【精品】探索勾股定理1陈共16页
- 格式:ppt
- 大小:2.27 MB
- 文档页数:16
2020年初中数学八年级上册《探索勾股定理》精品版北师大版初中数学八年级上册《探索勾股定理》精品教案【学情分析】勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。
此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
【教学目标】(一)知识与技能掌握直角三角形三边之间的数量关系,学会用符号表示。
学生在经历用数格子与割、补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。
(二)过程与方法通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。
(三)情感态度与价值观通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感。
使学生从经历定理探索的过程中,感受数学之美和探究之趣。
【教学重点】用面积法探索勾股定理,理解并掌握勾股定理。
【教学难点】计算以斜边为边长的大正方形C面积及割补思想的理解与应用。
【教学方法】教法:选择引导探索法,采用“问题情境→建立模型→解释、应用与拓展”的模式进行教学。
学法:自主探索—合作交流的研讨式学习,乐于创新—参与竞争的积极性学习。
【课前准备】为了更好地体现本节课课堂评价的主题,课前将全班学生划分为6个小组,每个小组的同学推举一位组长和副组长,在黑板上展示出以组长名字划分的6个小组的竞技台,由班长和数学课代表一起完成本节课的记分任务。
另外,老师加以说明,本节课同学们积极参与课堂评价,我们将评选出1~2个优胜小组获得老师准备的奖品,评选出5~6位表现突出的同学获得老师赠与的礼物。
【教学过程】(一)故事引入,引发思考图1图2图3相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客。
在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来。
§探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,了解并掌握勾股定理的内容。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生在探索过程中发现问题、总结规律的意识和能力。
重点难点:重点:勾股定理的内容及探究。
难点:勾股定理的发现教学方法:讲练结合、合作交流。
教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 章前的图文)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影第一节首电线杆拉线问题,出示课题。
二、做一做1、各学习小组在纸上画若干个直角三角形,分别测量它们的三条边的长,看看三边长的平方之间又怎样的关系小组内进行交流。
教师强调所画三角形尽量是任意三角形。
2、出示P2 书中的P2 图1—2)并回答:(1)观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
(2)你是怎样得出上面的结果的在学生交流回答的基础上教师直接发问:(3)图1—2中,A,B,C之间的面积之间有什么关系学生交流后形成共识,教师板书:A+B=C。
3、出示(书中P2图1—3)提问:(1)图1—3中,A,B,C之间有什么关系(2)从图1—2,1—3,中你发现什么学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
4、学生讨论:(1)图1—2、1—3中,你能用三角形的边长表示正方形的面积吗(2)你能发现直角三角形三边长度之间的关系吗在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。
这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,a2+b2=c2,我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
探索勾股定理一、【基础知识精讲】1.勾股定理:如果直角三角形两直角边分别为a 、b,斜边为c ,那么222a b c +=即:直角三角形两直角边的平方和等于斜边的平方。
我国古代把直角三角形较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
2.用面积法证明勾股定理:(1)如图,将四个全等的直角三角形拼成正方形。
(Ⅰ)ab c b a S ABCD 214)(22⨯+=+=正方形。
(Ⅱ) ab b a c S EFGH 214)(22⨯+-==正方形。
∴222b a c +=. ∴222c b a =+3.勾股定理各种表达式:在ABC Rt ∆中,︒=∠90C ,∠A 、∠B 、∠C 的对边分别为a.b.c则222b a c +=,222b c a -=,222a c b -=4.勾股定理的作用: (1)已知直角三角形的两边求第三边 (2)用于证明平方关系的问题。
二、【例题精讲】例1:在△ABC 中,∠C=90°,(1)若a=3,b=4,则c=_______; (2)若a=6,c=10,则b=_________;(3)若c=34,a :b=8:15,则a=________,b=________;(4)△ABC 中,∠ACB=90°,CD 是高,若AB=13cm ,AC=5cm ,则CD 的长__________.例2. 如图1-1,在△ABC 中,AB=15,BC=14,CA=13,求BC 边上的高AD .例3. 已知:如图,在△ABC 中,∠A=90°,DE 为BC 的垂直平分线,求证:222AC AE BE =-例题4、已知,如图,△ABC 中,AB=AC ,BD ⊥AC ,于D ,D 在AC 上,若CD=1,CD+2BD=2AC,求AB 的长。
例题5、已知如图,在△ABC 中,AB=20,AC=15,BC 边上的高为12,求△ABC 的周长。
【变式练习】1、如图,在△ABC中,∠ACB=90°,AB=50,BC=30,CD⊥AB于D,求CD的长。