直尺与圆规三等分任意一个角的证明方法
- 格式:docx
- 大小:19.07 KB
- 文档页数:4
引人入胜的千古难题——三大尺规作图问题尺规作图是我们熟知的内容。
尺规作图对作图的工具——直尺和圆规的作用有所限制。
直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
于是他们热衷于在尺规限制下探讨几何作图问题。
数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。
尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。
所谓三大几何作图难题就是在这种背景下产生的。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。
于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。
但是,尽管费了很大的气力,却没能把看来容易的事做成。
于是,第二个尺规作图难题——三等分任意角问题产生了。
正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。
古希腊三大几何问题既引人入胜,又十分困难。
尺规作图三等分任意角(0°<α≤180°)黑龙江省巴彦县兴隆镇第二中学谭忠仁邮编:151801电话:150****5590目录关于三等分角的由来 (1)三等分任意角(0°<α≤180°) (2)已知:∠AOB (2)求作:∠AOB的两条三等分射线OC、OD (2)作法: (2)证明: (2)关于三等分角的由来众所周知,三等分角是著名的几何作图三大问题之一(另外两个问题是化圆为方、倍立方体),近两千年来,几十代人为这三大问题绞尽脑汁,希腊人的巧思、阿拉伯人的学识、文艺复兴时期大师们的睿智都曾倾注于此,却均以失败告终。
1837年范兹尔首先证明三等分角与倍立方体不能有限次使用尺规作出。
1895年,克莱因给出三大问题有限次使用尺规作图不可能的简单而清晰的证明,阿基米德在几何学上的造诣是很深的,从他的著作里可以看到他对三等分角问题的研究,他先采用在直尺上标注一个点的方法,然后把一个角三等分,显然,这一方法取消了直尺上无刻度的限制,此外,喜庇亚斯借助割圆曲线、尼克曼得斯借助于蚌线、巴普士借助于双曲线、帕斯卡借助于蚶线,解决了三等分角的问题,但所有这些曲线都不能仅用尺规来完成。
综上所述,尺规作图三等分任意角尚无先例,本人自1971年参加工作后,任初中数学教师,由于专业的需要、兴趣及其爱好,使我涉猎了大量数学方面的资料和相关知识,下决心研究三等分角问题,历尽40年时间,苦心钻研,现终得一法,并且给出了科学、严谨的证明,借此恳请数学专家和导师予以审核、验证,并提出宝贵意见。
注:本文所举资料,请详见《陕西中学数学》1991年第二期谭忠仁2011年5月10日三等分任意角(0°<α≤180°)已知:∠AOB求作:∠AOB的两条三等分射线OC、OD作法:1、以O为圆心,以任意长为半径作⊙O,交射线OA于A,交射线OB于B;2、连结AB,引直径EE1,并且使EE1⊥AB,垂足为H;3、连结BE,以B为圆心,以BE的长为半径画弧,交AB于F;4、连结EF并延长,交⊙O于G1,交BE1的延长线于T;5、以T为圆心,以TB的长为半径画弧,交⊙O于C1,连结TC1,交⊙O 于G;6、在⌒AB上截取⌒BC2,使⌒BC2=2⌒E1G;7、连结BC2,作BC2的垂直平分线T1D2,垂足为H2,交TB于T1,,连结T1 C2;8、作射线TP,在射线TP上依次截取TP1= P1P2= P2P3,连结T1P3,作T2P1∥T1P3,交TT1于T2;9、以T2为圆心,以T2B的长为半径画弧,交⊙O于C,连结T2C,交⊙O 于G2;10、连结BC,作BC的垂直平分线T2D,交⊙O于G3、D,垂足为H3,(T2D 必经过圆心O、必经过等腰三角形T2BC的顶角的顶点T2);11、作射线OC,则射线OC、OD即为所求作的∠AOB的两条三等分射线。
论用圆规和直尺能将一个角三等分(续文)对于此题的证明,是在通过具体解题过程得出解题结果之后,对于这一具体解题结果的正确与否所进行的证明。
通过本人的不懈努力,在三十多年的证明研究过程中,经过了数百次的反复纠改,终使这一结果得到了严谨的理论证实。
解题步骤:参见图1,以任意角的顶点O为原点,以任意长为单位,分别在角的两个边上连续截取三个相等的单位,令第一个单位上的点分别为E、F,令第三个单位上的点分别为P、Q。
以P点为圆心,以E、F两点距离为半径在角内划弧,再从E、F两点引出切线与该弧相切,两条切线相交于点B,以同样的方法以Q点为圆心,可得另一交点C。
B、C两点就是角的三等分线所经过的点。
以O点为圆心,以OB或OC的长度为半径在角内划弧,分别交角的两边于A、D两点。
连接AB、BC和CD,若能证明出AB=BC,或BC=CD,则说明B、C两点,就是角的三等分线所经过的点。
因为OE=OF,OA=OD,OP=OQ,AB=CD,所以,EF、AD、PQ、BC都是关于角平分线对称的点。
证明过程:参见图2,首先连接P、Q,交EB于点H,交FC于点R。
因为OP=3OE,OQ=3OF,所以,PQ=3EF,所以PH=HR=RQ。
连接AD,便得AD∥BC,且AD ∥EF。
连接ER,交AD于N,再连接FH交AD于M。
因此M、N两点也是关于角平分线对称的点,所以MB=NC,同时便得出一个等腰梯形NMBC,则有BN=MC。
因为EF∥=RQ,所以ND∥=RQ,所以ND∥=BC,所以四边形NBCD是一个平行四边形,若证明出四边形NBCD为菱形,就可以说明BC两点就是角的三等分线所经过的点。
参见图3,以N点为圆心,以BC长为半径画弧,交AM于W点;连接WB 并延长到等于一倍WB长的一点Z,则有WB∥=NC,BZ∥=NC,所以,WB=MB (等量代换)。
过M点作NC的平行线,交BN于K,交BC于G,则有BZ∥=MG,再以B点为圆心,以WB长为半径划弧,交由M点所作的与NC相平行的线于T点,连接BT则有WB=MB=BZ=BT,连接ZT和TC以后,若能证明Z、T、C三点是在同一直线上的点,整个问题就可以应刃而解。
龙源期刊网
任意一个角三等分的尺规画法
作者:李文贵
来源:《中学生数理化·教研版》2008年第08期
任意一个角二等分比较容易,而任意一个角三等分就比较困难,通常只能是用量角器量出角度算出,或用尺规近似画分.本人通过研究,总结出一种尺规画法,以供大家探讨.具体画法如下:
一、设∠AOB为一任意角,使用一个扇形器(可用量角器代替,或用硬质纸板制作)放在∠AOB上,使其圆心O′与∠AOB的顶点O重合,设扇形器圆弧边与∠AOB两射线的
交点为A和B(在扇形器圆弧边上对应标记为A′和B′,沿扇形器的圆弧边沿画一圆弧AB(如图1).。
〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉(1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。
(2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。
(3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。
(4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。
(5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。
所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。
(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。
(7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。
(8)在圆心角AOB中,依据圆心角、弧、弦的关系定理:因为:小圆心角AOH对应AH弧,小圆心角HOM对应HM弧,小圆心角MOB对应MB弧,AH弧=HM弧=MB弧=1/3AB弧,所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1],所以,任意角AOB被尺规三等分了。
㊀㊀㊀㊀㊀140数学学习与研究㊀2020 10三等分任意角的作法探讨三等分任意角的作法探讨Һ蔡长青㊀(咸丰县中等职业技术学校,湖北㊀咸丰㊀445600)㊀㊀ʌ摘要ɔ 三等分角 是古希腊几何中尺规作图的名题,和化圆为方㊁倍立方问题并列为古代数学的三大难题,2400多年以来,不少学者进行了无数次尝试,都未能找到好的解决方法,笔者经过40余载的不断探索,吸取前人的数学智慧,突破传统思维,找到简单易行的求作三等分角的方法,该方法可以广泛应用到几何教学或工程技术领域.ʌ关键词ɔ三等分;任意角;作法;证明1979年的九月,进入咸丰一中学习的第一堂数学课上,满头银发的数学老师文渊不但满怀激情地介绍了高中三年数学学习的目标和学习方法,还向大家抛出了古代数学的三大难题,即用尺规作图法求作三等分任意角㊁化圆为方以及倍立方问题,从此笔者与三等分角问题结下了不解之缘.三等分角是号称古希腊三大几何问题之一,该问题的完整叙述为:只用圆规及一把没有刻度的直尺将一个给定角三等分.该问题自公元前480年以来,不少学者进行了长期的探索,甚至不少著名数学家从不同角度论证了用尺规作图法不可能解决 三等分角 问题,本着吸取前人数学智慧㊁传承文明㊁尊重科学的治学态度,本人就解决使用 尺规作图法 三等分任意角问题进行了长期的探索,现将偶有所得分享给大家,希望起到抛砖引玉的作用.一㊁关于三等分任意角的历史溯源1.三等分任意角问题产生的历史背景根据历史记载,公元前480年,古希腊和当时的波斯国在当时的雅典郊外萨尼克湾展开了一场惨烈的海战,古希腊大获全胜,从此雅典作为古希腊的政治㊁文化㊁经济中心逐渐走向繁荣.社会分工逐渐细化,一部分人从繁重的体力劳动中解放出来,出现了专门传授学问㊁研究学问的辩论师或称智者,也就是现代的职业教师.这些人为古希腊文明做出了巨大的贡献,其中在几何学上亦留下了三大难题供后人进行研究和探讨:给你一把圆规和直尺(无刻度),经过有限次的步骤,能否:①对任意角作三等分?②作已知立方体的二倍体积的立方体图形?③作与已给的圆面积相等的正方形?以上三个问题分别称为三等分角问题㊁倍立方问题和化圆为方问题,也称古希腊三大几何难题,这些问题看起来很简单,但是,2400多年来,不少数学家或数学爱好者为了解决这三个问题,耗费了许多心血,都没有取得成功.2.三等分任意角可能无法用 尺规作图法 求解1637年笛卡儿(ReneDescartes,1596 1650)创立了解析几何学后,有数学家依据解析几何,认为找到了通过尺规作图法不能解决三等分任意角问题的依据.1837年法国数学家旺策尔(PierreLaurentWantzel,1814 1848)首先证明了 倍立方 和 三等分任意角 不可能用尺规作图解决.1873年埃尔米特(CharlesHermite,1822 1901)证明了e是超越数;1882年德国数学家林德曼(Lindemann,1852 1939)证明了π也是超越数,从而 变圆为方 的不可能性也得以确立.1965年以前,数学家华罗庚曾写文章告诫青少年 用直尺和圆规三等分任意角是不可能的,不要为这道难题花费精力.2001年华中师范大学数学系的王中华亦在‘数学通讯“上发文并证明使用尺规作图 三等分任意角 是不可能的.二㊁ 三等分任意角 仍有研究的价值1.高中数学教学的需要为了加强普通高中的数学教学,在新版的‘普通高中数学课程标准“中增加了 三等分角与数域扩充 问题,让三等分角问题真正进入我国高中数学教学领域,有利于扩展学生的数学视野,激发学生的学习兴趣,提高学生解决问题㊁分析问题的能力.2.可以促进人的数学思维的发展古希腊的三大几何难题,几千年来尽管耗费了历代数学家不少的心血,但是在解决这类问题的过程中,不仅促进了数学思想的发展,而且在人类其他思想史上亦具有重大意义.三㊁预备知识1. 尺规作图法关于尺规作图法,以科学出版社出版的‘数学大辞典“中的规定为主要参考依据:尺规作图法又称初等几何作图法或欧几里得作图法.仅用直尺(无刻度)和圆规(两脚足够长)两种工具按照下述步骤进行有限次的组合来完成的几何作图方法.(1)过两点可画一条直线(或一条射线),连接两点成一线段.(2)延长线段成一条直线或射线.(3)以定点为圆心定长为半径可画圆或圆弧.2.初等几何知识本文涉及的初等几何知识,我们还是沿用科学出版社出版的‘数学大辞典“中的相关论述:(1)关于角的分类平角:两边组成一条直线的角,或一条射线在平面内绕㊀㊀㊀141㊀数学学习与研究㊀2020 10着它的端点旋转,转到和原来位置构成一条直线时所形成的角.1平角=180ʎ.直角:平角的一半,一直角=90ʎ.锐角:大于0ʎ小于直角的角.钝角:大于直角小于平角的角.(2)关于三角形和圆的几个基本知识等腰三角形的定义及性质:两边相等的三角形是等腰三角形,等腰三角形的两个底角相等.三角形外角定理:三角形的外角等于和它不相邻的两个内角之和.圆心角定理:圆心角的度数等于它所对的弧的度数.圆周角定理:圆周角的度数等于它所对的弧的度数的一半.显然,同弧所对的圆心角等于圆周角的2倍.3.关于图学的几点相关知识的说明(1)图学是几何学与行为科学有机结合的综合性学科.图学一开始就是由理论几何学与行为科学有机构成的.从平面几何开始,发展到画法几何㊁工程图㊁地形图等,人们在制图过程中总要依据几何原理,经过人的科学行为(制图)表达完成各类制图工作.(2)图学是理论与实践相结合的科学,图学允许可逆.无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的,行为本身就是四维的运动(时间维㊁空间维),允许可逆自然是在四维时空中进行的.四㊁三等分任意角的作图方法以锐角为例,使用 尺规作图法 三等分任意角的作图步骤如下:第1步:给定任意角øAOB.第2步:作边OA的反向延长线OC.第3步:以O点为圆心,R为半径长画☉O,圆弧与边OB交于F点.第4步:在☉O上,以E点为圆心,R为半径长画☉E,☉E与OA的反向延长线交于D点,配合使用圆规和直尺,确保圆心E与D,F三点在同一直线上.第5步:连接OE,最终形成如图所示的几何图形.需要特别说明的是在作图过程中,第4步圆心的确认很关键,有可能需要 多次逼近 才能确定.五㊁三等分任意角的证明通过以下两种方法分别证明前面的作图方法可以三等分任意角.方法一:在☉E中,因为øODF为圆周角,øOEF为圆心角所以øOEF=2øODF.因为OE=OF,所以әEOF为等腰三角形,øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.方法二:在әDEO中,因为DE=OE,所以әDEO为等腰三角形,所以øODE=øEOD,øOEF=2øODE,因为OE=OF,所以әEOF为等腰三角形,所以øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.六㊁结㊀论通过以上的作图和证明,我们有理由认为对 三等分任意角 的作法有革命性的突破.1.作图过程中严格遵守 尺规作图法 的要求,且在有限的步骤内准确三等分角.2.通过初等几何理论对所作图形进行了严密的证明,结果正确.3.整个作图过程符合图学是理论与实践相结合的科学观点:图学允许可逆,无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的.路曼曼其修远兮,吾将上下而求索.ʌ参考文献ɔ[1]娄桐城.中学数学词典[M].北京:知识出版社,1984.[2]王元.数学大辞典[M].北京:科学出版社,2010.[3]熙国维.运动论[M].北京:海洋出版社,1993.[4]R.柯良(RichardCourant),H.罗宾(HertbertRobbins).什么是数学[M].左平,张饴慈译.上海:复旦大学出版社,2008.[5]欧几里得.几何原本[M].邹忌译.重庆:重庆出版社,2018.[6](日)远山启著.吕砚山㊁李诵雪㊁马杰㊁莫德举译著.数学与生活[M].北京:人民邮电出版社,2014.[7]王中华.用尺规作图不可能三等分任意角[J].数学通讯,2001(19).48.。
尺规三大作图问题尺规作图是我们熟知的内容。
尺规作图对作图的工具——直尺和圆规的作用有所限制。
直尺和圆规所能的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、圆点、作一条直线与一个圆的交点。
公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
于是他们热衷于在尺规限制下探讨几何作图问题。
数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。
尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。
所谓三大几何作图难题就是在这种背景下产生的。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。
于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。
但是,尽管费了很大的气力,却没能把看来容易的事做成。
于是,第二个尺规作图难题——三等分任意角问题产生了。
正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。
另类做法:总述:人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.三等分任意角★作法一三等分角问题尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA★作法二帕斯卡(Pascal,B.1623—1662)的方法对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA★作法三帕普斯(Pappus,约公元320年)方法对于∠AOB,在它的两边上截取OA=OB.连结AB并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA★作法四玫瑰线方法交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA立方倍积★作法一倍立方问题倍立方问题柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边。
如何证明尺规作图三等分一个角是不可能问题?
1).先说明尺规作图可能问题:
一个作图题中的所作的未知量,若能由若干已知量经过有限次的有理运算及开平方算出时,这个作图题便能由尺规作出。
2).定理:
一个一元三次方程若它没有有理根,则长度等于它的任何实数根的线段是不能用尺规作出的。
3).证明尺规作图三等分任意角是不可能的:
如图:设已知角为3a ,平分后的每一个角为a ,作单位圆交角于A、B、C
过B作BD⊥OA于D,过C作CE⊥OA于E ,
令OD=m ,OE=x ,则m=cos(3a) ,x=cosa ,代入三角恒等式中:
cos(3a)= 4*(cosa)^3 - 3*cosa 得:4x^3 -3x -m = 0
由于在一般的情况下4x^3 -3x -m = 0 不是都有有理根(艾森斯坦因判别法)
所以根据上面的定理,任意三等分角用尺规作出是不可能的。
林浩南。
解决不可能的问题---尺规作图三等分任意⾓
介绍
三等分⾓是古希腊三⼤⼏何问题之⼀。
三等分⾓是古希腊⼏何尺规作图当中的名题,和化圆为⽅、倍⽴⽅问题被并列为古代数学的三⼤难题之⼀,⽽如今数学上已证实了这个问题⽆解。
该问题的完整叙述为:在只⽤圆规及⼀把没有刻度的直尺将⼀个给定⾓三等分。
在尺规作图(尺规作图是指⽤没有刻度的直尺和圆规作图)的前提下,此题⽆解。
若将条件放宽,例如允许使⽤有刻度的直尺,或者可以配合其他曲线使⽤,可以将⼀给定⾓分为三等分。
题⽬:
已知:∠ABC
求作:HB,IB平分∠ABC
众所周知,尺规作图⽆解
但在运⽤弧长转换时会有⼀些解法
基本思路:
构造3个等边三⾓形得弦相等,再得圆弧相等,最后得圆周⾓相等
solve:
1.画任意⾓∠ABC
2. 以任意长为半径,B为圆⼼作弧 交AB,BC为EF
3.作垂直平分线求线段EF中点 G
4.以EG为半径分别以E,F,G作弧交于I,H两点连BI,BH
5.∠ABH,∠HIB,∠IBC即为所求。
5、将C点与D点相连形成线段CD
6、作CD的中垂线交AB的延长线于N
以N为圆心,以CN为半径划弧CD ,交∠AOB的弧(弧Ⅰ)于F点,分出的弧FB是∠A OB的弧(弧Ⅰ)的三分之一
7、连接FB,以FB为半径,以A为圆心划弧交弧Ⅰ于G,
连接GO和FO,则∠AOG=∠GOF=∠FOB
二、证明
在上法三等分任意角∠AOB图的基础上连接GF和AG(见图二)
2、把该弧的弦AB 用平行线法分成3等分,使AL=LC=CB(作法略)
3、用圆规找出AB的中点O′,以O′为圆心,以A O′
为半径划弧Ⅱ,它实际上是平角∠A O′B的弧(也是以AB为直径的半圆的弧)
4、以B点为圆心,以B O′为半径划弧交平角∠A O′B的弧(弧Ⅱ)于D
5、将C点与D点相连形成线段CD
6、作CD的中垂线交AB的延长线于N
以N为圆心,以CN为半径划弧CD ,交∠AOB的弧(弧Ⅰ)于F点,分出的弧FB是∠A OB的弧(弧Ⅰ)的三分之一
7、连接FB,以FB为半径,以A为圆心划弧交弧Ⅰ于G,
连接GO和FO,则∠AOG=∠GOF=∠FOB
二、证明
在上法三等分任意角∠AOB图的基础上连接GF和AG(见图二)
2、把该弧的弦AB 用平行线法分成3等分,使AL=LC=CB(作法略)
3、用圆规找出AB的中点O′,以O′为圆心,以A O′
为半径划弧Ⅱ,它实际上是平角∠A O′B的弧(也是以AB为直径的半圆的弧)
4、以B点为圆心,以B O′为半径划弧交平角∠A O′B的弧(弧Ⅱ)于D
5、将C点与D点相连形成线段CD
6、作CD的中垂线交AB的延长线于N
以N为圆心,以CN为半径划弧CD ,交∠AOB的弧(弧Ⅰ)于F点,分出的弧FB是∠A OB的弧(弧Ⅰ)的三分之一
7、连接FB,以FB为半径,以A为圆心划弧交弧Ⅰ于G,
连接GO和FO,则∠AOG=∠GOF=∠FOB
二、证明
在上法三等分任意角∠AOB图的基础上连接GF和AG(见图二)
从上面作图时可知AG=FB,所以∠AOG=∠FOB
这时只要能证明∠GOF也=∠FOB
,即可证明∠AOG=∠FOB=∠GOF,则任意角∠AOB就被三等分
1、以AO为半径,以O为圆心将弧AB(弧1)从右下方适当延长,再以B为圆心,以G F为半径划弧交弧AB(弧1)的延长线于P,连接OP和BP,则新形成的△POB与△GOF全等,即在他们中,∠GOF=∠BOP
2、连接GP交BO于T,从图上看,GP连线似乎经过E点,因未做数学证明,所以,不能确认。
这时,在以边GO和PO及弧GP形成的由三个角组成的扇形中,扇形两边的两个角相等(∠GOF=∠BOP),所以,F点和B点,**和P点都是以GP的中垂线RO为对称轴对称分布的点。
,所以FB与GP平行。
同样,在以边AO和BO及弧AB(弧1)形成的扇形中,扇形也是由三个角组成的,两边的两个角也相等,连接GE(E点是AB和FO的交点)和FH(H点是AB和GO的交点),这时,**和F点,A点和B点,H点和E点都是以AB的中垂线SO为对称轴对称分布的点,所以GF与AB平行。
对称轴两边对应的角相等,所以∠GAB=∠FBA ∠GFH=∠FG
E ∠GEH=∠FHE
3、作GF的延长线至V, 因为GF与AB平行,所以内错角相等即∠VFB=∠FBA
4、在△AGE和△BFH中,已知∠FBA=∠GAB ∠GEH=∠FHE 所以,它们的第三个角也相等。
即∠AGE=∠BFH
5、因为∠AGE和∠BFH的同一侧的边FB和GP平行,所以,他们的另一侧的边AG和F
H也平行。
则形成平行四边形FGAH,其对角相等。
即∠GAH=∠GFH
已知∠GFH=∠FGE 所以∠FGE也=∠GAH
已知∠GAH(∠GAB)= ∠FBA,而∠FBA又=∠VFB
所以∠FGE=∠VFB
这样GE也与FB平行(同位角相等)
6、这时,GE连线和GP连线都与FB平行,且都经过**,所以,它们是相互重叠的同一
直线。
因为,经过同一点G与FB平行的只能有一条直线。
E点是GE直线上的点。
也在
这条线上,则GP连线必然经过E点。
也就是说AB,FO和GP在这一点相交。
7、在△AEO和△PEO中,AO和PO是同一弧的半径,所以AO=PO
EO是他们的公用边,而且已知∠AOG=∠FOB
∠GOF=∠BOP 所以∠AOG+∠GOF=∠POB+∠FOB
即∠AOE=∠EOP
所以△AEO和△PEO全等则对应角∠AEO=∠PEO
因为GF与AB(HE)平行,所以∠GFO=∠HEO(同位角相等)
因为EB与GP(ET)平行,所以∠BFO=∠TEO(同位角相等)
因此∠GFO=∠BFO △GOF和△FOB都是等腰三角形,所以,当他们的一个底角相等时,其顶角相等,即∠GOF=∠FOB ,
也=∠FOB,则任意角∠AOB被三等分。