气轨上的弹簧简谐振动实验报告
- 格式:docx
- 大小:200.10 KB
- 文档页数:7
简谐振动实验的实验报告一、实验目的1、观察简谐振动的现象,加深对简谐振动特性的理解。
2、测量简谐振动的周期和频率,研究其与相关物理量的关系。
3、掌握测量简谐振动参数的实验方法和数据处理技巧。
二、实验原理简谐振动是一种理想化的振动形式,其运动方程可以表示为:$x= A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$t$为时间,$\varphi$为初相位。
在本次实验中,我们通过研究弹簧振子的振动来探究简谐振动的特性。
根据胡克定律,弹簧的弹力$F =kx$,其中$k$为弹簧的劲度系数,$x$为弹簧的伸长量。
当物体在光滑水平面上振动时,其运动方程为$m\ddot{x} = kx$,解这个方程可得$\omega =\sqrt{\frac{k}{m}}$,振动周期$T = 2\pi\sqrt{\frac{m}{k}}$。
三、实验仪器1、气垫导轨及附件。
2、滑块。
3、弹簧。
4、光电门计时器。
5、砝码。
6、米尺。
四、实验步骤1、安装实验装置将气垫导轨调至水平,通气后检查滑块是否能在导轨上自由滑动。
将弹簧一端固定在气垫导轨的一端,另一端连接滑块。
2、测量弹簧的劲度系数$k$挂上不同质量的砝码,测量弹簧的伸长量,根据胡克定律计算$k$的值。
3、测量简谐振动的周期$T$让滑块在气垫导轨上做简谐振动,通过光电门计时器记录振动的周期。
改变滑块的质量,重复测量。
4、记录实验数据详细记录每次测量的质量、伸长量、周期等数据。
五、实验数据及处理|滑块质量$m$(kg)|弹簧伸长量$x$(m)|劲度系数$k$(N/m)|振动周期$T$(s)||||||| 010 | 005 | 200 | 063 || 020 | 010 | 200 | 090 || 030 | 015 | 200 | 109 || 040 | 020 | 200 | 126 |根据实验数据,以滑块质量$m$为横坐标,振动周期$T$的平方为纵坐标,绘制图像。
弹簧振子简谐运动实验报告一、实验目的1、观察弹簧振子的运动,理解简谐运动的特征。
2、测量弹簧振子的周期,探究周期与振子质量、弹簧劲度系数的关系。
3、学会使用实验仪器进行数据测量和处理。
二、实验原理弹簧振子是一个理想化的物理模型,它由一个轻质弹簧和一个质量可忽略不计的小球组成。
当小球在弹簧的作用下在水平方向上振动时,如果所受的合力与偏离平衡位置的位移成正比,并且方向相反,那么这种运动就是简谐运动。
根据胡克定律,弹簧的弹力 F = kx,其中 k 是弹簧的劲度系数,x是弹簧的伸长或压缩量。
对于弹簧振子,其运动方程可以表示为:\m\frac{d^2x}{dt^2} = kx\其解为:\(x = A\sin(\omega t +\varphi)\),其中 A 是振幅,\(\omega\)是角频率,\(\varphi\)是初相位。
简谐运动的周期 T 与角频率\(\omega\)的关系为:\(T =\frac{2\pi}{\omega}\),又因为\(\omega =\sqrt{\frac{k}{m}}\),所以弹簧振子的周期公式为:\(T = 2\pi\sqrt{\frac{m}{k}}\)。
三、实验仪器1、气垫导轨、光电门、数字计时器。
2、不同劲度系数的弹簧。
3、不同质量的滑块。
四、实验步骤1、将气垫导轨调至水平,开启气源。
2、把弹簧一端固定在气垫导轨的一端,另一端连接滑块,使滑块在气垫导轨上做水平方向的振动。
3、在滑块上安装遮光片,调整光电门的位置,使其能够准确测量滑块通过的时间。
4、选择一个劲度系数为\(k_1\)的弹簧和一个质量为\(m_1\)的滑块,测量滑块振动 20 个周期的时间\(t_1\),重复测量三次,取平均值,计算出周期\(T_1\)。
5、保持弹簧劲度系数不变,更换质量为\(m_2\)的滑块,重复步骤 4,测量周期\(T_2\)。
6、保持滑块质量不变,更换劲度系数为\(k_2\)的弹簧,重复步骤 4,测量周期\(T_3\)。
气轨上研究简谐振动指导教师:王亚辉实验团队:袁维,李红涛,苗少少(陕西理工学院物理与电信工程学院物理系,汉中,723000)摘要 在气轨导体上观察简谐振动现象,测定简谐振动的周期,观察简谐振动系统中的弹性势能和动能之间的相互转化,测定和计算它们之间的数量关系。
关键词 气垫导轨 简谐振动 劲度系数 粘滞阻力 Ⅰ. 实验原理当气垫导轨充气后,在其上放置以滑块,用两个弹簧分别将滑块和气垫导轨两端连接起来,如图1.(a )所示。
选滑块的平衡位置为坐标原点O ,将滑块由平衡位置准静态移至某点A ,其位移为x ,此时滑块一侧弹簧被压缩,而另一侧弹簧被拉长,如图1.(b )所示。
图1若弹簧的弹性系数分别为k 1,k 2,则滑块受到的弹性力为F =-(k 1+k 2)x (1)式中,负号表示力和位移的方向相反。
由于滑块与气轨间的摩擦力极小,故可以略去。
滑块仅受到在x 方向的恢复力即弹性力F 的作用,这时系统将做简谐振动,其动力学方程为 F =-(k 1+k 2)x = m22xd dt (2)令ω2=mk k 21,则方程改写为22xd dt+ω2x=0这个常系数二阶微分方程解为x=cos(ω+φ) (3) 式中,ω称为角频率,简谐振动的周期为 T=2122k k m +=πωπ将式(3)对时间求导数,可得滑块运动的速度为 V=)sin(dxφωω+-=t A dt(4)由于滑块只受弹性力(保守力)作用,因此系统振动过程中机械能守恒。
设滑块在某位置x 处的速度为v ,则系统在该位置处的总能量应为E=E P +E K =21( k 1+k 2)x 2+21mv 2 (5) 把式(3)和式(4)代入式(5)有 E=21( k 1+k 2)A 2cos 2(ωt+φ)+ 21m ω2A 2sin 2(ωt+φ) 又ω2=mk k 21+ k 1+k 2=ω2m 故E=21m ω2A 2=21( k 1+k 2)A 2 (6) 式中,m,k 1,k 2及A 都是常量。
基础物理实验实验报告计算机科学与技术【实验名称】气轨上弹簧振子的简谐振动【实验简介】气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦阻力。
虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。
由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms(十万分之一秒),这样就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。
利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律;研究简谐振动、阻尼振动等。
本实验采用气垫导轨研究弹簧振子的振动。
【实验目的】1. 观察简谐振动现象,测定简谐振动的周期。
2. 求弹簧的倔强系数和有效质量。
3. 观察简谐振动的运动学特征。
4. 验证机械能守恒定律。
1【实验仪器与用具】气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等。
【实验内容】1. 学会利用光电计数器测速度、加速度和周期的使用方法。
2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。
3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。
滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时,测量其相应振动周期。
分析和讨论实验结果可得出什么结论?(若滑块做简谐振动,应该有怎么样的实验结果?)4. 研究振动周期和振子质量之间的关系。
在滑块上加骑码(铁片)。
对一个确定的振幅(如取A=40.0cm)每增加一个骑码测量一组 T。
(骑码不能加太多,以阻尼不明显为限。
) 作 T2-m 的图,如果 T 与 m 的关系式为T2= 42m1+m0,则 T2-m 的图应为一条直线,其斜率为,截距为。
k用最小二乘法做直线拟合,求出 k 和 m0。
气垫导轨上弹簧振子振动的研究力学实验最困难的问题就是摩擦力对测量的影响。
气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表的摩擦,也就是说,物体受到的摩擦阻力几乎可以忽略。
利用气垫导轨可以进行许多力学实验,如测速度、加速度,验证牛顿第二定律、动量守恒定律,研究简谐振动、阻尼振动等,本实验采用气垫导轨研究弹簧振子的振动。
一、必做部分:简谐振动[实验目的]1.测量弹簧振子的振动周期t。
2.求弹簧的倔强系数k和有效质量m0。
[仪器仪器]气垫导轨、滑块、额外砝码、弹簧、光电门、数字毫秒计。
[实验原理]在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图13-1所示。
如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐振动。
设立质量为m1的滑块处在平衡位置,每个弹簧的弯曲量为x0,当m1距平衡点x时,m1只受到弹性力?k1(x?x0)与?k1(x?x0)的作用,其中k1是弹簧的倔强系数。
根据牛顿第二定律,其运动方程为图13-1简谐运动原理图?(1)?k1(x?x0)?k1(x?x0)?m?x令k?2k1方程(1)的意指x?asin?(0t??0)(2)表明滑块就是搞四极振动。
式中:a―振幅;?0―初增益。
0km(3)0叫做振动系统的固有频率。
而m?m1?m0(4)式中:m―振动系统的有效质量;m0―弹簧的有效质量;m1―滑块和砝码的质量。
0由振动系统本身的性质所同意。
振动周期t与?0存有以下关系:t?2??0?2?m1?m0m?2?kk(5)在实验中,我们改变m1,测出相应的t,考虑t与m的关系,从而求出k和m0。
[实验内容]1.按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。
2.测量图13-1右图的弹簧振子的振动周期t,重复测量6次,与t适当的振动系统的有效率质量就是m?m1?m0,其中m1就是滑块本身(未加砝码块)的质量,m0为弹簧的有效率质量。
气轨上弹簧振子的简谐振动目的要求:(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。
(2)观测简谐振动的运动学特征。
(3)测量简谐振动的机械能。
仪器用具:气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。
实验原理:(一)弹簧振子的简谐运动过程:质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别为k1和 k2,如下图所示:当 m1偏离平衡位置 x时,所受到的弹簧力合力为令 k=,并用牛顿第二定律写出方程解得X=Asin()即其作简谐运动,其中在上式中,是振动系统的固有角频率,是由系统本身决定的。
m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。
系统的振动周期为通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k和(二)简谐振动的运动学特征:将()对 t 求微分)可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得x=A时,v=0,x=0 时,v 的数值最大,即实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。
从上述关系可得(三)简谐振动的机械能:振动动能为系统的弹性势能为则系统的机械能式中:k 和 A均不随时间变化。
上式说明机械能守恒,本实验通过测定不同位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。
(四)实验装置:1.气轨设备及速度测量实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。
把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工与这两个侧面精确吻合,滑块与气轨之间就会形成一层很薄的气垫,使滑块漂浮在气垫上,因此滑块受到的摩擦力很小。
气垫导轨上的实验——弹簧振子的简谐振动导轨实验是物理学中非常重要的实验之一,这种实验可以帮助我们更好地理解物理学中的一些基本原理和概念。
本文将介绍气垫导轨上的实验——弹簧振子的简谐振动。
实验介绍气垫导轨是一种高精度的实验装置,采用此装置可以消除重力、摩擦等因素的影响,实现真正意义上的理想运动。
弹簧振子是物理学中的一种经典问题。
在本实验中,我们将利用气垫导轨上的弹簧振子来研究简谐振动的基本特征。
具体来说,我们将观察弹簧振子的振动周期、振幅等参数,分析这些参数与弹簧振子的基本特性之间的关系。
实验原理弹簧振子的运动可以近似地看作一种简谐振动。
简谐运动是指物体在恒定张力或弹力作用下,沿着一条直线或固定曲线做往返运动的一类运动形式。
弹簧振子的振动就是一种典型的简谐振动。
在弹簧振子的振动过程中,弹簧的弹性力是其运动的主导因素。
弹簧的弹性势能与其弹性形变的平方成正比,同时其弹性恢复力与其形变量成正比。
因此,我们可以通过测量弹簧振子的振幅与周期来确定弹簧的劲度系数和质量。
实验装置实验需要使用的装置有气垫导轨、弹簧振子、平衡砝码、计时器等。
实验步骤1.将弹簧挂在气垫导轨上。
2.调整弹簧长度和质量,使其达到稳定的振动状态。
3.测量弹簧振子的振幅和周期。
4.根据测量数据,计算弹簧的劲度系数和质量。
实验结果与分析弹簧振子的周期T可以通过震动次数n和时间t的比值来计算,即T = t / n。
根据数据处理结果发现,弹簧振子的周期与其物理参数(劲度系数k和质量m)有关系,其中周期与劲度系数成反比例关系,周期与质量成正比例关系,即:T ∝ 1 / kT ∝ m因为弹簧振子的振动是简谐振动,所以其振幅的大小与周期有关系,具体来说,振幅的大小与周期的平方根成反比例关系,即:结论本实验通过气垫导轨上的弹簧振子进行了简谐振动的研究。
结果表明,弹簧振子的周期与劲度系数成反比例关系,周期与质量成正比例关系,振幅的大小与周期的平方根成反比例关系。
气垫导轨实验报告气垫导轨实验报告怎么写?下面请参考公文站小编给大家整理收集的气垫导轨实验报告,希望对大家有帮助。
气垫导轨实验报告1【实验题目】气垫导轨研究简谐运动的规律【实验目的】1.通过实验方法验证滑块运动是简谐运动.2.通过实验方法求两弹簧的等效弹性系数和等效质量.实验装置如图所示.说明:什么是两弹簧的等效弹性系数?说明:什么是两弹簧的等效质量?3.测定弹簧振动的振动周期.4.验证简谐振动的振幅与周期无关.5.验证简谐振动的周期与振子的质量的平方根成正比.【实验仪器】气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架.【实验要求】1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 ).由滑块所受合力表达式证明滑块运动是谐振动.给出不计弹簧质量时的T.给出考虑弹簧质量对运动周期的影响,引入等效质量时的T.实验中,改变滑块质量5次,测相应周期.由此,如何计算k和m0 ?(2)列出实验步骤.(3)画出数据表格.2.测量3.进行数据处理并以小论文形式写出实验报告(1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据处理和计算过程.(2)明确给出实验结论.两弹簧质量之和M= 10-3㎏= N/m = 10-3㎏i m10-3㎏30Ts T2s2 m010-3㎏i m10-3㎏20Ts T2s2 m010-3㎏KN/m1 42 53 64.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值M0=(1/3)M( M为两弹簧质量之和)比较, 计算其相对误差.究竟选取哪种数据处理方法自定.书中提示了用计算法求k 和m0的方法.若采用,应理解并具体化.【注意事项】计算中注意使用国际单位制.严禁随意拉长弹簧,以免损坏!在气轨没有通气时,严禁将滑块拿上或拿下,更不能在轨道上滑动!气垫导轨实验报告2一、实验目的1、掌握气垫导轨阻尼常数的测量方法,测量气垫导轨的阻尼常数;2、学习消除系统误差的试验方法;3、通过实验过程及结果分析影响阻尼常数的因数,掌握阻尼常数的物理意义。
××大学实验报告学院:×× 系:物理系专业:×× 年级:××级姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________实验四:气垫弹簧振子的简谐振动一.实验目的与要求:1. 考察弹簧振子的振动周期与振动系统参量的关系。
2. 学习用图解法求出等效弹簧的倔强系数和有效质量。
3. 学会气垫调整与试验方法。
二.实验原理: 1.弹簧的倔强系数弹簧的伸长量x 与它所受的拉力成正比F=kx k=XF2.弹簧振子的简谐运动方程根据牛顿第二定律,滑块m 1 的运动方程为-k 1(x+x 01)-k 2(x-x 02)=m 22dtxd ,即-(k 1+k 2)x=m 22dtxd式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。
令k=k 1+k 2,则-kx= m 22dtx d解为x=A sin (ω0t+ψ0),ω0=mk =mk k 21+ 而系统振动周期T 0=02ωπ=2πkm当m 0《 m 1时,m 0=3s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成m 0=3m s )。
本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和k 。
三.主要仪器设备:气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。
四.实验内容及实验数据记录: 1.气垫导轨水平的调节使用开孔挡光片,智能测时器选在2pr 功能档。
让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δt 1和Δt 2控制在20-30ms 内),让它在导轨上依次通过两个光电门.若在同一方向上运动的Δt 1和Δt 2的相对误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。
2.研究弹簧振子的振动周期与振幅的关系先将测时器设置于6pd (测周期)功能档。
某位仁兄竟然要我二十几分才让下!!!!哥哥为了大家,传上来了,大家下吧实验5-2 简谐振动的研究自然界中存在着各种各样的振动现象,其中最简单的振动是简谐振动。
一切复杂的振动都可以看作是由多个简谐振动合成的,因此简谐振动是最基本最重要的振动形式。
本实验将对弹簧振子的简谐振动规律和有效质量作初步研究。
【实验目的】1.观察简谐振动现象,测定简谐振动的周期。
2.测定弹簧的劲度系数和有效质量。
3.测量简谐振动的能量,验证机械能守恒。
【实验器材】气轨、滑块、天平、MUJ-5B 型计时计数测速仪、平板档光片1个,“凹”形挡光片1个、完全相同的弹簧2个、等质量骑码10个。
【实验原理】1. 振子的简谐振动本实验中所用的弹簧振子是这样的:两个劲度系数同为1k 的弹簧,系住一个装有平板档光片的质量为m 的滑块,弹簧的另外两端固定。
系统在光滑水平的气轨上作振动,如图5-2-1所示。
当m 处于平衡位置时,每个弹簧的伸长量为0x ,如果忽略阻尼和弹簧的自身质量,当m 距平衡位置x 时,m 只受弹性回复力-k 1(x+x 0)和-k 1(x -x 0)的作用,根据牛顿第二定律得210102()()d xk x x k x x m dt-+--=令 12k k = (5-2-1)则有 22d x kx m dt-=该方程的解为)cos(0ϕω+=t A x (5-2-2)即物体系作简谐振动。
其中图5-2-1 弹簧振子ω=(5-2-3) 是振动系统的固有圆频率。
由于弹簧总是有一定质量的,在深入研究弹簧振子的简谐振动时,必须考虑弹簧自身的质量。
由于弹簧各部分的振动情况不同,因此不能简单地把弹簧自身的质量附加在振子(滑块)的质量上。
可以证明,一个质量为s m 的弹簧与质量为m 的振子组成的振动系统,其振动规律与振子质量为(m+m 0)的理想弹簧振子的振动规律相同。
其振动周期为2T π= (5-2-4) 其中s cm m =0,称为弹簧的有效质量,c 为一常数。
气轨上弹簧振子的简谐振动目的要求:(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量;(2)观测简谐运动的运动学特征;(3)测定简谐振动的机械能。
仪器用具:QG-5型气垫导轨(自带米尺)、光电计时器(BD100型智能频率计、两根弹簧(劲度系数未知)、滑块、骑码、挡光刀片(矩形片、U形片)、电子天平(精确度0.01g)、游标卡尺、气泵实验原理:1.弹簧振子的简谐运动方程:-(k1+k2)x=F F为恢复力,x为偏离平衡位置的距离mx+kx=0k=k1+k2m为振动系统有效质量且m=m1+m0m0为弹簧的有效质量,m1为滑块质量得:x=A sinωt+φω=km为固有角频率,A振幅和φ相位由初始条件决定T=2πω=2πmk=2π m1+m0kT为简谐振动的运动周期2.简谐运动的运动学特征:x=A sinωt+φv=Aωcosωt+φ得:v2=ω2A2−x2x=0,v max=±ωA,k=mω2=m v max2A2 3.简谐运动的机械能:E k=12mv2E p=12kx2E=E k+E p=12mω2A2=12kx24.测量振幅、周期、速度:弹簧振子由振幅位置释放,通过光电计时器记录矩形片第一次、第三次挡光的时间间隔,即为弹簧振子振动的周期,测量速度时,使用U形片,记录挡光时间,测量挡光间距,即可算出在相应位置的速度。
注意问题:1.开启气泵前,不能将滑块放在气轨上,关闭气泵前,必须先将滑块从气垫导轨上取下;2.通过在滑块上加骑码来改变质量时,骑码必须固定牢,并保持质量在滑块上分布平衡;3.实验前必须先记录滑块的平衡位置,根据平衡位置刻度来改变振幅;4.测速度时,由于U形片的两边宽度不严格相等,实验中需要通过使用游标卡尺测总宽度及相应两边宽度,对应不同方向的滑块的挡光距离。
实验内容:1.周期T和振幅A的关系:标记平衡位置,比如以滑块左端为基准,选取振幅为40cm、30cm、20cm、10cm 由静止释放,每个振幅分左右释放各测三组数据,记录到表格中。
气轨上简谐振动测弹簧劲度系数一、实验目的1、巩固对气垫导轨的使用。
2、观察简谐振动的运动学特征。
3、学习通过实验总结出物理规律的基本方法,并总结出弹簧劲度系数。
二、 实验原理由于气垫导轨可以提供近乎零摩擦的实验条件,在研究简谐振动时,只要考虑粘滞阻力就可以得到接近实际情况的振动。
利用气轨上的简谐振动来测量弹簧的劲度系数,在良好实验条件的保证下,可以进一步减小实验误差。
滑块在导轨上做简谐振动时,如果仅考虑粘滞阻力,则其运动方程为:[3]220x m k2k1mdt bdx dt x d =+++ (1)其中m 为滑块质量,k1、k2为弹簧的劲度系数,b 为粘滞阻尼常数。
方程的解为:)cos(2a t Ae x t mb+=ω (2)其中振幅A 、初相a 由初始条件决定。
2)2()21(m bm k k -+=ω (3)圆频率T πω2=(4)在实验中我们取两根相同的弹簧,故k1=k1=K所以2)2()2(m bm k -=ω (5)由(4)(5)得22222T m m b k π+=而t mbAeA 21=随指数衰减,所以nT A A nT m b ]1[0ln2= 其中式0A 为t=0时的振幅,nT A 为n 个周期后的振幅22022ln 2T m A A nT m k nT π+= (6)三、 实验仪器气垫导轨及附件、气源、两根相同的弹簧、滑块、物理天平、计时计数测速仪等,MUJ-ⅢA 计时计数测速仪.四、 实验内容及步骤(1)调节气垫导轨水平(2)在滑块上安装遮光片(单片),在导轨上连接滑块与弹簧。
(3)将计时计数仪调到周期档,光电门放到平衡位置,确定振幅0A ,让滑块振动。
记录10 个周期的时间。
(4)将计时计数仪调到计数档,光电门放到距平衡位置x 处,即x A nT =,让滑块振动,直到滑块不经过光电门时记录下计时计数仪的示数从2/,N n N =。
(5)用物理天平测量滑块的质量。
(6)重复(3)、(4)、(5)五次。
实验2.2 气垫导轨上的实验——弹簧振子的简谐振动【实验目的】1、 测量弹簧振子的振动周期T2、 求弹簧的劲度系数k 和有效质量0m【实验器材】气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。
实验装置如教材图2.2.3所示。
导轨可以喷出气流,在导轨表面和滑块之间形成很薄的气层,滑块与轨面脱离,极大地减小了阻力。
滑块上安装挡光板,当滑块通过光电门时,挡光板会遮拦光电门发出的光,以此计时。
通过调节计时仪面板和光电插座上的开关,可以使毫秒计时器记录从第一次遮光到底n 次遮光的时间【实验原理】在弹性限度内,弹簧的伸长量x 与它所受的拉力成正比,即F kx =,k 为弹簧倔强系数,/k F x =。
以平衡位置为原点水平建立坐标轴,则有F kx =-,x 为弹簧伸长量即物块的位置。
若忽略空气阻力,根据牛顿第二定律,其运动方程为:22d x m kx dt=-, 令2/k m ω=,则前面公式又可写成: 2220d x x dtω+= 解得物块的运动方程为:0cos()x A t ωϕ=+。
说明物块做简谐振动,式中,A 为振幅,0ϕ为初相位,ω叫做振动系统的固有圆频率。
周期 2T π=m 是振动系统的有效质量,10m m m =+,0m 是弹簧的有效质量,1m 是滑块和砝码的总质量,12k k =,1k 是弹簧的倔强系数。
【实验内容】1、打开并调整仪器,使导轨处在水平位置,选择适当的毫秒计信号选择指数n ,若直接测量一个周期,则5n =(滑块上有两个挡板)。
2、将滑块从平衡位置拉至光电门左边某一位置后释放,记录A T 。
测量10次,数据保留5位有效数字。
3、将滑块拉至光电门右边,重复步骤2,数据记为B T ,与A T 取平均值即为振动周期T 。
4、在滑块上加2块砝码,重复步骤2、3,共加3次。
每次加砝码均须记录砝码编号以便称量各自的质量。
5、测量完毕,取下滑块和弹簧,关闭气源,切断电源,整理好仪器。
6、称量弹簧实际质量与其有效质量进行比较。
武汉大学物理科学与技术学院物理实验报告学院专业年月日实验名称弹簧振子的简谐振动姓名年级学号成绩实验报告内容:五、实验数据表格一、实验目的六、数据处理及结果表达二、实验原理七、实验结果分析(实验现象分析、误差三、主要实验仪器来源分析、实验中存在的问题讨论)四、实验内容与步骤八、回答思考题一、实验目的1.测量弹簧振子的振动周期T.2.测量弹簧组的等效劲度系数k和有效质量m0.3.学习气垫导轨的使用方法.二、主要实验仪器气垫导轨、气源、滑块、挡光板、砝码、弹簧、光电计时装置(含光电门、光电控制器和数字毫沙计)等,以及电子天平.三、实验原理在水平的气垫导轨上,两根相同的弹簧系在一滑块的两端,使滑块做振动,如图所示.如果滑块运动的阻力可以忽略,滑块的振动可以看成是简谐振动.设质量为m1的滑块处于平衡位置时每根弹簧的伸长量均为x0,每根弹簧的劲度系数为k1,弹簧组的有效质量设为m0.取平衡时滑块中心所在处为坐标原点O,水平向右为x轴正方向.当滑块中心位于x时,振动系统在水平方向只受到弹性力−k1(x+x0)与−k1(x−x0)的作用,对振动系统应用牛顿第二定律,有−k1(x+x0)−k1(x−x0)=(m1+m0)ⅆ2xⅆt2即ⅆ2xⅆt2+2k1m1+m0x=0令w0=√2k1m1+m0则有ⅆ2xⅆt2+w2x=0(1)方程(1)解为x=A sin(w0t+φ0)(2)(2)式说明滑块作简谐振动.式中,A为振幅,φ0为初相位;w0叫作振动系统的固有圆频率,这是一个由振动系统本身性质决定的量.T与w0之间的关系可由简谐振动的周期性得到,即T=2πw0=2π√m1+m02k1=2π√mk(3)m1+m0=m称为振动系统的有效质量,2k1=k为弹簧组的等效劲度系数.实验中,通过加砝码到滑块上改变滑块的质量m1,并测出相应的振动周期T,再由(3)式求出弹簧组的等效劲度系数k̅=2k̅1和有效质量m̅0.四、实验内容与步骤利用一个光电门配合计时仪测量滑块的振动周期,可按以下步骤进行:1.两根相同的弹簧系在一插有挡光板的滑块两端,使滑块在水平气垫导轨上做近似无摩擦的周期振动,光电门置于气垫导轨中部附近.2.把专用连接线的一端接在光电门上,另一端(即插头)插到计时仪面板上的"光电"插座,此"光电"插座上的开关扳向"输入",另一"光电"插座上的开关扳向"短接";"光电-电位"开关扳向"光电";毫秒计的"信号选择"选用"3".毫秒计的"信号选择"指示数"n"表示:第一次遮光开始计时,第n次遮光停止计时,实验中可根据需求合理选择.3.将滑块从平衡位置拉至光电门左边某一位置(不要超过弹簧的弹性限度),然后放手让滑块振动,记录一个周期T1A的值(要求5位有效数字),共测量10次,填入表中.4.将滑块从平衡位置拉至光电门右边某一位置(不要超过弹簧的弹性限度),然后放手让滑块振动,记录一个周期T1B的值(要求5位有效数字),共测量10次,填入表中.取T1A和T1B的平均值作为振动周期T1,与T1相应的振动系统有效质量是m=m1+m0,式中m1就是滑块本身(未加砝码)的质量,m0为弹簧组的有效质量.5.将两块砝码左右对称地放在滑块上沿,再按步骤3和4测量周期T,相应的振动系统有效质量是m=m2+m0,式中m2=m1+“2块砝码的质量”.砝码上标有号码,注意记录每次所加砝码的号码,以便称出各自的质量.6.同理,再分别测量m=m3+m0及m=m4+m0相应的周期T3和T4,式中,m3=m1+"4块砝码的质量,"m4=m1+"6块砝码的质量"。
气轨上弹簧振子的简谐振动
目的要求:
(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。
(2)观测简谐振动的运动学特征。
(3)测量简谐振动的机械能。
仪器用具:
气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。
实验原理:
(一)弹簧振子的简谐运动过程:
质量为m1的质点由两个弹簧与连接,弹簧的劲度系数分别
为k1和k2,如下图所示:
当m1偏离平衡位置x时,所受到的弹簧力合力为
令 k=,并用牛顿第二定律写出方程
解得
X=Asin()
即其作简谐运动,其中
在上式中,是振动系统的固有角频率,是由系统本身决定的。
m=m 1+m0是振动系统的有效质量,m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。
系统的振动周期为
通过改变测量相应的T,考察T 和的关系,最小二乘法线性拟合求出k 和
(二)简谐振动的运动学特征:
将()对t 求微分
)
可见振子的运动速度v 的变化关系也是一个简谐运动,角频率为,振幅为,而且v 的相位比x 超前 .消去t,得
v2=ω02(A2−x2)
x=A时,v=0,x=0 时,v 的数值最大,即
实验中测量x和v 随时间的变化规律及x和v 之间的相位关系。
从上述关系可得
(三)简谐振动的机械能:
振动动能为
系统的弹性势能为
则系统的机械能
式中:k 和A均不随时间变化。
上式说明机械能守恒,本实验通过测定不同位
置x上m 1的运动速度v,从而求得和,观测它们之间的相互转换并验证机
械能守恒定律。
(四)实验装置:
1.气轨设备及速度测量
实验室所用气轨由一根约2m 长的三角形铝材做成,气轨的一端堵死,另
一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。
把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工
与这两个侧面精确吻合,滑块与气轨之间就会形成一层很薄的气垫,使滑块漂浮在气垫上,因此滑块受到的摩擦力很小。
为使气轨水平,需使滑块在气轨上做匀速运动,需使气轨有一个合适的倾角。
本实验用光电计时器记时,配合U型挡光刀片可以较精确地测量滑块在某一位置的速度。
固定在滑块上的U型挡光刀片迅速通过光电门时,光电计时器测量两次挡光的时间间隔δt,用游标卡尺测量U型挡光刀片上挡光的两边间距δs,则滑块在该位置的速度为v=δs
δt
2.周期测量
在水平的气垫导轨上,两个相同的弹簧中间连接一滑块做往返运动,由于空气阻尼及其他能量损耗很小,可近似看作是简谐运动,滑块上装有平板型挡光刀片,用来测量周期。
在滑块处于平衡位置时,把光电门的光束对准挡光刀片的中心位置。
用光电计时器测量平板型挡光片第一次到第三次挡光之间的时间间隔,这便是滑块的振动周期T。
实验步骤:
(1)测量弹簧振子的振动周期并考察振动周期和振幅的关系。
滑块振动的振幅A分别取10.0,20.0,30.0,40.0 cm时测量其相应的周期,每一振幅周期测量6 次。
(2)研究振动周期和振子质量之间的关系。
用电子天平分别测量滑块和各个骑码的质量。
在滑块上加骑码,对一个确定的振幅(取A=40.0cm)每增加一个骑码测量一组T,个数同(1),作图,用最小二乘法作线性拟合,斜率为,截距为,求出弹簧的倔强系数和有效质量。
(3)验证机械能守恒。
取一组滑块和骑码的组合,及A=40.00cm,将平板型挡光刀片换为U型挡光刀片,调整光电门的位置,测量不同位置x处的挡光时间间隔δt,用游标卡尺测量挡光边的间距δs,得出速度v,利用(2)中测量的滑块和骑码的质量计算机械能的值并比较。
(从平衡位置到初始位置之间取5-7 个点,包含平衡位置。
)
实验数据:
1.弹簧振子的振动周期与振幅的关系:
2.弹簧振子的振动周期与振子质量的关系
3.验证振动系统的机械能守恒
A=40.0cm,m1=659.51g
数据处理:
1.振幅T与周期A的关系图如下,可见随振幅的增大,周期也在不断增大。
由于滑块在运动过程中有空气阻力,实际的运动为阻尼振动,满足T随A 增大而增大的关系。
2.T2和m1的关系图如下:
设图中直线为y=a0+a1x,计算得:
4π2
=a1=
xy−x y
x2−(x )2
=9.3415s2kg k=4.2384kg s2σk=0.0004kg s2
4π2
=0.0002g m0=a0=y−a1x =0.062383s2m0=6.6974 gσm
相关系数r=0.9999998
综上,
k±σk=(4.2384±0.0004)kg s2
=(6.6974±0.0002)g
m0±σm
3.验证机械能守恒
相关系数r=0.9994
机械能E=1(m+m)v 2+1kx2
E=0.340JσE=0.004J
相对误差
σE E =1%
由此可见空气阻力等因素对实验的影响不大,弹簧振子系统机械能守恒。
思考题:
(1)需要把气轨调水平。
虽然周期和气轨水平没有关系,但考虑到要测量机械能守恒,而机械能中的重力势能的改变是无法测量的,所以必须使其水平使实验中没有重力势能的改变。
(2)措施:
1. 每一振幅周期测量6 次,且平衡位置左右各释放3 次。
2.测周期时光电门位置为平衡点,考虑到滑块中的挡板的宽度,所以左右释放
时,要注意调整光电门的位置。
在验证机械能的守恒时,测量速度v 时也是如此。
3.在验证机械能的守恒时,为确定某一点的位置,应用光电门的微移来确定。
4.在测量速度时,只测量1/4 个周期的,防止因为阻尼速度过量衰减。