11-1 简谐振动
- 格式:doc
- 大小:120.50 KB
- 文档页数:5
习题11解答:一、选择题1 一物体作简谐振动,振动方程为)4cos(π+=tAxω.在t = T/4(T为周期)时刻,物体的加速度为(A)2221ωA-.(B)2221ωA.(C)2321ωA-(D)2321ωA.[ B ]2 一质点作简谐振动,振动方程为)tAcos(φω+=x,当时间2/t T=(T为周期)时,质点的速度为(A)φωsinA(B)φωsinA-(C)φωcosA(D)φωcosA-[ A ]3 用余弦函数描述一简谐振子的振动.若其速度~时间(v~t)关系曲线如图所示,则振动的初相位为[A ]21--4.两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A2 /A1=2, 周期之比T2 / T1=2, 则它们的总振动能量之比E2 / E1 是(A) 1 (B) 1/4 (C) 4/1 (D) 2/1[A ]解:振动能量22222221TAmAmEEEpkπω==+=即2121212TAmEπ=2222222TAmEπ=12122222211222212122222222121221=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⋅=⋅==∴T T A A T T A A T A m T A m E E ππ 二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示. 若t = 0时,(1) 振子在负的最大位移处,则初相为 ;(2) 振子在平衡位置向正方向运动,则初相为 - ;(3) 振子在位移为A/2处,且向负方向运动,则初相为 3 ___.2.两个同方向、同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为α –α1 = π/6.若第一个简谐振动的振幅为310cm, 则(1)第二个简谐振动的振幅为_10 cm ,(2)第一、二两个简谐振动的相位差为2ππ-或者2.3. 两个线振动合成为一个圆运动的条件是(1) ,(2) ,(3) ,(4) . 解答:同频率:同振幅;两振动互相垂直;位相差为212012(k ),k ,,,π+=±± (2)三、计算题 1.一物体作简谐振动,其振动方程为)2135cos(04.0π-π=t x (SI) . (1) 此简谐振动的周期T = 1.2 s ;(2) 当t = 0.6 s 时,物体的速度v = -20.9 cm/s .2. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:)3234cos(2π+π=t x ..3 一质点作简谐振动,速度最大值vm = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,求则振动表达式?)212/5cos(1022π-⨯=-t x (SI) 4 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 多少 ? (2/3) s5. 用余弦函数描述一简谐振子的振动. 若其振动曲线如图所示,求振动的初相位和周期。
第2节简谐运动的描述学习目标:1.理解振幅、全振动、周期、频率.2.了解相位、初相位及相位差,知道简谐运动的表达式和式中各物理量的含义.3.能用公式和图象描述简谐运动的特征.一、描述简谐运动的物理量[课本导读]预习教材第5页~第7页“描述简谐运动的物理量”部分,请同学们关注以下问题:1.什么是全振动?什么是振幅?它的物理意义是怎样的?2.什么是周期、频率,它们各自的单位、物理意义是什么?它们之间有什么关系?3.什么是相位?它的物理意义是怎样的?[知识识记]1.振幅是指振动物体离开平衡位置的最大距离,通常用字母A 表示,是标量.2.振子完成一次完整的振动过程称为一次全振动,不论从哪一位置开始计时,弹簧振子完成一次全振动所用的时间总是相同的.3.做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期,用字母T 表示.其物理意义是表示物体振动的快慢.4.单位时间内完成全振动的次数,叫做振动的频率,用字母f 表示;其单位是赫兹,符号是Hz.5.周期与频率的关系是T =1/f .频率的大小表示振动的快慢.6.用来描述周期性运动在各个时刻所处的不同状态的物理量叫相位,当t =0时的相位称做初相位,用字母φ表示.二、简谐运动的表达式[课本导读]预习教材第7页~第9页“简谐运动的表达式”部分,请同学们关注以下问题:1.简谐运动的表达式是怎样的?2.表达式中各物理量的含义是怎样的?[知识识记]简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示离开平衡位置的位移,A 表示简谐运动的振幅,表示振动的强弱.2.式中ω叫做“圆频率”,它与周期频率的关系为ω=2πT =2πf .可见ω、T 、f 相当于一个量,描述的都是振动的快慢.简谐运动的表达式也可写成:x =A sin ⎝ ⎛⎭⎪⎫2πT t +φ或x =A sin(2πft +φ).3.式中(ωt+φ)表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,单位为弧度,相位每增加2π,意味着物体完成了一次全振动.4.式中φ表示t=0时简谐运动质点所处的状态,称为初相位或初相.5.相位差:即某一时刻的相位之差.两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1.1.振子从离开平衡位置到第一次回到平衡位置的过程是一次全振动.()[答案]×2.振幅是振子通过的路程.()[答案]×3.振子一次全振动走过的路程为振幅的4倍.()[答案]√4.振子位移相同时,速度和加速度相同.()[答案]×5.振子经过关于平衡位置对称的两点,速度方向一定不同.()[答案]×6.振子先后经过同一位置经过的时间就是一个周期.()[答案]×7.ω、T、f描述的都是振动的快慢.()[答案]√要点一对描述简谐运动的各物理量及其关系的理解——概念辨析型[合作探究]1.弹簧振子经历一次全振动后,其位移、加速度、速度有何特点?弹簧振子的一次全振动经历了多长时间?提示:弹簧振子的位移、加速度、速度第一次同时与初始状态相同;弹簧振子的一次全振动的时间刚好为一个周期.2.始末速度相同的过程是一次全振动吗?简谐运动在一个周期内,振子通过的路程一定等于多少个振幅?振子在半个周期内通过的路程又是多少呢?14个周期呢?提示:不是.一次全振动,物体的始末速度一定相同,始末速度相同的一个过程不一定是一次全振动.一次全振动的路程等于四个振幅,半个周期内振子通过的路程等于两个振幅.若从平衡位置或从最大位移处开始计时,14个周期内振子通过的路程等于一个振幅,从其他位置开始计时,14个周期内振子通过的路程可能大于或小于一个振幅.[知识精要]1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫做一次全振动.(2)注意把握全振动的四个特征①物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同.②时间特征:历时一个周期.③路程特征:振幅的四倍.④相位特征:增加2π.2.对振幅的理解(1)定义:振动物体离开平衡位置的最大距离叫做振动的振幅.在国际单位制中,振幅的单位是米(m).(2)振幅是标量,只有大小,没有方向,是用来表示振动强弱的物理量.(3)同一振动系统,系统的能量仅由振幅决定,振动越强,振幅就越大,振动能量也越多.(4)振幅与位移、路程的区别①振幅是振动物体离开平衡位置的最大距离,是标量;而位移是由平衡位置指向末位置的有向线段,是矢量;路程是运动路径的总长度,是标量.一个周期内的路程为振幅的四倍,半个周期内的路程为振幅的两倍.②当物体做简谐运动时,振幅是定值;位移的大小和方向时刻都在变化;路程则会持续不断地增加.3.对周期和频率的理解(1)周期(T)和频率(f)都是标量,反映了振动的快慢,T=1f,即周期越大,频率越小,振动越慢.(2)振动周期、频率由振动系统决定,与振幅无关.(3)全振动次数N与周期T和振动时间t的关系为N=t T.[典例剖析](对简谐运动的描述)如图所示,将弹簧振子从平衡位置拉下一段距离Δx,释放后振子在A、B间振动,且AB=20 cm,振子首次由A到B的时间为0.1 s,求:(1)振子振动的振幅、周期和频率.(2)振子由A到O的时间.(3)振子在5 s内通过的路程及位移大小.[审题指导](1)AB间距与振幅有何关系?(2)振子首次由A到B的时间与周期有何关系?[尝试解答](1)从题图可知,振子振动的振幅为10 cm,t=0.1 s=T2,所以T=0.2 s.由f=1T得f=5 Hz.(2)根据简谐运动的对称性可知,振子由A到O的时间与振子由O到B的时间相等,均为0.05 s.(3)设弹簧振子的振幅为A,A=10 cm.振子在1个周期内通过的路程为4A,故在t=5 s=25T内通过的路程s=40×25 cm=1000 cm.5 s内振子振动了25个周期,5 s末振子仍处在A点,所以振子偏离平衡位置的位移大小为10 cm.[答案](1)10 cm0.2 s 5 Hz(2)0.05 s(3)1000 cm10 cm如图,弹簧振子在BC间做简谐运动,O为平衡位置,BC间距离是10 cm,B→C运动时间是1 s,求:(1)振子的周期、振幅和频率;(2)振子从O 到C 的时间;(3)从O 位置,经过10 s ,振子走过的距离.[审题指导] (1)BC 间距与振幅有何关系?(2)振子首次由B 到C 的时间与周期有何关系?[尝试解答] (1)由B →C 运动特征可知,振幅A =5 cm ,周期T=2 s ,由f =1T 得频率为0.5 Hz.(2)若是直线从O 至C ,则为T 4=0.5 s ,若是O →B →C ,则为3T 4=1.5 s.(3)由n =t T ,经过10 s ,做了5次全振动,通过的路程为5A =20cm.[答案] (1)2 s 5 cm 0.5 Hz (2)1.5 s (3)20 cm判断全振动的两种思路思路1:物体完成一次全振动时,一定回到了初位置,且以原来相同的速度回到初位置.思路2:全振动中路程与振幅有固定关系,即一次全振动通过的路程是振幅的四倍.要点二对简谐运动表达式的理解——概念理解型[合作探究]两个频率相同的简谐运动,相位差为Δφ=φ2-φ1,若Δφ>0或Δφ<0时,说明两振动满足什么关系?提示:若Δφ>0,表示振动2比振动1超前;若Δφ<0,表示振动2比振动1滞后.[知识精要]做简谐运动的物体位移x随时间t变化的表达式:x=A sin(ωt+φ)1.x:表示振动质点相对于平衡位置的位移.2.A:表示振幅,描述简谐运动振动的强弱.3.ω:圆频率,它与周期、频率的关系为ω=2π/T=2πf.可见ω、T、f相当于一个量,描述的都是振动的快慢.4.ωt+φ:表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,相位每增加2π,意味着物体完成了一次全振动.5.φ:表示t=0时振动质点所处的状态,称为初相位或初相.6.相位差:即某一时刻的相位之差.两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.[题组训练]1.(简谐运动的表达式)(多选)物体A 做简谐运动的振动位移x A =3sin ⎝ ⎛⎭⎪⎫100t +π2m ,物体B 做简谐运动的振动位移x B =5sin ⎝ ⎛⎭⎪⎫100t +π6m.比较A 、B 的运动( )A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A 、B 周期相等为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 的相位始终超前B 的相位π3[解析] 振幅是标量,A 、B 的振动范围分别是6 m 、10 m ,但振幅分别为3 m 、5 m ,A 错;A 、B 的周期T =2πω=2π100s =6.28×10-2 s ,B 错;因为T A =T B ,故f A =f B ,C 对;Δφ=φA 0-φB 0=π3,D 对. [答案] CD2.(简谐运动的表达式)(多选)某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4t ,则质点( ) A .第1 s 末与第3 s 末的位移相同B .第1 s 末与第3 s 末的速度相同C .第3 s 末至第5 s 末的位移方向都相同D .第3 s 末至第5 s 末的速度方向都相同[解析] 根据x =A sin π4t 可求得该质点振动周期T =8 s ,则该质点振动图象如图所示,图象的斜率为正,表示速度为正,反之为负,由图可以看出第1 s 末和第3 s 末的位移相同,但斜率一正一负,故速度方向相反,选项A 正确、B 错误;第3 s 末和第5 s 末的位移方向相反,但两点的斜率均为负,故速度方向相同,选项C 错误、D 正确.[答案] AD3.(对简谐运动表达式的理解)(多选)某质点做简谐运动,其位移随时间变化的关系式为x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为10 cmB .质点做简谐运动的周期为4 sC .在t =4 s 时质点的速度最大D .在t =4 s 时质点的位移最大[解析] 由简谐运动的表达式x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,知质点的振幅为10 cm ,2πT =π4,得:T =8 s ,故A 正确,B 错误;将t =4 s 代入x =10 sin ⎝ ⎛⎭⎪⎫π4t cm ,可得位移为零,质点正通过平衡位置,速度最大,故C 正确,D 错误.[答案] AC要点三 简谐运动图象与简谐运动表达式对比分析——重难点突破型[合作探究]到现在为止,我们描述简谐运动有几种方法?它们各自的特点是什么?提示:我们可以用函数表达式和图象描述简谐运动.图象形象、直观;函数表达式精确、抽象,两种方法是从不同的角度描述同一个简谐运动过程.[知识精要]简谐运动两种描述方法的比较1.简谐运动图象即x -t 图象是直观表示质点振动情况的一种手段,直观表示了质点的位移x 随时间t 变化的规律.2.x =A sin(ωt +φ)是用函数表达式的形式反映质点的振动情况. 两者对同一个简谐运动的描述应该是一致的,只是描述的方法不同.我们可以根据振动方程作出振动图象,也可以根据振动图象读出振幅、周期、初相,进而写出位移的函数表达式.[题组训练]1.(简谐运动的表达式与图象)用余弦函数描述一简谐运动,已知振幅为A ,周期为T ,初相φ=-13π,则振动曲线为( )[解析] 根据题意可以写出振动表达式为x =A cos ⎝ ⎛⎭⎪⎫2πT t -π3,故选A.[答案] A2.(简谐运动的图象)一质点做简谐运动,其位移和时间关系如图所示.(1)求t =0.25×10-2 s 时的位移;(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?(3)在t =0到8.5×10-2 s 时间内,质点的路程、位移各多大?[解析] (1)由题图可知A =2 cm ,T =2×10-2 s ,振动方程为x =A sin ⎝ ⎛⎭⎪⎫ωt -π2=-A cos ωt =-2cos100πt cm. 当t =0.25×10-2s 时,x =-2cos π4 cm =- 2 cm. (2)由图可知,在1.5×10-2~2×10-2 s 的振动过程中,质点的位移变大,回复力变大,速度变小,动能变小,势能变大.(3)从t =0至8.5×10-2 s 时间内为4.25个周期,质点的路程为s =17A =34 cm ,位移为2 cm.[答案] (1)- 2 cm (2)变大 变大 变小 变小 变大(3)34 cm 2 cm3.(简谐运动的表达式与图象)有一弹簧振子在水平方向上的B 、C 之间做简谐运动,已知B 、C 间的距离为20 cm ,振子在2 s 内完成了10次全振动.若从某时刻振子经过平衡位置时开始计时(t =0),经过14周期振子有负向最大位移. (1)求振子的振幅和周期;(2)画出该振子的位移—时间图象;(3)写出振子的位移随时间变化的关系式.[解析] (1)弹簧振子在B 、C 之间做简谐运动,故振幅A =10 cm ,振子在2 s内完成了10次全振动,振子的周期T=tn=0.2 s.(2)振子从平衡位置开始计时,故t=0时刻,位移是0,经14周期振子的位移为负向最大,故如图所示.(3)由函数图象可知振子的位移与时间函数关系式为x=10sin(10πt+π) cm.[答案](1)10 cm0.2 s(2)图见解析(3)x=10sin(10πt+π) cm要点四简谐运动的多解问题——易错型[合作探究]一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经t1质点第一次通过M点,再经t2第二次通过M点,则质点振动周期的值为多少?提示:将物理过程模型化,画出具体化的图景如图所示.第一种可能,质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为t 1,再由M 经最右端A 返回M 经历时间为t 2,如图甲所示.此时周期为4(t 1+t 2/2).另一种可能就是M 点在O 点左方,如图乙所示,质点由O 点经最右方A 点后向左经过O 点到达M 点历时t 1,再由M 点向左经最左端A ′点返回M 点历时t 2.此时周期为43⎝ ⎛⎭⎪⎫t 1+t 22. [知识精要]由于振动的往复性,质点经过某一位置时因速度方向不确定常会导致多解,或由于简谐运动的方向的不确定以及对称性,质点先后经过同一位置的时间不确定,而导致多解.[题组训练]1.(简谐运动的周期性)下列说法中正确的是( )A .若t 1、t 2两时刻振动物体在同一位置,则t 2-t 1=TB .若t 1、t 2两时刻振动物体在同一位置,且运动情况相同,则t 2-t 1=TC .若t 1、t 2两时刻振动物体的振动反向,则t 2-t 1=T 2D .若t 2-t 1=T 2,则在t 1、t 2时刻振动物体的振动反向[解析]该题考查了振动的周期性及其相位的问题.相差一个周期的两时刻,物体在同一位置且运动情况相同;但物体在同一位置,两时刻的时间差不一定是一个周期.即使物体在同一位置,且运动情况相同,它可能是一个周期,也可能是几个周期,故A、B错误.振动情况反向,不一定是相隔半个周期,但相隔半个周期振动一定反向,故C错,D对.[答案]D2.(简谐运动的对称性)一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的值为多少?[解析]设质点从平衡位置O向右运动到M点,那么质点从O 点到M点运动时间为0.13 s,再由M点经最右端A点返回M点经历时间为0.1 s,如图甲、乙所示.根据以上分析,可以看出从O→M→A′历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s.另一种可能如图乙所示,由O→A→M历时t1=0.13 s,由M→A′历时t2=0.05 s,则34T2=t1+t2,故T2=43(t1+t2)=0.24s,所以周期的可能值为0.72 s和0.24 s.[答案]0.72 s和0.24 s3.(简谐运动的周期性)物体做简谐运动,通过A点时的速度为v,经过1 s后物体第一次以相同速度v通过B点,再经过1 s物体紧接着又通过B点,已知物体在2 s内所走过的总路程为12 cm,则该简谐运动的周期和振幅分别是多大?[解析]物体通过A点和B点时的速度大小相等,A、B两点一定关于平衡位置O点对称.依题意作出物体的振动路径草图如图甲、乙所示,在图甲中物体从A向右运动到B,即图中从1运动到2,时间为1 s,从2运动到3,又经过1 s,从1到3共经历了0.5T,即0.5T =2 s,T=4 s,2A=12 cm,A=6 cm.在图乙中,物体从A先向左运动,当物体第一次以相同的速度通过B点时,即图中从1运动到2时,时间为1 s,从2运动到3,又经过1 s,同样A、B两点关于O点对称,从图中可以看出从1运动到3共经历了1.5T,即1.5T=2 s,T=43s,1.5×4A=12 cm,A=2cm.[答案]T=4 s,A=6 cm或T=43s,A=2 cm课堂归纳小结[知识体系][本节小结]1.全振动以及描述简谐运动的物理量:振幅、周期、频率、角速度以及它们的关系.2.简谐运动的表达式:x=A sin(ωt+φ),明确相位、初相位、相位差.3.简谐运动的表达式和图象之间的关系:两者对同一个简谐运动的描述应该是一致的,只是描述的方法不同(如要点三题组训练1、2).4.简谐运动的周期性和对称性(如要点四题组训练1、2、3).。
第十一章机械振动
11.1 简谐运动
三维教学目标
1、知识与技能
(1)了解什么是机械振动、简谐运动;
(2)掌握简谐运动的位移图象。
2、过程与方法:正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线;
3、情感、态度与价值观:通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力。
教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律。
教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化。
教学教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源。
教学过程:
第一节简谐运动
(一)教学引入
我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。
(二)新课教学
1、机械振动
振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动?(微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。
)请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征?
演示实验
(1)一端固定的钢板尺,图1(a)
(2)单摆,图1(b)
(3)弹簧振子,图1(c)(d)
(4)穿在橡皮绳上的塑料球,图1(e)
提问:这些物体的运动各不相同:运动轨迹是直线的、曲线的,运动方向水平的、竖直的,物体各部分运动情况相同的、不同的……它们的运动有什么共同特征?
归纳:物体振动时有一中心位置,物体(或物体的一部分)在中心位
置两侧做往复运动,振动是机械振动的简称。
2、简谐运动
简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。
(1)弹簧振子
演示实验:气垫弹簧振子的振动
讨论:
第一、滑块的运动是平动,可以看作质点。
第二、弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
第三、没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。
我们研究在没有阻力的理想条件下弹簧振子的运动。
(2)弹簧振子为什么会振动?
物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。
回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力。
在O点,回复力是零,叫振动的平衡位置。
(3)简谐运动的特征
弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位
置的位移有直接关系。
在研究机械振动时,我们把偏离平衡位置的位移简称为位移。
3、简谐运动的位移图象——振动图象
简谐运动的振动图象是一条什么形状的图线呢?简谐运动的位移指的是什么位移?(相对平衡位置的位移)
演示:当弹簧振子振动时,沿垂置于振动方向匀速拉动纸带,毛笔P 就在纸带上画出一条振动曲线。
说明:匀速拉动纸带时,纸带移动的距离与时间成正比,纸带拉动一定的距离对应振子振动一定的时间,因此纸带的运动方向可以代表时间轴的方向,纸带运动的距离就可以代表时间。
实际应用例子:心电图仪、地震仪。
理论和实验都证明:简谐运动的振动图象都是正弦或余弦曲线。