论尺规三等分角、任意等分任意角及其扩展
- 格式:doc
- 大小:17.00 KB
- 文档页数:4
引人入胜的千古难题——三大尺规作图问题尺规作图是我们熟知的内容。
尺规作图对作图的工具——直尺和圆规的作用有所限制。
直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
于是他们热衷于在尺规限制下探讨几何作图问题。
数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。
尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。
所谓三大几何作图难题就是在这种背景下产生的。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。
于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。
但是,尽管费了很大的气力,却没能把看来容易的事做成。
于是,第二个尺规作图难题——三等分任意角问题产生了。
正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。
古希腊三大几何问题既引人入胜,又十分困难。
尺规作图三等分任意角(0°<α≤180°)黑龙江省巴彦县兴隆镇第二中学谭忠仁邮编:151801电话:150****5590目录关于三等分角的由来 (1)三等分任意角(0°<α≤180°) (2)已知:∠AOB (2)求作:∠AOB的两条三等分射线OC、OD (2)作法: (2)证明: (2)关于三等分角的由来众所周知,三等分角是著名的几何作图三大问题之一(另外两个问题是化圆为方、倍立方体),近两千年来,几十代人为这三大问题绞尽脑汁,希腊人的巧思、阿拉伯人的学识、文艺复兴时期大师们的睿智都曾倾注于此,却均以失败告终。
1837年范兹尔首先证明三等分角与倍立方体不能有限次使用尺规作出。
1895年,克莱因给出三大问题有限次使用尺规作图不可能的简单而清晰的证明,阿基米德在几何学上的造诣是很深的,从他的著作里可以看到他对三等分角问题的研究,他先采用在直尺上标注一个点的方法,然后把一个角三等分,显然,这一方法取消了直尺上无刻度的限制,此外,喜庇亚斯借助割圆曲线、尼克曼得斯借助于蚌线、巴普士借助于双曲线、帕斯卡借助于蚶线,解决了三等分角的问题,但所有这些曲线都不能仅用尺规来完成。
综上所述,尺规作图三等分任意角尚无先例,本人自1971年参加工作后,任初中数学教师,由于专业的需要、兴趣及其爱好,使我涉猎了大量数学方面的资料和相关知识,下决心研究三等分角问题,历尽40年时间,苦心钻研,现终得一法,并且给出了科学、严谨的证明,借此恳请数学专家和导师予以审核、验证,并提出宝贵意见。
注:本文所举资料,请详见《陕西中学数学》1991年第二期谭忠仁2011年5月10日三等分任意角(0°<α≤180°)已知:∠AOB求作:∠AOB的两条三等分射线OC、OD作法:1、以O为圆心,以任意长为半径作⊙O,交射线OA于A,交射线OB于B;2、连结AB,引直径EE1,并且使EE1⊥AB,垂足为H;3、连结BE,以B为圆心,以BE的长为半径画弧,交AB于F;4、连结EF并延长,交⊙O于G1,交BE1的延长线于T;5、以T为圆心,以TB的长为半径画弧,交⊙O于C1,连结TC1,交⊙O 于G;6、在⌒AB上截取⌒BC2,使⌒BC2=2⌒E1G;7、连结BC2,作BC2的垂直平分线T1D2,垂足为H2,交TB于T1,,连结T1 C2;8、作射线TP,在射线TP上依次截取TP1= P1P2= P2P3,连结T1P3,作T2P1∥T1P3,交TT1于T2;9、以T2为圆心,以T2B的长为半径画弧,交⊙O于C,连结T2C,交⊙O 于G2;10、连结BC,作BC的垂直平分线T2D,交⊙O于G3、D,垂足为H3,(T2D 必经过圆心O、必经过等腰三角形T2BC的顶角的顶点T2);11、作射线OC,则射线OC、OD即为所求作的∠AOB的两条三等分射线。
关于任意角的三等问题数学与计算机科学学院数学与应用数学专业105012007016 张成娇【摘要】本文立足于对高中数学《课标》选修系列3的《三等分角与数域扩充》中三等分角的探究,分别从三等分角的发展历史、证明、可三等分的特殊角及在数学教学中的课题研究等四个主要方面进行探究.【关键词】三等分角;数域;特殊角;课题研究;一、前言《三等分角与数域扩充》是高中数学新增加的内容,它所处的是《课标》中选修系列3,选修系列3的专题,主要是以通俗易懂的语言,深入浅出地介绍各专题的基本数学内容及其基本思想,用以开阔学生视野.三等分角、倍立方积、化圆为方、等分圆周等尺规作图问题,都是古希腊著名的作图问题,经过了长达几千年的时间才得以解决.解决这类问题的思想方法不仅在数学上,而且在人类思想史上都具有重大意义.本文从三等分角的发展历史、证明、可三等分的特殊角及在教学中的研究性学习与数学实验等四个主要方面进行说明.二、关于任意三等分角的历史在欧洲巴尔干半岛的南端,有一个濒临地中海的文明古国——希腊,古希腊人在几何学的形成和发展上作出了巨大的贡献,人们习惯上把希腊称为几何学的故乡.古希腊人鄙视任何不明确或模棱两可的东西.他们认为,没有任何东西能够像直线和圆那样,明确得使人无可挑剔!况且这两者的获得又最为容易:用一个边缘平直的工具,便能随心所欲的画出一条直线;而用一端固定,另一端旋转的工具,便能得到一个圆.所以古希腊人认为,几何作图只许用直尺和圆规,这是天经地义的.大约在公元前六至四世纪,古希腊人,仍然热衷于三个貌似简单的作图题:给你一把圆规和直尺(无标记),经过有限次的步骤,能否:①将一个给定角三等分?②作一个立方体使它的体积是已知立方体体积的两倍?③作一个正方形使它的面积等于已知圆的面积?以上三个问题分别称为三等分角问题、倍立方积问题和化圆为方问题,这就是几何作图的三大问题.其实这三个问题,于19世纪就被严格证明为不可能用直尺、圆规,经有限次的作图步骤来解决的问题. 自1637年笛卡尔(Rene Descartes ,1596 - 1650 )创立了解析几何学之后,尺规作图的可能性就有了判定准则. 1837 年万泽尔( Pierre hanrent Wantzel ,1814 - 1848)首先证明了“立方倍积”和“三等分任意角”不可能尺规作图. 1873 年埃尔米特(Charles Hennite ,1822 - 1901)证明了e 是超越数.1882年林德曼(Lindeman ,1852 - 1939) 证明了π也是超越数. 从而“变圆为方”的不可能性也得以确立.1895年克莱因( Felix Klein ,1849- 1925) 总结了前人的研究成果,给出三大几何问题不可能用尺规作图的简明证法,从而彻底地解决了这三个古老的问题.三、用数域扩充的方法证明对于任意角不能三等分证明有许多的方法,如:1801年数学家高斯的证明方法:作圆的n 等分,当n 满足如下特征j1k km 1jn=2p p 其中,m 为非负整数,1p 、2p 、j p 为互不相同的费马素数(前5个费马素数为3,5,17,257,65537),i k 01i j = 或(=1、2、、)才可三等分角360n︒.在此主要是考虑到中学生的数学知识水平以及课程标准中对数域的要求,因而用采用数域扩充的方法来证明.1.预备知识(1)尺规作图的公法:①从任意一点到另一点,可作一直线;②任意有限长的线段,可顺着延长;③ 由一已知点及定距离,可作一个圆(说明的是圆规的用法).(2)可构作的概念: 经过平面上的两点,用直尺可以画一直线;经过一点用圆规可以画一个半径等于给定线段的圆,直线与直线、直线与圆和圆与圆都可能相交,这样的交点称为是用尺规可以构作的点,若交点在数轴上,也称对应的长度(实数)是可以构作的. (3)相关定理、概念定理1 设F 是R 的一个子域,则实数a 可由F 构作的充要条件是存在R 的子域链,使得0F F =,a F ∈ 且i i+1[F :F ]=2, i=12n 、、、. 推论2 设F 是R 的一个子域, a R ∈,如果a 可由F 构作,则必存在整数r ≥0,使得[F(a):F]=2r.定理3 设θ是一个角,另cos a θ=,则角θ可用尺规三等分的充要条件是多项式3()32()[]f x x x a Q a x =--∈,在()[]Q a x 中是可约的.2.证明证: 设θ是一个经过原点以x 轴为一条边的角,过原点作一半径为1的圆,圆与角的另一条边的交点的横坐标为cos θ∴ 角θ可构作的充要条件是实数cos θ可构作令3θϕ=,cos a θ=,2cos b ϕ=,则问题化为能否由()Q a 构作b有三倍角公式: 3cos 4cos 3cos θϕϕ=-∴ b 是多项式3()32()[]f x x x a Q a x =--∈的一个根假设()f x 在()[]Q a x 中可约,则由于b 是()f x 的根,而()f x 是3次的,所以()b Q a ∈或是()Q a 上的一个二次不可约多项式的根.若是前者,显然b 可以由()Q a 构作;若是后者, 则有[()():()]2Q a b Q a =,于是b 是可以由()Q a 构作的∴ 当()f x 在()[]Q a x 中可约时, b 可以由()Q a 构作的,从而θ可构作假设()f x 在()[]Q a x 中不可约,则()f x 就是b 在()Q a 上的极小多项式,从而有[()():()]3Q a b Q a =∴ b 不可由()Q a 构作,即θ不可构作 ∴ 三等分任意角是不可能的3.举例说明例如,角3π是不能用尺规三等分的,因为此时12a =,3()31f x x x =--在[]Q x 中不可约四、可三等分的特殊角用尺规将三等分一个任意角是不可能的, 但对于一些特殊角则可以利用尺规三等分,例说如下:1. 180︒可以三等分简析:根据上述的证明过程,因为此时cos 1a θ==-,32()32(1)(2)f x x x x x x =-+=-+-在[]Q x 中可约,从而可三等分.这时把一平角三等分,每一份的度数是60︒而等边三角形的每一内角是60︒,故可以利用作等边三角形的方法把平角三等分.作法:(1)如图1,A O B ∠为平角,分别在角的两边O A 、O B 上取两点C D 、. (2)分别以O O C D 、为边,作两个等边三角形(E C O FD O ∆∆、).则O E O F 、为平角A O B ∠的三等分线,即O E O F 、把平角A O B ∠三等分.2. 45︒角三等分简析: 因为把一个45︒的角三等分,每一份是15︒,而15︒恰好是30︒的一半,或者是604515︒-︒=︒,故仍可采用先作等边三角形的方法把45︒的角三等分.作法:(1)如图2, 45A O B ∠=︒.在O A 上任取一点C,以O C 为边,在A O B ∠内部作等边三角形O C D ∆.(2)作D A O ∠的平分线OE. (3)作E A O ∠的平分线OF. 则OE 、OF 把45︒的A O B ∠三等分3. 90︒角三等分简析: 根据上述的证明过程,因为此时cos 0a θ==, 32()3(3)f x x x x x =-=-在[]Q x 中可约,从而可三等分.此时把一直角三等分,每一份的度数是30︒,而906030︒-︒=︒,可用作等边三角形的方法把直角三等分.4. 还有135︒、36︒等可转化为形如180n ︒(n不为3的倍数, *n N∈)的角都可以三等分.此为俄国数学家罗巴切夫斯基经过多年努力得到的结论.因此根据这个结论也可以得到60︒、120︒等是不可三等分的.五、在高中数学教学中的研究课题现今的教育要求丰富学生的学习方式,改进学生的学习方法是高中数学追求的基本理念.独立自主、自主探索、动手实践、合作交流等都是学习数学的重要方式.随着三等分角这部分内容进入高中数学课程,这使得三等分角成为一个很好的研究课题.下面简述两个.1. 在已有的数学知识水平上开展研究性学习比如参考文献[5]中对三等分角的研究,该文中作者在学生学了二倍角公式并逆用二倍角公式推得半角公式后,让学生推导三倍角公式.利用三倍角公式,从特殊的60︒角的三等分角20︒的可作性来尝试三等分角的问题.作者将课题分为4步:探索1 能否用尺规三等分60︒角?探索2 在0︒~180︒的几个特殊角中有哪些是可三等分?哪些是不可三等分?探索3 探索0︒~180︒的几个特殊角中可三等分角与不可三等分角的特点,能得出什么结论?探索4 证明形如180()kk N︒∈形式的角中,若k是3的倍数,则不可以三等分;否则就可以三等分.通过对三等分角的研究,让学生体会了其中蕴含的数学思想方法,从一般到特殊,再从特殊到一般,提高了分析问题和解决问题的能力.同时通过以上四个探索,可使同学们感到“三等分角”问题不再是那么的神秘、高不可攀,更不会再在三等分任意角的问题上作徒劳的努力.2. 将“三等分角问题”与数学实验相结合参考文献[6]一文中,作者试着从三等分角问题出发,在前人研究的基础上,结合自己的想法,设计了一个三等分角演示仪. 作者通过五个步骤:步骤1 研读课标,确定研究题目;步骤2搜寻课题的有关资料和研究现状;步骤3 确定研究题目的基本原理;步骤4 认真分析并解决遇到的问题;步骤5 动手操作设计三等分角演示仪;在进行实验的过程中,不仅了解了三等分角的相关知识,并将三等分角应用于数学实验中,激发了学生的学习兴趣和强烈的动手制作愿望,而且能使学生在学会知识的同时,掌握分析问题,解决问题的方法.既促进了学生自身的发展,也带动了数学实验的发展.六、结束语任意角的三等分问题是几何作图三大问题之一,并且在课改中,《三等分角与数域扩充》成为了高中数学选修系列3的一部分内容.选修系列3的内容相对新颖前沿,反映了某些重要的数学思想,并且具有一定的挑战性.可见对该问题的学习有利于扩展学生的数学视野,提高学生对数学的科学价值,文化价值,应用价值的认识,并且在培养学生的思维能力,数学素养等方面有着重要作用.参考文献[1]王忠华.用尺规作图不可能三等分任意角[J].数学通讯,2001年第19期[2]曹亮吉.三等分任意角可能吗?[J].科学月刊,1978年第4期[3王美香.高中《三等分角与属于扩充》的数学探讨[J].中学数学杂志,2009年第7期[4]侯国兴.尺规作图三等分角[J].今日中学生,上旬版,2007年第12期[5]楼许静.我把嫦娥请下凡——一堂三等分角的研究课[J].高中数学教与学,2008年第6期[6]田晓娟.从“三等分角问题”浅谈数学实验[J].科学教育,2008年第3期[7]郭熙汉.数学知识探源[M].武汉:湖北教育出版社,1999[8]唐忠明.抽象代数基础[M].北京:高等教育出版社,2005。
尺规法三等分任意角到底可行吗?1965年以前,数学家华罗庚曾写文章告诫青少年——用直尺和圆规三等分任意角是不可能的,不要为这道难题花费精力。
近日在2013年出版的文集中见到《尺规作图破解世界千古三大几何难题》一文,该文是作者(简称黄先生)历时七年的研究成果。
该文所说难题之一就是用尺规三等分任意角(另两道难题是倍立方和画圆为方)。
为了证明他的方法是近似的,我用他的方法三等分100°角,看看误差有多大。
如图,DG长度为AD的二分之一,G点到E点的直线距离为AG的二分之一,穿过A、E两点的直线与圆弧相交于F点,黄先生认为D、F两点连线所对圆心角θ一定等于图中100°角的六分之一。
我们来计算一下θ角的度数(计算过程保留8个有效数)。
设圆半径为1,借助三角函数和勾股定理可算出A、G、E三点坐标。
A点坐标(−0.76604444,−0.64278761)G点坐标(0.38302222,1.8213938)E点坐标(0 ,0.51700505)设连接A、E两点的直线方程为 y = ax + b,根据A、E两点坐标可求出该直线方程为y = 1.5140018x + 0.51700505根据该直线方程与圆方程x² + y² =1,可求出F点横坐标x =0.29052884所以sinθ= 0.29052884,θ角不小于16.8896°,误差大于0.2229°用该方法三等分100°角,误差大于0.4458°令CE = AE可算出C点坐标。
黄先生认为C、B两点连线与圆弧的交点就是F点,其实不然。
根据C、B两点坐标可算出C、B两点连线与圆弧的交点坐标。
该交点横坐标x = 0.2849388,将该交点视为F点,可算出θ角为16.5552°,少了0.1115°,用该方法三等分100°角,误差大于0.2229°有趣的是,令θ等于100°的六分之一,令A、F两点连线与y轴的交点为E,再令CE= AE可算出C点坐标为(0,1.91597902),那么C、F、B三点的确是三点一线,该直线方程为y = −3.34023263x + 1.91597902而且C、F两点直线距离正好等于圆半径。
初中几何中的尺规作图尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等.这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中.初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家underwood dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图■只用直尺及生锈圆规作正五边形■生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.■已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.■尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.下面介绍几种常见的尺规作图方法:⑴轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m、n的距离也必须相等,发射塔P应修建在什么位置?【分析】这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P应满足两个条件,一是在线【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP ∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O⊙及'O ⊙外切.rr【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点. ⑷ 分别以12,M M 为圆心,以r 为半径作圆. ∴12,M M ⊙⊙即为所求.【思考】若将例3该为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1.也就是说用这个长度去等分圆周.我们的任务就是做出这个长度..1的直角三角.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,腰为.)⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形haDCBANM作法:⑴ 作线段12MD a =;⑵ 在MD 的延长线上取一点N ,使得DN h =; ⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙; ⑷ 过D 作DE MN ⊥,交O ⊙于E , ⑸ 以DE 为一边作正方形DEFG . 正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .al【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M . 1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求. 若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c ba D'DCB Acba【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ; ⑵ 以AD 为一边作正三角形'ADD ; ⑶ 过'D 作''D C AD ⊥,交直线c 于C ; ⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧). ⑸ 连接AB 、AC 、BC 得ABC ∆. ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.OD'O【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥; ⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =); ⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点; ⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ). 则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C BAG'F'E'D'G FED CBA【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG . 【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D ⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上. ⑶ 作直线'BF 交AC 于F . ⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E . ⑸ 过G 作''GD G D ∥交BC 于D . 则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,在借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AM P ∆,再补上ANP ∆.只要NM AP ∥,则AM P ∆和AM P ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ; ⑵ 过M 作MN AP ∥交AB 于N ; ⑶ 过P 、N 作直线l . 直线l 即为所求.NM P CB Al【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积; ⑵ 这样的直线有多少条?请你用语言描述出这样的直线.FED CBAMFDCBFD CB【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的 直线l 即为所求; ⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S SS S =,那么称直线l 为该图形的黄金分割线.⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC△的黄金分割线.你认为对吗?为什么? ⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线? ⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由. ⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下:设ABC △的边AB 上的高为h .12ADC S AD h = △,12BDC S BD h = △,12ABC S AB h = △, ∴ADC S AD =△,BDC S BD=△. A C B 图1 A D B 图2C AD B图3C F E图4又∵点D 为边AB 的黄金分割点,∴AD BDAB AD=.∴ADC BDC ABC ADC S S S S =△△△△. ∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121s s s s ≠,∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DEC FCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△. ∴ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形, BDC BEFC S S =△四边形.又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEFS SS S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法;画法一:如答图1,取EF 中点G ,再过点G 作一直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD 的黄金分割线.M (答案图1)M (答案图2)。
〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉(1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。
(2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。
(3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。
(4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。
(5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。
所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。
(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。
(7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。
(8)在圆心角AOB中,依据圆心角、弧、弦的关系定理:因为:小圆心角AOH对应AH弧,小圆心角HOM对应HM弧,小圆心角MOB对应MB弧,AH弧=HM弧=MB弧=1/3AB弧,所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1],所以,任意角AOB被尺规三等分了。
㊀㊀㊀㊀㊀140数学学习与研究㊀2020 10三等分任意角的作法探讨三等分任意角的作法探讨Һ蔡长青㊀(咸丰县中等职业技术学校,湖北㊀咸丰㊀445600)㊀㊀ʌ摘要ɔ 三等分角 是古希腊几何中尺规作图的名题,和化圆为方㊁倍立方问题并列为古代数学的三大难题,2400多年以来,不少学者进行了无数次尝试,都未能找到好的解决方法,笔者经过40余载的不断探索,吸取前人的数学智慧,突破传统思维,找到简单易行的求作三等分角的方法,该方法可以广泛应用到几何教学或工程技术领域.ʌ关键词ɔ三等分;任意角;作法;证明1979年的九月,进入咸丰一中学习的第一堂数学课上,满头银发的数学老师文渊不但满怀激情地介绍了高中三年数学学习的目标和学习方法,还向大家抛出了古代数学的三大难题,即用尺规作图法求作三等分任意角㊁化圆为方以及倍立方问题,从此笔者与三等分角问题结下了不解之缘.三等分角是号称古希腊三大几何问题之一,该问题的完整叙述为:只用圆规及一把没有刻度的直尺将一个给定角三等分.该问题自公元前480年以来,不少学者进行了长期的探索,甚至不少著名数学家从不同角度论证了用尺规作图法不可能解决 三等分角 问题,本着吸取前人数学智慧㊁传承文明㊁尊重科学的治学态度,本人就解决使用 尺规作图法 三等分任意角问题进行了长期的探索,现将偶有所得分享给大家,希望起到抛砖引玉的作用.一㊁关于三等分任意角的历史溯源1.三等分任意角问题产生的历史背景根据历史记载,公元前480年,古希腊和当时的波斯国在当时的雅典郊外萨尼克湾展开了一场惨烈的海战,古希腊大获全胜,从此雅典作为古希腊的政治㊁文化㊁经济中心逐渐走向繁荣.社会分工逐渐细化,一部分人从繁重的体力劳动中解放出来,出现了专门传授学问㊁研究学问的辩论师或称智者,也就是现代的职业教师.这些人为古希腊文明做出了巨大的贡献,其中在几何学上亦留下了三大难题供后人进行研究和探讨:给你一把圆规和直尺(无刻度),经过有限次的步骤,能否:①对任意角作三等分?②作已知立方体的二倍体积的立方体图形?③作与已给的圆面积相等的正方形?以上三个问题分别称为三等分角问题㊁倍立方问题和化圆为方问题,也称古希腊三大几何难题,这些问题看起来很简单,但是,2400多年来,不少数学家或数学爱好者为了解决这三个问题,耗费了许多心血,都没有取得成功.2.三等分任意角可能无法用 尺规作图法 求解1637年笛卡儿(ReneDescartes,1596 1650)创立了解析几何学后,有数学家依据解析几何,认为找到了通过尺规作图法不能解决三等分任意角问题的依据.1837年法国数学家旺策尔(PierreLaurentWantzel,1814 1848)首先证明了 倍立方 和 三等分任意角 不可能用尺规作图解决.1873年埃尔米特(CharlesHermite,1822 1901)证明了e是超越数;1882年德国数学家林德曼(Lindemann,1852 1939)证明了π也是超越数,从而 变圆为方 的不可能性也得以确立.1965年以前,数学家华罗庚曾写文章告诫青少年 用直尺和圆规三等分任意角是不可能的,不要为这道难题花费精力.2001年华中师范大学数学系的王中华亦在‘数学通讯“上发文并证明使用尺规作图 三等分任意角 是不可能的.二㊁ 三等分任意角 仍有研究的价值1.高中数学教学的需要为了加强普通高中的数学教学,在新版的‘普通高中数学课程标准“中增加了 三等分角与数域扩充 问题,让三等分角问题真正进入我国高中数学教学领域,有利于扩展学生的数学视野,激发学生的学习兴趣,提高学生解决问题㊁分析问题的能力.2.可以促进人的数学思维的发展古希腊的三大几何难题,几千年来尽管耗费了历代数学家不少的心血,但是在解决这类问题的过程中,不仅促进了数学思想的发展,而且在人类其他思想史上亦具有重大意义.三㊁预备知识1. 尺规作图法关于尺规作图法,以科学出版社出版的‘数学大辞典“中的规定为主要参考依据:尺规作图法又称初等几何作图法或欧几里得作图法.仅用直尺(无刻度)和圆规(两脚足够长)两种工具按照下述步骤进行有限次的组合来完成的几何作图方法.(1)过两点可画一条直线(或一条射线),连接两点成一线段.(2)延长线段成一条直线或射线.(3)以定点为圆心定长为半径可画圆或圆弧.2.初等几何知识本文涉及的初等几何知识,我们还是沿用科学出版社出版的‘数学大辞典“中的相关论述:(1)关于角的分类平角:两边组成一条直线的角,或一条射线在平面内绕㊀㊀㊀141㊀数学学习与研究㊀2020 10着它的端点旋转,转到和原来位置构成一条直线时所形成的角.1平角=180ʎ.直角:平角的一半,一直角=90ʎ.锐角:大于0ʎ小于直角的角.钝角:大于直角小于平角的角.(2)关于三角形和圆的几个基本知识等腰三角形的定义及性质:两边相等的三角形是等腰三角形,等腰三角形的两个底角相等.三角形外角定理:三角形的外角等于和它不相邻的两个内角之和.圆心角定理:圆心角的度数等于它所对的弧的度数.圆周角定理:圆周角的度数等于它所对的弧的度数的一半.显然,同弧所对的圆心角等于圆周角的2倍.3.关于图学的几点相关知识的说明(1)图学是几何学与行为科学有机结合的综合性学科.图学一开始就是由理论几何学与行为科学有机构成的.从平面几何开始,发展到画法几何㊁工程图㊁地形图等,人们在制图过程中总要依据几何原理,经过人的科学行为(制图)表达完成各类制图工作.(2)图学是理论与实践相结合的科学,图学允许可逆.无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的,行为本身就是四维的运动(时间维㊁空间维),允许可逆自然是在四维时空中进行的.四㊁三等分任意角的作图方法以锐角为例,使用 尺规作图法 三等分任意角的作图步骤如下:第1步:给定任意角øAOB.第2步:作边OA的反向延长线OC.第3步:以O点为圆心,R为半径长画☉O,圆弧与边OB交于F点.第4步:在☉O上,以E点为圆心,R为半径长画☉E,☉E与OA的反向延长线交于D点,配合使用圆规和直尺,确保圆心E与D,F三点在同一直线上.第5步:连接OE,最终形成如图所示的几何图形.需要特别说明的是在作图过程中,第4步圆心的确认很关键,有可能需要 多次逼近 才能确定.五㊁三等分任意角的证明通过以下两种方法分别证明前面的作图方法可以三等分任意角.方法一:在☉E中,因为øODF为圆周角,øOEF为圆心角所以øOEF=2øODF.因为OE=OF,所以әEOF为等腰三角形,øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.方法二:在әDEO中,因为DE=OE,所以әDEO为等腰三角形,所以øODE=øEOD,øOEF=2øODE,因为OE=OF,所以әEOF为等腰三角形,所以øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.六㊁结㊀论通过以上的作图和证明,我们有理由认为对 三等分任意角 的作法有革命性的突破.1.作图过程中严格遵守 尺规作图法 的要求,且在有限的步骤内准确三等分角.2.通过初等几何理论对所作图形进行了严密的证明,结果正确.3.整个作图过程符合图学是理论与实践相结合的科学观点:图学允许可逆,无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的.路曼曼其修远兮,吾将上下而求索.ʌ参考文献ɔ[1]娄桐城.中学数学词典[M].北京:知识出版社,1984.[2]王元.数学大辞典[M].北京:科学出版社,2010.[3]熙国维.运动论[M].北京:海洋出版社,1993.[4]R.柯良(RichardCourant),H.罗宾(HertbertRobbins).什么是数学[M].左平,张饴慈译.上海:复旦大学出版社,2008.[5]欧几里得.几何原本[M].邹忌译.重庆:重庆出版社,2018.[6](日)远山启著.吕砚山㊁李诵雪㊁马杰㊁莫德举译著.数学与生活[M].北京:人民邮电出版社,2014.[7]王中华.用尺规作图不可能三等分任意角[J].数学通讯,2001(19).48.。
论尺规三等分角、任意等分任意角及其扩展各位网友大家好!首先祝大家身体健康!生活幸福!万事如意!在此我来发表一下自己的观点,这就是关于三等分任意角的问题,前不久我在山风工作室网络上发布了两篇关于分角的原创论文,即(论尺规三等分、任意等分任意角及其扩展)、(论尺规三等分、多等分任意角及其扩展)修改稿;由于本人学历有限,所写论文格式和语言可能不很规范,请大家理解,只看摘要、作图、证明正确与否即可;以下附上二文摘要(根据摘要即可很快作出图来):1.【论尺规三等分、任意等分任意角及其扩展】摘要:对于三等分及任意等分任意角来说,必须转变思维观念,不为分角而分角,而是寻求弧的等分,弧等分则角等分;该论证从三、五、七等分到模拟作a等分任意角,皆采用a+1等分弧的方法;首先运用二等分角原理,将a等分待分角作a+1等分,在其对应弧两端各取一等分点,根据平行线定义,从该点作角边平行线与另一角边相交,左右二交点分别与弧中点及其左右一等份弧点相连,再从圆心引四条线段与之分别平行,平分从圆心所作左右各两条线间弧段,得两关键点,此两点间弧段即所求的a等分弧;弧段关系用代数式表达,运用分析法推理,代数式运算求证,从而获取等分弧,解决了角的任意等分问题;分角范围明确,作图清晰、明了,且方便、快捷,圆弧内只需作十条平行线即可满足从作图到论证之全过程,若只作角等分而不加证明,圆弧内只需作五条平行线即可;扩展即可作一些形体的面积、体积、表面积任意等分;运用该等分角原理,可制作出无误差的分角器具,以便应用于实际工作中。
2.【论尺规三等分、多等分任意角及其扩展】(修改稿)摘要: 对三等分及多等分任意角来说,转变思维方式,从圆弧着手,寻求弧的等分,弧等分则角等分;该文从三、五等分及模拟作k等分任意角,皆采用2的a次方等分弧法,2的a次方等于kb+1,k即分角数、为大等于3之任意奇数、b为大于1之奇数、a为趋于最小值之整数;首先运用二分角原理,作出需用的kb+1等分弧;待分角对应弧两端各取一等分点,根据平行线定义,分别作角边平行线交另边于一点,左、右二交点分别与弧中点左右b+1/2、b-1/2及b-1/2、b+1/2等分点相连,得四条线段,再从圆心作四条线段与之分别平行,平分从圆心作出的左右各两条线之间弧段,得两关键点,此两点间弧段即所求的k 等分弧段;弧段关系用代数式表达,运用分析法推理,代数式运算求证,从而获取等分弧,理论上解决了角的任意等分问题,而从作图来说,则适用于多等分任意角;分角范围明确,方法简便、快捷,扩展开来即可多等分一些形体的面积、体积、表面积等.此二文分角方式不一,因此结果不一,但基本方法一致,采用几何与代数结合,力求几何问题在几何范围中解决;文中不涉及高等数学,完全是中学阶段所学的几何、代数知识,因此不难理解;客观的讲,该分角问题,并不是大家传说的那么高深莫测,只不过是两三千年来,没人发现它罢了,以至于变成了人们心目中,一个不可逾越的雷区。
三等分角、三平分角1、废话部分先说明我没有破解,但是有很多很接近的作图方法,在这里都写出来,希望接下来有共同兴趣的人可以少一点的弯路。
因为这方面的书籍和讯息都很少,我的想法不知道会不会和以前的人的想法重合 另一个就是,利用双曲线的这种方法可以解决任意角度(︒︒360~0),相比我知道的几种工具解决三等分的办法是便捷了许多另外就是由这个三等分衍生出来的好多概念在以后应该会有价值,就不知道是多少年后, 最后对于想深入研究的人我奉劝一句|“放弃吧,很费脑细胞还有时间的”2、双曲线的由来取任意一个角度每一个角度,以顶点为圆心,以任意长度画圆,被这个角度的两条边截出一段弧这段弧会根据圆半径的长短,弧长会相应变化,但是圆心角是不会变化的我们只要三等分弧AB ,就能等到AOB ∠的三平分角,这点不证明把A 、B 为两点连接直线,从圆心O 点作直线AB 的垂线,我们会得到一个类似直角坐标系的图形(可能有人在这里要彪了,你这是要利用直角坐标系,不是的哈,乖乖看下去,我只如果A、B间距是固定的,随着圆心在垂线DE上下运动,我们就能得到任意一个角度我用几何画板作图,大家可以学一下这个软件,毕竟手工作图误差是很大的对于这个任意角度,我们反推,在已知弧AB的两个三等分点的情况下,得到三平分点随着圆心上下移动的轨迹这个是一条栓曲线的一部分图像,接下来我给出证明把两个三平分点与点A 、B 连接,我们会得到一个等腰梯形,并且线段AF=FG=GB因为F 、G 点事三平分点,GOB FOG AOF ∠=∠=∠,点A 、F 、G 、B 在同一圆上,所以AF=FG=GB接下来是证明线段FG 平行AB ,弧AF=弧GB (因为FG 是三平分点),所以线段FG 平行于AB ,线段FG 也是垂直于DE 的直线DE 垂直于AB ,FG 平行于AB ,又DE 平分线段AB ,所以直线DF 也是FOG ∠的平分线,最主要的,我们要得到线段HG=21GB , FG=GB (相等角在同一个圆上所对应的弦是相等的),DE 平分线段FG , ∴ HG=21 FG=21GB ∴HG=21GBHG=21GB 圆心O 是直线DE 上任一点,恒有HG=21GB ,这个符合双曲线的第二个定义:平面内到一个定点B 和一条直线DF 的距离的比是常数e=2,e 〉1时的动点曲线轨迹叫做双曲线,∴∠AOB 的之中右边的三等分点的轨迹是一条双曲线,同理得证左边的三等分点也是一条双曲线3、接下来是推理出双曲线的解析式,求出解析式112422=-y x当∠AOB 是零度的时候, AB 的长度不随着圆点O 的变动而变动∴零度的弧就是与线段AB 重合,三等分点如图所示为i ,i 同时是线段AB 的三等分点,同时也是三等分点轨迹与线段AB 的轨迹的交点和双曲线的顶点之一设直线AB 与直线DE 的交点是j,假设线段ji 是一个距离单位,那么根据数量关系就有线段AB=6ji, iB=2ji B 点事双曲线的一个焦点我们假设双曲线的解析式是12222=-by a x , 222c b a =+,原点到双曲线顶点的距离是a,原点到焦点的距离是c, iB=c-a=2ij 我们已经把ij 设为基本距离单位,∴c-a=2离心率e=ac =2 联立方程⎪⎩⎪⎨⎧==-22ac a c 解得a=2,c=4, 222c b a =+ ∴b=32所以双曲线的方程式112422=-y x上边的是繁琐的一些证明,无非我们要得到的就是三等分点的轨迹是双曲线,要得到这条双曲线的相关的一些规律,希望这些规律能够在你尺规作图三等分角的时候有所帮助,现在我把我掌握的一些好玩的规律给大家介绍介绍。
学习尺规法三等分任意角[正文摘要]本文主要论述有关仅用尺规作图法来三等均分一个任意角的问题,以及它的来历,还有著名数学家的解答此几何问题的方法。
还有本人对此题的理解,最后用事实论述到尺规作图是不能把一个任意角三等均分的。
[关键词]尺规法任意角三等均分[正文]当我在数学上学会了用尺规作图法去作平分线平分一个任意角的时候,我就会提出另一个问题:“那么如何用尺规法把一个任意角三等均分呢?”我觉得这个问题很有趣。
我也曾经向我的数学老师讨论过这个问题,于是我翻查了一些资料,就发现:其实,“如何用尺规法三等均分一个任意角”这个问题,是属于古希腊的三大数学难题之一,也称“三等分角”。
它是来源于:“据说在公元前4世纪,托勒密一世定都亚历山大城,他深深懂得发展科学文化的重要意义,就吸引了当时许多著名的希腊数学家都来到这个城市。
亚历山大城郊有一座圆形的别墅,里面住着一位公主。
圆形别墅中间有一条河,公主的居室正好建立在圆心处。
别墅南北围墙各开了一个门,河上建了一座桥,桥的位置和南北门位置恰好在一条直线上。
国王每天赏赐的物品,从北门运进,先放到南门处的仓库,然后公主再派人从南门取回居室。
一天,公主问侍从:“从北门到我的卧室,和从北门到桥,哪一段路更远?”侍从不知道,赶紧去测量,结果是两段路一样远的。
过了几年,公主的妹妹小公主长大了,国王也要为她修建一座别墅。
小公主提出她的别墅要修的像姐姐的别墅那样。
国王满口答应,小公主的别墅很快就动工了,当把南门建立好,要确定桥和北门的位置时,却出现了一个问题:怎样才能使得北门到卧室和北门到桥的距离一样远呢?工匠们试图用尺规作图法确定出桥的位置,可是他们用了很长的时间也没有解决。
于是他们去请教阿基米德。
阿基米德用在直尺上做固定标记的方法,解决了三等分一角的问题,从而确定了北门的位置。
”①这好像是把这个“三等分角”问题给解决了,但是实际上,阿基米德在利用尺规作图时擅自在本来没有刻度的尺上标上了一个刻度,这一举动正好违背了尺规法作图的原则------当然当所有人都称赞阿基米德了不起的时候,“阿基米德却说:‘这个确定北门位置的方法固然可行,但只是权宜之计,它是有破绽的。
论尺规三等分角、任意等分任意角及其扩展
各位网友大家好!
首先祝大家身体健康!生活幸福!万事如意!
在此我来发表一下自己的观点,这就是关于三等分任意角的问题,前不久我在山风工作室网络上发布了两篇关于分角的原创论文,即(论尺规三等分、任意等分任意角及其扩展)、(论尺规三等分、多等分任意角及其扩展)修改稿;由于本人学历有限,所写论文格式和语言可能不很规范,请大家理解,只看摘要、作图、证明正确与否即可;以下附上二文摘要(根据摘要即可很快作出图来):
1.【论尺规三等分、任意等分任意角及其扩展】摘要:对于三等分及任意等分任意角来说,必须转变思维观念,不为分角而分角,而是寻求弧的等分,弧等分则角等分;该论证从三、五、七等分到模拟作a等分任意角,皆采用a+1等分弧的方法;首先运用二等分角原理,将a等分待分角作a+1等分,在其对应弧两端各取一等分点,根据平行线定义,从该点作角边平行线与另一角边相交,左右二交点分别与弧中点及其左右一等份弧点相连,再从圆心引四条线段与之分别平行,平分从圆心所作左右各两条线间弧段,得两关键点,此两点间弧段即所求的a等分弧;弧段关系用代数式表达,运用分析法推理,代数式运算求证,从而获取等分弧,解决了角的任意等分问题;分角范围明确,作图清晰、明了,且方便、快捷,圆弧内只需作十条平行线即可满足从作图到论证之全过程,若只作角等分而不加证明,圆弧内只需作五条平行线即可;扩展即可作一些形体的面积、体积、表面积
任意等分;运用该等分角原理,可制作出无误差的分角器具,以便应用于实际工作中。
2.【论尺规三等分、多等分任意角及其扩展】(修改稿)摘要: 对三等分及多等分任意角来说,转变思维方式,从圆弧着手,寻求弧的等分,弧等分则角等分;该文从三、五等分及模拟作k等分任意角,皆采用2的a次方等分弧法,2的a次方等于kb+1,k即分角数、为大等于3之任意奇数、b为大于1之奇数、a为趋于最小值之整数;首先运用二分角原理,作出需用的kb+1等分弧;待分角对应弧两端各取一等分点,根据平行线定义,分别作角边平行线交另边于一点,左、右二交点分别与弧中点左右b+1/2、b-1/2及b-1/2、b+1/2等分点相连,得四条线段,再从圆心作四条线段与之分别平行,平分从圆心作出的左右各两条线之间弧段,得两关键点,此两点间弧段即所求的k 等分弧段;弧段关系用代数式表达,运用分析法推理,代数式运算求证,从而获取等分弧,理论上解决了角的任意等分问题,而从作图来说,则适用于多等分任意角;分角范围明确,方法简便、快捷,扩展开来即可多等分一些形体的面积、体积、表面积等.
此二文分角方式不一,因此结果不一,但基本方法一致,采用几何与代数结合,力求几何问题在几何范围中解决;文中不涉及高等数学,完全是中学阶段所学的几何、代数知识,因此不难理解;客观的讲,该分角问题,并不是大家传说的那么高深莫测,只不过是两三
千年来,没人发现它罢了,以至于变成了人们心目中,一个不可逾越的雷区。
特别是近代以来,很多著名数学家如高斯、万芝尔、伽罗华等,曾先后否定三等分角,以至于对当代影响巨大;于是众说纷纭,孰是孰非一时难作了断,也就形成了分角派和反分角派,当然各人的看法不一,也在情理之中,但总的说来,我们大家都要树立正确的科学观,而不是人云亦云、崇拜教条;从众心理必须摒弃,否则科技发展、进步将失去保障,人人都崇拜权威,不敢越雷池一步,对新、难领域望而却步,科技创新且不成了空谈?您不搞可以,难道别人搞也不行?无论做出的结果怎样,大家探讨一下有什么不好呢?不要动不动就抬出某某来吓人,要知到人无完人,谁不会犯一点错,未必然这世上还真的有圣人?要知道人们心目中的圣人是无所不懂、无所不精的;孔夫子曾经说过:三人行,必有吾师矣;说这么多就阐明一点,没有什么人说的话句句是真理;再看三等分角,纯粹数学几何问题,正确就是正确,错误就是错误,对错与否一辩自知;因此我真诚的邀请所有人士,大家一起来探讨、交流,实践才是检验真理的唯一标准;首先静下心来,铺开纸张,拿起尺、规、笔,作图、论证再验证,要反对分角,先得拿出证据来,证明我的论证是错误的,让我心服口服;而不是整天说空话,拿大牌吓人,开口就是某某说的不可做,你即使做出来肯定也有哪不对的地方,看都不看,先乱说一通,这不是严谨的科学态度;科技发展是必然趋势、永无止境的,让我们携起手来,为
科技的发展、进步出一份力,你添一匹砖,我加一匹瓦,不久的将来,在中国将矗立起高大宏伟、庄严神圣的科学殿堂,它将令万人瞩目,世界景仰!。