足条件:N ACBPQR H⑴点(1,1)∈l n,(n=1,2,3,……);⑵k n+1=a n-b n,其中k n+1是l n+1的斜率,a n和b n分别是l n在x轴和y轴上的截距,(n=1,2,3,……);⑶k n k n+1≥0,(n=1,2,3,……).并证明你的结论.1988年全国高中数学联赛解答一试题一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分):1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x +y=0对称,那么,第三个函数是( )A .y=-φ(x )B .y=-φ(-x )C .y=-φ-1(x )D .y=-φ-1(-x ) 解:第二个函数是y=φ-1(x ).第三个函数是-x=φ-1(-y ),即y=-φ(-x ).选B .2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1<k <1 D .0<|k |<1 解:因是椭圆,故k ≠0,以(0,0)代入方程,得k 2-1<0,选D .3.平面上有三个点集M ,N ,P :M={(x ,y )| |x |+|y |<1}, N={(x ,y )|+<2(x -\f (1,2))2+(y +\f (1,2))2(x +\f (1,2))2+(y -\f (1,2))2},2 P={(x ,y )| |x +y |<1,|x |<1,|y |<1}.则A .M P NB .M N PC .P N MD .A 、B 、C 都不成立⊂ ≠⊂ ≠⊂ ≠⊂ ≠⊂ ≠⊂≠解:M 表示以(1,0),(0.1),(-1,0),(0,-1)为顶点的正方形内部的点的集合(不包括边界);N 表示焦点为(,-),(-,),长轴为2的椭圆内部的点的集合,P 表示由x +y=±1,x=±1,y=±1121212122围成的六边形内部的点的集合.故选A .4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a ,β∩γ=b ,γ∩α=c .若有 命题甲:θ>;π3命题乙:a 、b 、c 相交于一点.则A .甲是乙的充分条件但不必要B .甲是乙的必要条件但不充分C .甲是乙的充分必要条件D .A 、B 、C 都不对 解:a ,b ,c 或平行,或交于一点.但当a ∥b ∥c 时,θ=.当它们交于一点时,<θ<π.选C .π3π35.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠Ø. ⑶ M ≠Ø. ⑷ P ≠Ø中,正确的表达式的个数是A .1B .2C .3D .4 解:均正确,选D .二.填空题(本大题共4小题,每小题10分):1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3a 2-a 1= .解:a 2-a 1=(y -x ),b 4-b 3=(y -x ), =.1423b 4-b 3a 2-a 1832.(+2)2n +1的展开式中,x 的整数次幂的各项系数之和为 .x 解:(+2)2n +1-(-2)2n +1=2(C 2x n +C 23xn -1+C 25x n -2+…+C 22n +1).x x 12n +132n +152n +12n +12n +1令x=1,得所求系数和=(32n +1+1).123.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则= .DEBC解:△AED ∽△ABC ,==|cos α|.DE BC ADAC4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 .解 画1行14个格子,每个格子依次代表一场比赛,如果某场比赛某人输了,就在相应的格子中写上他的顺序号(两方的人各用一种颜色写以示区别).如果某一方7人都已失败则在后面的格子中依次填入另一方未出场的队员的顺序号.于是每一种比赛结果都对应一种填表方法,每一种填表方法对应一种比赛结果.这是一一对应关系.故所求方法数等于在14个格子中任选7个写入某一方的号码的方法数.∴共有C种比赛方式.714三.(15分)长为,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的2体积.解:过轴所在对角线BD 中点O 作MN ⊥BD 交边AD 、BC 于M 、N ,作AE ⊥BD 于E ,则△ABD 旋转所得旋转体为两个有公共底面的圆锥,底面半径AE==2363.其体积V=()2·=π.同样,π3633239△BCD 旋转所得旋转体的体积=π.239其重叠部分也是两个圆锥,由△DOM ∽△DAB ,DO=,OM==.32DO ·AB DA 64O N MEBCDA∴其体积=2·π·()2·=π.13643238∴ 所求体积=2·π-π=.2393823723π四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置.解:Z 1=-,故得|--Z 0|=||,即|ZZ 0+1|=1.|Z +|=||.即以-为圆心||为半径的圆.1Z 1Z 1Z 1Z 01Z 01Z 01Z0五.(15分)已知a 、b 为正实数,且+=1.试证:对每一个n ∈N *,1a 1b(a +b )n -a n -b n ≥22n -2n +1.证明:由已知得a +b=ab .又a +b ≥2,∴ ab ≥2,故a +b=ab ≥4.于是(a +b )k =(ab )k ≥22k .ab ab 又 a k +b k ≥2=2≥2k +1.下面用数学归纳法证明:a k b k (a +b )k 1° 当n=1时,左=右=0.左≥右成立.2° 设当n=k (k ≥1,k ∈N )时结论成立,即(a +b )k -a k -b k ≥22k -2k +1成立.则(a +b )k +1-a k +1-b k +1=(a +b )(a +b )k -(a k +b k )(a +b )+ab (a k -1+b k -1)=(a +b )[(a +b )k -a k -b k ]+ ab (a k -1+b k -1)≥4∙(22k -2k +1)+4∙2k =22(k +1)-4∙2k +1+4∙2k =22(k +1)-2(k +1)+1.即命题对于n=k +1也成立.故对于一切n ∈N *,命题成立.二试题一.已知数列{a n },其中a 1=1,a 2=2,a n +2={5a n+1-3a n (a n ·a n +1为偶数),a n +1-a n (a n ·a n +1为奇数).)试证:对一切n ∈N *,a n ≠0.(1988年全国高中竞赛试题)分析:改证a n ≢0(mod 4)或a n ≢0(mod 3).证明:由a 1=1,a 2=2,得a 3=7,a 4=29,……∴ a 1≡1,a 2≡2,a 3≡3(mod 4).设a 3k -2≡1,a 3k -1≡2,a 3k ≡3(mod 4).则 a 3k +1≡5×3-3×2=9≡1(mod 4);a 3k +2≡1-3=-2≡2(mod 4);a 3k +3≡5×2-3×1=7≡3(mod 4).根据归纳原理知,对于一切n ∈N ,a 3n -2≡1,a 3n -1≡2,a 3n ≡3(mod 4)恒成立,故a n ≢0(mod 4)成立,从而a n ≠0.又证:a 1≡1,a 2≡2(mod 3).设a 2k -1≡1,a 2k ≡2(mod 3)成立,则当a 2k -1∙a 2k 为偶数时a 2k +1≡5×2-3×1≡1(mod 3),当a 2k -1∙a 2k 为奇数时a 2k +1≡2-1≡1(mod 3),总之a 2k +1≡1(mod 3).当a 2k ∙a 2k +1为偶数时a 2k +2≡5×1-3×2≡2(mod 3),当a 2k ∙a 2k +1为奇数时a 2k +2≡1-2≡2(mod 3),总之,a 2k +2≡2(mod 3).于是a n ≢0(mod 3).故a n ≠0.二.如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:>.S ∆PQR S∆ABC 29证明:作△ABC 及△PQR 的高CN 、RH .设△ABC 的周长为1.则PQ=.13则==·,但AB <,于是>,S ∆PQR S∆ABC PQ ·RH AB ·CN PQ AB ARAC 12PQ AB 23AP ≤AB -PQ <-=,∴ AR=-AP >,AC <,故>,从而>.121316131612AR AC 13S ∆PQR S∆ABC 29三.在坐标平面上,是否存在一个含有无穷多直线l 1,l 2,……,l n ,…的直线族,它满足条件:⑴ 点(1,1)∈l n ,(n=1,2,3,……);⑵ k n +1=a n -b n ,其中k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,(n=1,2,3,……);⑶ k n k n +1≥0,(n=1,2,3,……).并证明你的结论.证明:设a n =b n ≠0,即k n -1=-1,或a n =b n =0,即k n =1,就有k n +1=0,此时a n +1不存在,故k n ≠±1.现设k n ≠0,1,则y=k n (x -1)+1,得b n =1-k n ,a n =1-,∴ k n +1=k n -.此时k n k n +1=k n 2-1.1k n 1kn ∴ k n >1或k n <-1.从而k 1>1或k 1<-1.⑴ 当k 1>1时,由于0<<1,故k 1>k 2=k 1->0,若k 2>1,则又有k 1>k 2>k 3>0,依此类推,知当k m >1时,1k 11k1有k 1>k 2>k 3>∙…>k m >k m +1>0,且0<<<…<<1,1k 11k 21km k m +1=k m -<k m -=k m -1--<k m -1-<…<k 1-.1k m 1k 11k m -11k 12k 1mk 1由于k 1-随m 的增大而线性减小,故必存在一个m 值,m=m 0,使k 1-≤1,从而必存在一个m 值m=m 1≤m k 1m 0k1m 0,使k ≥1,而1>k =k ->0,此时k ·k <0.m 1-1 m 1 m 1-11km 1m 1+1即此时不存在这样的直线族.⑵ 当k 1<-1时,同样有-1<<0,得k 1<k 2=k 1-<0.若k 2<-1,又有k 1<k 2<k 3<0,依此类推,知当k m <-11k 11k1时,有k 1<k 2<k 3<∙…<k m <k m +1<0,且0>>>…>>-1,1k 11k 21km N ACBPQR Hk m +1=k m ->k m -=k m -1-->k m -1->…>k 1-.1k m 1k 11k m -11k 12k 1mk 1由于k 1-随m 的增大而线性增大,故必存在一个m 值,m=m 0,使k 1-≥-1,从而必存在一个m 值,m k m m 0k1m=m 1(m 1≤m 0),使k ≤-1,而-1<k =k -<0,此时k ·k <0.m 1-1 m 1m 11km 1m 1+1即此时不存在这样的直线族.综上可知这样的直线族不存在.。
一道经典题的“裂变”纵观近几年各地的中考题,发现有些题目都是以某一问题为背景,进行加工改造、拓展延伸、迁移演变而成的,这些变化后的题目有时数量挺多,我们不妨称之谓题目的“裂变”.现举例如下.一、试题回放如图1,正方形ABCD被两条与边平行的线段EF、GH分割成四个小矩形,P是EF 和GH的交点,若矩形PFCH的面积恰是矩形AGPE的面积的2倍,试确定∠HAF的大小,并证明你的结论.这是1998年北京市中学生数学竞赛试题,其简略证明如下:二、试题“裂变”1、加工改造使用探究以上证明中有①、②两个结论产生,显然此两结论在正方形的背景下可以互相推出.题目1 边长为1的正方形ABCD被两条与边平行的线段EF、GH分割成四个小矩形,EF与GH的交点为P(参见图1).(1)若AG=AE,证明:AF=AH;(2)若∠HAF=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.简析(1)是一种特殊的状态,显然由△ABF≌△ADH可得;(2)是根据原题证明中的①、②两个结论可以互相推出直接引用,证明略;题目2 如图2,在正方形ABCD中,E是AB上一点、F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图2中,若G在AD上,且∠GCE=45°,求证:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE =4,求DE的长.简析本题将原题的证明过程直接引用,使问题简单而具有层次性.(1)(2)证明略;(3)根据以上经验,由题目条件首先将图3补全为正方形ABCG,则有2、拓展延伸使用再探究图1中,进一步易得△CHF的周长=正方形边长的2倍.作AK⊥FH,K为垂足,因为△FAH≌△FAH',所以AK=AB,同时易得△ABF≌△APF.△ADH≌△APH.题目3 如图4,在正方形ABCD中,点E、F分别在BC、CD上移动,但点A到EF 的距离AH始终保持与AB长相等,问点E、F移动过程中:(1)∠EAF的大小是否有变化?说明理由;(2)△ECF的周长是否有变化?说明理由.简析(1)由以上的探讨,可知本题是已知∠EAF=45°,则AH=AB的逆命题.由△ABE≌△AHE和△ADF≌△AHF不难得出,所以∠EAF=45°不变;(2)△ECF的周长=正方形ABCD的边长的2倍也不变.题目4 如图5,△ABC中,已知∠BAC=45°,AD⊥BC于点D,BD=2,DC=3,求AD的长.探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AECF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.简析(1)利用轴对称的性质,不难得出∠EAF=90°.题目5 (1)如图6,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=12BC,求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.简析本题是与圆的有机结合,除(1)利用圆的知识求解外,(2)(3)与上题相同.(1)∠BAC=45°;(2)证明略;(3)AD=12.题目6 已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图7.求证:MN2=AM2+BN2;(2)当扇形CEF绕点C旋转至图8的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.简析(1)由以上的探讨启发,可将△BCA'沿CF翻折,则点B可落在弧EF的D点上,连结DM,不难推出△CDM≌△CAM,从而得到Rt△DMN,再由勾股定理得出本结论;(2)此关系式仍然成立,证明略.三、迁移演变使用再探究由原题的推证可以发现,要想得到DH+BF=FH的结论,可将条件削弱些,不要正方形,只要AB=AD,∠B+∠D=180°.且2∠FAH=∠BAD(如图9)即可.(证明略.)题目7 已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于点E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图10(1)),求证:AE+CF=EF;(2)当∠MBN绕B点旋转到AE≠CF时,在图10(2)、(3)这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.简析(1)略;(2)由以上探究,图10(2)的情况成立.而图10(3)的情况不成立,此时三线段满足AE -CF=EF.P、M、F、C、H、N六点均在以FH为直径的圆上;FH是以A为圆心,AB为半径的圆的切线;等等.以上亦可作为编纂相关新题的资源,本文不再赘述,有兴趣的读者可以继续探讨.本文列举了由这道经典老题“裂变”出的部分中考试题,仅此足以看出这道老题的知识含量,感受几何变化的魅力.可见通过拓宽问题的生成空间,深度探究问题的实质,不但能巩固知识、锻炼思维,而且为几何命题提供了丰富的资源.所以,我们在平时的学习中应多思考、多探究、多创新,以点带面,从而使知识融会贯通,思维灵活顺畅,应试能力也会大大提升.。
一 一列方程解应用题[例1] 甲、乙两人同时分别从A 、B 两地相向出发,相遇时乙比甲多走4千米,相遇后,甲再走2小时30分到达B 地,乙再走1小时36分钟到A 地.求A 、B 两地之间的距离.2、一个容器盛满酒精20升,第一次倒出若干升,再注满水,第二次倒出同样的升 数,然后再注满水,这时容器内的纯酒精只有原来的41,问第一次倒出的纯酒精是多少升?[例3]一个二位数是一个一位数的平方数,把这个一位数放在这个二位数的左边所组成的三位数,比把这个一位数放在这个二位数的右边所组成的三位数大252.求这个二位数.例1 96年二期国债于1996年8月发行,年息10.96%,3年后到期一次还本付息,不计复利.如果今年购买4000元国债,3年后到期可以兑得本息共多少元?例2 某药厂由于采用了新型配方,使某种药品经过两次调整,成本价由8元降低到6.48元.问平均每次降价百分之几?例3 某林场3年里共造林728公顷,已知第一年造林200公顷,求后两年造林面积的年平均增长率.例4 一个容器中盛满纯酒精,从这个容器里倒出5升纯酒精后,加水注满容器;再倒出5升混合溶液,然后又加水注满容器,这时容器中纯酒精与水的比为16:9,问这个容器中原盛有多少纯酒精?【题7】已知多项式x 2+2m(m+3)x+4为完全平方式,问m 应取什么数值?【题9】有一个两位数,个位数字与十位数字的和为9,如果调换两位数字,所得数的平方比原来的数的10倍多9,求原来的两位数.【题10】 有一面积为150m 2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成.如果竹篱笆的长为35m ,求鸡场的长、宽各为多少米?[练习题] 1.一边靠墙,另三边用竹篱笆围成一个面积为130m 2的长方形花坛,如果竹篱笆长33m ,墙长15m ,问花坛的长和宽各是多少米时,才能使篱笆正好合适?2.用24cm 长的铁丝做成一个长方形的框架,要使长方形框架的面积是(1)35(cm)2;(2)36(cm)2;(3)37(cm)2.求它的长、宽各是多少?【题11】 某人第一年养鸭320只,计划第三年养鸭500只,问年平均增长率是多少?[练习题]1.某工厂计划在两年内把产值翻一番(原来的2倍),那么每年产值的年平均增长率是多少(精确到1%)?2.某单位计划节约用电,使三月份的用电量比一月份节约19%,求月平均节约用电的百分比.例1 一个两位数,十位数与个位数字之和是5,把这个数的个位数与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数.例2 一个长方形,它的长比宽的2倍还多1厘米,它的宽与另一正方形的边长相同,且这个长方形的面积比正方形的面积多72平方厘米,求此长方形与正方形的面积各是多少?例3 已知三个连续奇数的平方和为371,求这三个奇数.例4 有一个直角三角形三边的长为三个连续整数,求三边的长.例5 如图,在△ABC 中,∠B =90°,点P 从点A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始,沿BC 边向点C 以2厘米/秒的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8平方厘米?例6 某商场今年一月份销售额为60万元,二月份销售额下降10%,后改进经营管理,月销售额大幅度上升,到四月份月销售额已达到96万元.求三、四月份平均每月增长的百分率是多少?(精确到0.1%)例7 有甲、乙、丙三人,已知甲、乙是同年同月出生,他俩的年龄和比丙的年龄小5岁,他俩的年龄之积比丙的年龄大3岁,问甲、乙、丙各多少岁?例8一个容器盛满纯酒精63升,第一次倒出若干升后加满水,第二次倒出同样多的酒精,再加满水,这时容器内的纯酒精为28升,求每次倒出的酒精溶液是多少?例9A、B两地相距33公里,甲从A地步行到B地,2小时后乙开始骑自行车也从A地去B地.已知甲每小时行3公里,乙每小时行12公里.乙到达B地后立即返回,问乙出发后经过几小时在返回的路上与甲相遇?例10甲队有52人,乙队有29人,现在另分配18人给这两个队,使甲队人数是乙队人数的2倍,应分配给甲、乙两队各多少人?例11一条长30米的防洪水坝,坝面宽3米,背水坡度为1∶3,迎水坡度为1∶2,如果这一条水坝完成的土方为2325米,问水坝的高应多少米?例12有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的二倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)例3一轮船航行于两码头之间.顺流需4小时,逆流需5小时,已知水流的速度每小时2公里,求这两码头间的距离是多少?例4一个两位数等于它个位上的数字的平方,个位上的数字比十位上的数字大3,求这个两位数.例1有一批商品共100件,按获利10%定价出售,售出后将所得款项全部存入银行,月利率为2.5%,一个月后总共获利102元,求每件商品售价多少?例2已知二次函数y=ax2+bx+c经过点A(1,1)、B(α,β)、C(β,α),其中α、β是方程x2-x-1=0的两个根.求二次函数的解析式.例3已知:如图,PA切⊙O于A,PO交⊙O于C,AB⊥OP于B,BO∶BC=3∶2,PA=4,求AC的长.例1从两个重量分别是12千克和8千克并且含铜的百分数不同的合金上,切下重量相同的两块,把所切下的每一块和另一块剩余的合金放在一起,熔炼后两个合金含铜的百分数相同,求切下的合金重量是多少千克?例2有四个数,其中每三个数的和分别为22、20、17、25,求此四数.例3有大小两种货车,2辆大车与3辆小车一次可运货15.5吨,5辆大车与6辆小车一次可运货35吨,求3辆大车与5辆小车一次可运货多少吨?例4 一个六位数abcde2倍等于9abcde,求此六位数。
【例1】如图,四边形ABCD 有4个直角三角形拼凑而成,它们的公共顶点为O ,已知△AOB 、△BOC 、△COD 的面积分别为20、10、16,求△AOD 的面积。
(1992年北京市“迎春杯”竞赛题)【注释】求三角形的面积,通常需要求出底和高,当这两个值不易求出时,常把它们的积作为一个整体,设法求出它们的积。
【例2】如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数。
(1999年重庆市竞赛题)【注释】求凹多边形的内角和,常利用四边形和三角形的内角和进行计算,有事需要添加辅助线,将其转化为求一个凸多边形的和或一个凸多边形和一个三角形的内角和,如本题连接BF 、CE ,则所求的值等于四边形ABFG 的内角和加上△DCE 的内角和。
【例3】如图,在四边形ABCD 中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,求CDBC的值。
(1993年“祖冲之杯”邀请赛试题)【注释】有些几何题,按原有的图形很难求解,可根据图形的特点,将原图形补成特殊图形,利用特殊图形的性质进行求解。
【例4】(1)是否存在这样的四边形,它的4条边依次是1、2、4、7?(2)是否存在这样的四边形,它的一组对角是直角,其中一个直角的两条边分别为3、4,另一个直角的边为6?【注释】探索存在型问题是指在一定条件下,判断是否存在某个结论。
解答这类问题,先假设结论存在,从假设出发,根据题设条件及有关性质进行推理论证,若推出矛盾,则不定假设,若推出合理的结果,则说明假设正确。
这种方法叫“假设法”。
【例5】如图,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长。
【注释】对于四边形,作对角线是常用的辅助线。
【例6】如图,在四边形ABCD 中,AC 、BD 相交于O ,△DOC 的面积S 1=4,△AOB 的面积S 2=64,求四边形ABCD 的面积的最小值。
1998数学竞赛
1998年的数学竞赛涵盖了多个级别和类型的比赛,其中包括
国际、全国、省级和校级的比赛。
以下是一些1998年数学竞
赛的例子:
1. 国际数学奥林匹克(IMO):1998年IMO比赛于7月12日至7月24日在台湾台北举行。
共有81个国家和地区的277名
学生参加了此次比赛。
2. 全国中学生数学竞赛(NMC):1998年全国中学生数学竞
赛是指全国中学生数学竞赛的各个学科组,包括小学数学竞赛、初中数学竞赛和高中数学竞赛。
不同年级的学生在各自的比赛中进行了竞争。
3. 省级数学竞赛:各个省市也都举办了本地区的数学竞赛,以选拔出优秀的学生代表参加全国或国际的比赛。
4. 校级数学竞赛:许多学校也组织了自己的数学竞赛,旨在提高学生的数学能力和兴趣。
以上只是1998年数学竞赛的一些例子,实际上还有许多其他
类型的比赛和活动。
这些竞赛旨在鼓励学生们对数学的兴趣,并提供一个展示和比较数学能力的平台。
P M A B C1998年全国初中数学联合竞赛试题 第一试1. 设m =5+1,那么m +1m的整数部分是 .2. 在直角三角形ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于 厘米.3. 已知x 2-x -1=0,那么代数式x 3-2x +1的值是 .4. 已知m ,n 是有理数,并且方程x 2+mx +n =0一个根是25-,那么m +n 的值是 .5. 如图,ABCD 为正方形,A ,E ,F ,G 在同一条直线上,并且AE =5厘米,EF =3厘米,那么FG = _____厘米.6. 满足19982+2m =19972+2n )19980(<<<n m 的整数对),(n m ,共有 _______个.7. 设平方数y 2是11 个连续整数的平方和,则y 的最小值是 .8. 直角三角形ABC 中,直角边AB 上有一点M ,斜边BC 上有一点P , 已知MP ⊥BC ,△BMP 的面积等于四边形MPCA 的面积的一半, BP =2厘米, PC =3厘米,那么直角三角形ABC 的面积是 _________平方厘米.BA G A BC DE F 9. 已知正方形ABCD 的面积35平方厘米, E , F 分别为边AB , BC 上的点, AF , CE 相交于点G ,并且△ABF 的面积为5平方厘米, △BCE 的面积为14平方厘米,那么四边形BEGF 的面积是____________平方厘米.10. 把100个苹果分给若干个人,每人至少分一个,且每人分的数目各不相同,那么至多有_________ 人.11. 设a ,b 为实数,那么a 2+ab +b 2-a -2b 的最小值是 __________.12. 在1, 2, 3,……,98共98个自然数中,能够表示成两整数的平方差的个数是 _______.13. 在右边的加法算式中,每一个□表示一个数字,任意两个数字都不相同,那么A 与B 乘积的最大值是 ____________.14. 直线AB 和AC 与圆O 分别为相切于B ,C 两点,P 为圆上一点,P 到AB ,AC 的距离分别为4厘米,6厘米,那么P 到BC 的距离为 厘米.15. 每一本书都有一个国际书号: A B C D E F G H I J ,其中A B C D E F G H I 由九个数字排列而成,J 是检查号码.令S =10A +9B +8C +7D +6E +5F +4G +3H +2I , x 是S 除以11所得的余数,若x 不等于0或1,则规定J =11-x .(若x =0,则规定J =0;若x =1,规定J 用x 表示)现有一本书的书号是962y 707015,那么y = .第二试1.求所有正实数a,使得方程x2-ax+4a=0仅有整数根.2.已知P为□ABCD内一点,O为AC与BD的交点,M、N分别为PB,PC的中点,Q为AN 与DM的交点,求证:(1)P,Q,O三点在一条直线上;(2)PQ=2OQ.3. 试写出5个自然数,使得其中任意两个数中的较大的一个数可以被这两个数的差整除.1998年答案第 一 试1. 3 15+=m ,4151511-=+=m , ∴ 435451+=+m m ,31=⎥⎦⎤⎢⎣⎡+m m . 2. 322 如图,AD 为直角A 的平分线,过B 作DA BE //交CA 的延长线于点E .=∠EBA ︒=∠45BAD ,1==AB AE ,2=EB ,又C D A ∆∽CBE ∆,32==CE AC EB AD ,∴32232==EB AD .3.22)1()(122233+--+--=+-x x x x x x x22)1()1(22=+--+--=x x x x x .4.3因为m 、n 为有理数,方程一根为25-,那么另一个根为25--,由韦达定理. 得 4=m ,1-=n ,∴3=+n m .5.316 由原图AE FG EF AE EG ED BE EF AE +===, ∴ EF EF AE FG -=23163352=-=(厘米).6.1647175399522⨯⨯==-m n ,47175))((⨯⨯=+-m n m n .显然,对3995的任意整数分拆均可得到(m ,n ),故满足条件的整数对(m ,n )共162222=⨯⨯⨯(个).7.1111个相继整数的平方和为22222)5()4()4()5(+++++++-+-x x x x x 22)10(11y x =+=,则y 最小时,从而12=x ,∴11=y .8.39∵ MBP ∆∽CBA ∆,3:1:=∆∆CBA MBP S S , 3:1:=BA BP ,∴ 32=BA ,13=AC . 39133221=⋅⋅=∆ABC S .9.27204 ∵ 72==∆∆ABC ABF S S BC BF ,同理54=BA BE , 由原图,连BG . 记a S AGE =∆,b S EGB =∆,c S BGF =∆,d S EGc =∆.又由已知 5=++c b a ,14=++d c b ,解之得 2728=b , 27100=c .∴ )(2720427128平方厘米==+=c b S BEGF .10.13 由题意,设有n 人,分苹果数分别为1,2,…,n2)1(321+=++++n n n ≤100, ∴ n ≤13,所以至多有13人.11.-1 b a b ab a 222--++b b a b a 2)1(22-+-+= 412343)21(22--+-+=b b b a 1)1(43)21(22--+-+=b b a ≥-1. 当 021=-+b a ,01=-b , 即 0=a ,1=b 时,上式不等式中等号成立,故所求最小值为 -1.12.73对 ))((22m n m n m n x -+=-= (1≤m <n ≤98 m ,n 为整数)因为n +m 与n -m 同奇同偶,所以x 是奇数或是4的倍数,所以1至98共98个自然数中,满足条件的数有49+24=73个.13.15设算式a c f Bb e A d h + g 显然:g =1,d =9,h =0. a +c +f =10+B b +e =9+A∴ A ≤6.35876543219)(2=++++++=++B A .∴ 8=+B A .欲令A ·B 最大,取A =5,B =3,此时b ,e 为6,8;a ,c ,f 为2,4,7,故A ·B 最大值为15.14.62如图,AB PM ⊥,AC PN ⊥,BC PQ ⊥.P,Q,C,N 四点共圆,P,Q,B,N 四点共圆, NPQ NCQ MBQ MPQ ∠=∠-︒∠=∠-︒=∠180180,QNP BCP MBP MQP ∠=∠=∠=∠,∴ MPQ ∆∽QPN ∆, NPPQ PQ MP =, 62=⋅=NP MP PQ (厘米).15.7 213047506778296109⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=y S∴ S 被11除所得的余数等于17+y 被11除所得的余数.由检查号码可知,S 被11除所得的余数是11-5=6,因此7y 被11除所得余数为6-1=5, ∴y =7第 二 试一、设两整数根为x ,y (x ≤y ),则⎩⎨⎧>=>=+04,0a xy a y x2a ≤y ≤a ,4≤x ≤8.可推出4≠x , ∴ 42-=x x a ,由于x 为整数, ∴ 5=x 时,25=a ,20=y ; 6=x 时,18=a ,12=y ;7=x 时,a 不是整数;8=x 时,16=a ,8=y .于是25=a 或18或16均为所求.二、证明 如原图,连PO ,设PO 与AN ,DM 分别交于点'Q ,''Q .在PAC ∆中,∵OC AO =,NC PN =,∴'Q 为重心,'2'OQ PQ =在PDB ∆中,∵BO DO =,MP BM =,∴''Q 为重心,''2''OQ PQ =这样'''Q Q =,并且'Q ,''Q 就是AN ,DM 的交点Q .故P ,Q ,O 在一条直线上,且OQ PQ 2=.三、1680,1692,1694,1695,1696为满足条件的5个数(注:答案不唯一)以上5个数可用以下步骤找出:第一步:2,3,4为满足要求的三个数.第二步:设a ,a +2,a +3,a +4为满足条件的四个数,则a 可被2,3,4整除.取a =12,得满足条件的四个数12,14,15,16.第三步:设b ,b +12,b +14,b +15,b +16.取12,14,15,16的最小公倍数为b .即b =1680,得满足条件的五个数1680,1692,1694,1695,1696.。
1988年全国初中数学联赛试题第一试一、选择题1. 下面四个数中最大的是( )(A)tg48°+ctg48°; (B)sin48°+cos48°; (C)tg48°+cos48°; (D)ctg48°+sin48°。
2. 在实数范围内,设 1988)115111|)|1)(2()1|)(|2((a a aa a a a x −++−+−−+−−=,则x 的个位数值是( )(A)1; (B)2; (C)4; (D)6。
3. 如图,在直角梯形ABCD 中,AB=7,AD=2,BC=3。
如果边AB 上的点P 使得以P 、A 、 D 为顶点的三角形和以P 、B 、C 为顶点的三角形相似,那么这样的点P 有( )(A)1个; (B)2个; (C)3个; (D)4个。
4. 下列四个命题:(1) 一组对边相等且一组对角相等的四边形是平行四边形;(2) 一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形; (3) 一组对角相等且这一组对角的顶点所连接的对角线平分另一条对角线的四边形是平行四边形;(4) 一组对角相等且这一组对角的顶点所连接的对角线被另一条对角线平分的四边形是平行四边形。
其中,正确的命题的个数是( ) (A)1; (B)2; (C)3; (D)4。
二、填空题1. 如果,质数p 、q 满足关系式3p+5q=31,且,那么13log 2+q p的值是 。
2. 如图,△ABC 的边AB=2,AC=3。
Ⅰ、Ⅱ、Ⅲ分别表示以AB 、BC 、 CA 为边的正方形。
则图中三个阴影部分面积的和的最大值是 。
3. 如果自然数x 1、x 2、x 3、x 4、x 5满足x 1+x 2+x 3+x 4+x 5 = x 1x 2x 3x 4x 5那么x 5的最大值是4. 如图,A 、B 、C 、D 四点在同一圆周上,且BC=DC=4,AE=6。
1998年北京市中学生数学竞赛初中二年级初赛试题(1998年4月5日8:30~10:30)一、选择题(满分36分,每小题只有一个正确答案.请将你的答案填在括号内,答对得6分,答错或不答均记0分)1.已知如下数组3,32-③12402,12240,1998 ④1998,640,2098其中可作为直角三角形三边长度的数组是()A.①④B.②④C.②③D.③④2.在下面时间段内,时钟的时针与分针会出现重合的是()A.5:25~5:26 B.5:26~5:27C.5:27~5:28 D.5:28~5:293.已知()=---A为正数的自然数x有()A x25A.1个B.2个C.多于2的有限个D.无限多个4.将长度为20的铁丝围成三边长均为整数的三角形,那么不全等的三角形的个数是()A.5 B.6 C.8 D.105.在ABC∠=°,12△的面积等于()AC∠=°,15△中,90AB=.则ABCA.16 B.18 C.D.6.已知432c=,324b=,423a=,342d=,则a,b,c,d,e的大小关系是()A.a b d e c===>===<B.a b d e cC.e d c b a<<<<D.e c d b a<<<<2.P为正方形ABCD内一点,10PA PB==,并且P点到CD边距离也等于10.求正方形ABCD 的面积.D CPAB 3.已知a为整数,2--是质数,试确定a的所有可能值的和.a a412274.如图,P 为平行四边形ABCD 内一点,过点P 分别作AB ,AD 的平行线交平行四边形于E ,F ,G ,H 四点.若3AHPE S =,5PFCG S =.求PBD S △.HCA5.实数a ,b ,x ,y满足21y a =-,231x y b -=--,求22x ya b+++之值.6.多项式2256x axy by x y ++-++的一个因式是2x y +-.试确定a b +的值.7.梯形的两条对角线互相垂直,其中一条对角线的长是5厘米,梯形的高等于4厘米.此梯形的面积是多少平方厘米?8.某商场有一部自动扶梯匀速由下而上运动,甲、乙二人都急于上楼办事,因此在乘扶梯的同时匀速登梯,甲登了55级后达到楼上,乙登梯速度是甲的2倍(单位时间乙、登楼梯级数是甲的2倍),他登了60级后到达楼上.问由楼下到楼上自动扶梯共有多少级?初中二年级复赛试题(1998年5月3日8:30~10:30)一、填空题(满分40分)1.若x y +x y -,则xy = .2.等腰直角三角形ABC 中,D 为斜边AB 的中点,E 、F 分别为腰AC 、BC 上(异于端点)的点,DE DF ⊥,10AB =,设x DE DF =+,则x 的取值范围是 .FE DCBA3.实数a ,b1032b b -+--,则22a b +的最大值为 . 4.若y ,z 均为质数,x yz =,且x ,y ,z 满足113x y z+=,则199853x y z ++= . 5.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作.每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添加上0,等等.如果经过998次操作后,发现黑板上剩下两个数,一个是25,则另一个是 . 二、(满分15分)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60克,60克,47克,现要配制浓度为7%的盐水100克.问:甲种盐水最多可用多少克?最少可用多少克?三、(满分15分)矩形ABCD中,20AB=厘米,10BC=厘米.若在AC、AB上各取一点M,N(如右图),使BM MN+的值最小,求这个最小值.N MD CBA四、(满分15分)国际象棋比赛中,胜一局得1分,平一局得0.5分,负一局得0分.今有8名选手进行单循环比赛(每两人均赛一局),赛完后,发现各选手手电分均不相同,当按得分由大到小排列好名次后,第四名选手得4.5分,第二名的得分等于最后四名选手得分总和.问:前三名选手各得多少分?说明理由.五、(满分15分)正方形ABCD被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE面积的2倍.试确定HAF∠的大小并证明你的结论.P HGF E DCB A1998年北京市中学生数学竞赛初中二年级初赛试题答案(1998年4月5日8:30~10:30)一、选择题(满分36分,每小题只有一个正确答案.请将你的答案填在括号内,答对得6分,答错或不答均记0分)1.D验算222+≠,排除A .)(((2231913+=-+- (23232=--,排除B ,C .又()()2212402122401240212240124021224024642162-=+-=⨯ ()222231111998=⨯⨯=()()2222098199820981998209819984096100640-=+-=⨯= 所以③,④合于要求.选D .2.C设5点x 分时,时针与分针重合.因为分针速度是时针速度的12倍,5点钟时,时针在分针前面25格,所以可得方程2512xx -=解得32711x =.因此5点32711分时时针与分针重合.选C .算术解法:分针速度是时针速度的12倍,所以时针指到26格时,分针指到12格(即5点12分).时针指到27格时,分针指到24格,分针落后于时针.当时针指到28格时,分针指到36格,此时分针已超过时针.所以在27格到28格之间时针与分针重合.3.C因为()2532A x x =----++由320x -++>,解得 3.02x <. 所以满足条件的自然数是1,2,3. 故选C .4.C设三角形三边a ,b ,c 满足a b c ≤≤因为a b c +>,所以22010c a b c c <++=⇒<.又因为320c a b c ++=≥,所以2673c c ⇒≥≥.因此79c ≤≤.当7c =时,7b =,6a =.当8c =时,8b =,4a =;7b =,5a =;6b =,6a =.当9c =时,9b =,2a =;8b =,3a =;7b =,4a =;6b =,5a =.共有8组解. 选C . 5.B如图,作CE AB ⊥于E ,D 为AB 中点,6CD =.因为230CDB A ∠=∠=°,所以132CE CD ==.1123182ABC S =⨯⨯=△.选B .6.C因为432a =,342b =,423c =,234d =,324e =即812a =,642b =,163c =,91842d ==,81642e ==. 又643232162433b c ==>>=,186681628993d c ==<<==. 所以e d c b a <<<<.选C .二、填空题(满分64分,每小题答对得8分,答错或不答均记0分)1., 此式要有意义,应有1a ≤.2a <,3a ≠, 因为{1}{2}{3}{1}a a a a <= ≤≠≤,所以,原式=0==.2.256设CD 中点为M ,则PM CD ⊥.所以10PM =.延长MP 交AB 于N ,则AN NB =.MN AB ⊥.设正方形边长为2x ,则AN BN x ==,210PN x =-. 在Rt APN △中,由勾股定理得:()22210210x x =+-化简得25400x x -=即()580x x -=因为0x >,解得8x =.所以正方形的边长为16,面积为256. 3.6设241227a a --是质数p ,则241227a a --有因子1±及p ±. 由()()2412272329a a a a --=+-可得: 当231a +=时,1a =-.此时()21911--=-. 当231a +=-时,2a =-.此时()22913--=-. 当291a -=时,5a =.此时()25313+=. 当291a -=-时,4a =.此时()24311+=.ED CBAM xx NABCDP所以当a 取1-,2-,5,4时,241227a a --是质数.a 的所有可能值的和为()()12546-+-++=.4.1设PBD S x =△,ABD CDB S S s ==△△,则PBCD S s x =+,PDAB S s x =- 所以53s x s x +-=--. 解得1x =.即1PBD S =△.5.17由已知21y a =- ①231x y b -=-- ② ①+223x a b +-=--30x -≥,220a b --≤,30x +-=0=,30x -=;220a b --=,6.3-设()()22562f x y x axy by x y x y =++-++=+-,,()g x y ,是()f x y ,的另一个因式,于是,()()()2f x y x y g x y =+-⋅,,令1x y ==,则()110f =,,()0g x y =,,即得15160a b ++-++=, 所以3a b +=-.7.503 如图,梯形ABCD 中,AD BC ∥,AC BD ⊥,5BD =,DH BC ⊥于H ,4DH =.于是3BH =.过D 作AC 的平行线交BC 的延长线于E ,则DE AC =.令DE AC x ==,则HE 在Rt BDE △中,2DH BH HE =⨯,即243=解得203x =.所以梯形ABCD 的面积11205052233BD AC =⨯⨯=⨯⨯=(平方厘米).8.66设自动扶梯共n 级.甲登梯速为每分钟y 级,则乙登梯速为每分钟2y 级.电梯速度为每分钟x 级. 则依题意列得关系式: ()55x y n y +=,()6022x y n y+=. 所以()()556022x y x y y y+=+得55553060x y x y +=+ 即255x y =所以15x y =.45xxHED CBA因此,()55551555555665x n x y y y =+=+=⨯+=. 也就是说,楼下到楼上自动扶梯共有66级.初中二年级复赛试题答案(1998年5月3日8:30~10:30)一、填空题(满分40分)1解:由x y +x y -①+②得x ①-②得y =2.10x < 连接CD .易证ADE CDF △≌△,所以DE DF =. 因此2x DE =.因为D 为定点,E 为AC 边上的动点.而5AD CD ==.当E 为AC 中点时,DE AC ⊥,DE.当点E 向A 运动或向C 运动时,DE 增大,但5DE AD <=,所以55DE <,也就是10x <. 3.45由已知得()161032a a b b -+-=--+-,由绝对值的几何意义,易知 左边165a a -+-≥,右边()1032055b b --+--=≤1, 所以,左边=右边5=,此时16a ≤≤,32b -≤≤.因此22a b +的最大值为()226345+-=. 4.20005由已知x ,y ,z 满足113x y z+=得3yz xz xy +=. 因为x yz =,所以3x xz xy +=. 又0x ≠,所以13z y +=.若2z =,则1y =,与“y 与质数”的条件相矛盾,所以2z ≠,因此质数z 必为奇数,13z y +=为偶数.y 只能是偶数,又y 是质数,所以2y =.于是取2y =,5z =,则10x =.所以199853199810523520005x y z ++=⨯+⨯+⨯=. 5.6由操作规则知,每次操作后黑板上所有的数之和被10除的余数保持不变. 因为123199719981997001+++++=…,故黑板上的数之和被10除的余数为1始终不变.最后剩下的两个数中,至少有一个为新添加的数.而新添加的数只能是一位数,所以25不是新添加的数.因此另一个数必是新添加的数.他应是个F′E′ABCDE F一位数,且与25的和被10除余1.故只能是6.二、(满分15分)解:设甲、乙、丙三种盐水分别各取x 克,y 克,z 克可配成浓度为7%的盐水100克.依题意,得100589700x y z x y z ++=⎧⎨++=⎩①② 其中060x ≤≤③ 060y ≤≤④047z ≤≤⑤由①,②解得2004y x =-,3100z x =-,所以由④0200460x -≤≤,解得3550x ≤≤⑥由⑤0310047x -≤≤,解得133493x ≤≤⑦综合③,⑥,⑦可知3549x ≤≤.事实上,当甲种盐水取35克时,乙种盐水取60克,丙种盐水取5克,可满足方程①,②; 当甲种盐水取49克时,乙种盐水取4克,丙种盐水取47克,也可满足方程①,②. 答:甲种盐水最多可用49克,最少可用35克.三、(满分15分)解:作B 关于AC 的对称点B ',连结AB '. 则N 点关于AC 的对称点为AB '上的N '点.这时,B 到M 到N 的最小值等于B M N '→→的最小值,等于B 到AB '的距离BH '.即BM MN +的最小值为BH '.现在求BH '的长.设AB '与DC 交于P 点,连结BP ,则ABP △的面积等于120101002⨯⨯=.注意到PA PC =(想一想为什么?) 设AP x =,则PC x =,20DP x =-. 根据勾股定理得222PA DP DA =+,即()22222201040040100x x x x x =-+⇒=-++, 解得12.5x =(cm ).所以10021612.5BH ⨯'==(cm ). 即BM MN +的最小值是16厘米.N′H′B′P HAB CD M N四、(满分15分)A 7A 654Ai j A A →表示i A 胜j A i j A A …表示i A 平j A解:设第i 名选手得分为i a ,则12345678a a a a a a a a >>>>>>> 由于8名选手每人比赛7局,最多可胜7场, 所以17a ≤.大家共赛78282⨯=场,总积分为28分.所以1234567828a a a a a a a a +++++++=①因为每局的积分为0,0.5,1这三种值,所以每人的积分只能取0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7这15个值.又知4 4.5a =,25678a a a a a =+++ ②若3 5.5a ≥,则26a ≥,1 6.5a ≥,此时123 6.56 5.518a a a ++++=≥. 由①4567810a a a a a ++++≤,但4 4.5a =,由②2567810 4.5 5.5a a a a a =+++-=≤,这与26a ≥矛盾.所以3 5.5a <,但34 4.5a a >=,所以35a =.这时由①得125678285 4.518.5a a a a a a +++++=--=,也就是12218.5a a += 若2 5.5a =,那么118.5117.57a =-=>,与17a ≤矛盾!若2 6.5a ≥,那么12218.5218.513 5.5a a a =--=<≤矛盾!所以只能26a =. 此时118.526 6.5a =-⨯=.所以前三名选手的积分分别为:6.5分,6分,5分.事实上,当第一名选手平第三名选手、胜其余六人,第二名选手负于第一名而胜其他六名选手,第三名选手平第一名、负于第二名、平第四名、胜其他各名选手时,这时第四名选手负于第一名、第二名,平第三名时即可达到.如图所示. 五、(满分15分)解:容易猜测到45HAF ∠=°. 我们证明如下.设AG a =,BG b =,AE x =,ED y =.则有关系式 2a b x y ax by +=+⎧⎨=⎩①② 由①a x y b -=-平方得22222a ax x y by b -+=-+,将②代入得222224a ax x y ax b -+=-+,M D H∴()222a xb y a x+++⇒+∵22222b y CH CF FH+=+=,∴a x FH+=.即DH BF FH+=.将Rt ADH△绕A旋转90°到Rt ABM△的位置.易证:AMF AHF△≌△,M AF H AF∠=∠.而90 MAH MAB BAH DAH BAH DAB∠=∠+∠=∠+∠=∠=°∴1452HAF MAH∠=∠=°。