中考数学总复习课件精品各题型解题指导专题二 分类讨论思想
- 格式:ppt
- 大小:154.50 KB
- 文档页数:6
00k k b ⎧⎪⎨⎪⎩+时时
点与直线的位置关系、直线与圆的位置关系、圆与直线的位置关系。
三角形的分类、四边形的分类
【例题与练习】
少元?此所得税法修改前少纳税多少元?
(3)已知某人2006年9月激纳个人所得税a(0<a<200)元,求此人本月工资(未纳税)
是多少元?
9.已知:如图所示,直线l切⊙O于点C,AD为⊙O的任意一条直径,
点B在直线l上,且∠BAC=∠CA D(A D与AB不在一条直线上),试
判断四边形ABCO为怎样的特殊四边形?
10. (1)抛物线2
22
y x bx
=+-经过点A (1,0).
①求b的值;
②设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内
的点.如果以A、B、P、Q为顶点的四边形为平行四边形,试求线段PQ的长.(2)已知矩形的长大于宽的2倍,周长为12,从它的一个顶点,作一条射线,将矩形
分成一个三角形和一个梯形,且这条射线与矩形一边所成的角的正切值等于1
2
,
设梯形的面积为S,梯形中较短的底的长为x,试写出梯形面积S关于x的函数关系式,并指出自变量x的取值范围.
布置作业见学案
教后记。
第二轮复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y 点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=. 点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。