数学分析求极限的方法
- 格式:doc
- 大小:673.00 KB
- 文档页数:11
千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。
对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。
一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。
通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。
当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。
二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。
当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。
三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。
其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。
常用的等价无穷小有:指数、对数、三角函数等。
四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。
其基本思想是将函数的极限转化成求导数的极限。
通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。
五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。
泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。
通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。
六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。
常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。
七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。
求函数极限的方法与技巧《数学分析》是以函数为研究对象,以极限理论和极限方法为基本方法,以微积分学为主要内容的一门学科.极限理论和极限方法在这门课程中占有极其重要的地位.灵活、快捷、准确地求出所给函数的极限,除了对于函数极限的本质有较清楚地认识外,还要注意归纳总结求函数极限的方法,本文对技巧性强、方法灵活的例题进行研究,进一步完善求函数极限的方法与技巧,有利于微积分以及后继课程的学习.1基本方法1.1利用定义法求极限从定义出发验证极限,是极限问题的一个难点.做这类题目的关键是对任意给定的正数ε,如何找出定义中所说的δ.一般地,证明0lim ()x x f x A →=的方法为:0ε∀>,放大不等式0()f x A x x αε-<<-<(α为某一个常数)解出,0αε<-x x 取αεδ=. 例[1](45)1P 证明32121lim 221=---→x x x x .证 0ε∀>,若221112122132133213x x x x x x x x ε---+-=-=<<--++. (限制x :011x <-<,则211)x +>,取=min{3,1}δε,则当01x δ<-<时,便有221123321x x x x ε---<<--. 定义中的正数δ依赖于ε,但不是由ε所唯一确定.一般来说,ε愈小,δ也愈小.用定义证明极限存在,有一先决条件,即事先要猜测极限值A ,然后再证明,这一般不太容易,所以对于其它方法的研究是十分必要的.1.2 利用左、右极限求极限lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=⇔==. 例2 设tan 3,0()3cos ,0xx f x x x x ⎧<⎪=⎨⎪>⎩ 求0lim ()x f x →.解 因为00tan 3tan 3lim ()lim lim 333x x x x xf x x x---→→→==⋅=,00lim ()lim 3cos 3x x f x x ++→→==. 得到0lim ()lim ()3x x f x f x -+→→==,所以0lim ()3x f x →=. 例3 求函数1()11x f x x +=++在1x =-处的左右极限,并说明在1x =-处是否有极限.解 111lim ()lim (1)21x x x f x x ++→-→-+=+=+,11(1)lim ()lim (1)01x x x f x x --→-→--+=+=+.因为11lim ()lim ()x x f x f x +-→-→-≠,所以)(x f 在1x =处的极限不存在.例4 若,0(),0xax b x f x e x +>⎧=⎨<⎩,求分段点0处的极限. 解 因为0lim ()lim()x x f x ax b b ++→→=+=,00lim ()lim 1xx x f x e --→→==.所以当1b =时,0lim ()1x f x →=;当1b ≠时,0lim ()x f x →不存在.可见,利用左右极限是证明分段函数在其分段点处是否有极限的主要方法.1.3 利用函数的连续性求极限 初等函数在其定义的区间I 内都连续.若I x ∈0,初等函数()f x 当0x x →时的极限就等于其在0x x =时的函数值,即0lim ()()x x f x f x →=.特别地,若[()]f x ϕ是复合函数,又0lim ()x x x a ϕ→=,且()f u 在u a =处连续,则lim [()][lim ()]()x x x x f x f x f a ϕϕ→→==.例5 求21cos 2arcsin 0lim xx x e -→.解 由于201cos 1lim2arcsin 4x x x →-=及函数ue uf =)(在14u =处连续, 所以2201cos 1cos 1lim2arcsin 2arcsin 4lim x xxx x x e e e →--→==.例[]()21196P 求4x →解4443lim4x x x x →→→==-413x →=== 在4x =连续).例[1](84)7P 求0ln(1)limx x x→+.分析 由1ln(1)ln(1)xx x x+=+,设ln y u =,1(1)x u x =+.因为10lim(1)x x x e →+=,且ln y u =在e u =点连续,故可利用函数的连续性求此极限.解 11000ln(1)limlimln(1)ln[lim(1)]ln 1xx x x x x x x e x→→→+=+=+==. 1.4 利用函数极限的四则运算法则求极限 若lim ()f x ,lim ()g x 存在,则有:(1)lim[()()]lim ()lim ()cf x bg x c f x b g x ±=±(,c b 为任意常数); (2)lim[()()]lim ()lim ()f x g x f x g x ⋅=⋅;(3)()lim ()lim[]()lim ()f x f xg x g x =(其中lim ()0)g x ≠; (4)lim[()][lim ()]nnf x f x =;(5)若lim ()f x A =,对正整数n ==.注 以上每个等式中的“lim ”均指x 的同一趋向.例8 1225lim(2)1x x x x→∞+-. 分析 该函数可以看作是两个函数的和.而对于函数2251x x -是分式函数,分子、分母都是多项式函数,并且当自变量x →∞时,归于前面介绍的第四种类型.对于函数12x,当x →∞时,01→x,故121x→.因此,只须再利用和的运算法则即可求得此极限.解 11222255lim(2)lim lim 251411x x x x x x xx x →∞→∞→∞+=+=-+=---. 1.5 利用重要极限求极限 1.5.1 0sin lim1x x x→=可推出0lim 1sin x x x →=,2000tan arctan 1cos 1lim 1,lim 1,lim 2x x x x x x x x x →→→-===.推广:0sin ()lim1()x x x φφ→=或0()lim 1sin ()x x x φφ→= 0(lim ()0)x x φ→=利用此重要极限公式求函数的极限,通常需要利用恒等变换将函数的某一组成部分变成形如sin ()()x x φφ或()sin ()x x φφ的形式.特别注意的是sin ()x φ这个复合函数的内函数()x φ要和分母或分子的函数相同,并且保证()0x φ→ (0)x →,则此部分的极限就为1.例9 求0sin 3limsin 2x xx→.分析 设sin 3()sin 2xf x x=,当0x →时,30x →,20x →故可利用恒等变换将()f x 化为sin 3()sin 2x f x x =sin 3233sin 22x x x x =⋅⋅,利用此重要极限公式即可求得.解 0000sin 3sin 323sin 3233lim lim lim lim sin 23sin 223sin 222x x x x x x x x x x x x x x →→→→=⋅⋅=⋅⋅=.1.5.2 1lim(1)xx e x→∞+=或10lim(1)x x x e →+=推广:1lim(1)x x e x φφ→∞+=()() (lim ())x x φ→∞=∞或0lim 1x e φφ→+=1(x)((x)) 0(lim ()0)x x φ→= 对于函数1()(1)x f x x φφ=+()()或()1f x φφ=+1(x)((x)),由于函数的底数和指数位置均含有变量,因此称为幂指函数.此重要极限公式解决的是1∞型幂指函数的极限问题,对于给定的函数,一般情况下也需要利用恒等变形后方可利用此公式.例10 求3lim(1)xx x→∞+.分析 设函数3()(1)xf x x=+是幂指函数,当x 趋于无穷大时,底3(1)1x+→,指数x →∞,是1∞型幂指函数,需利用此重要极限公式推广形式,将函数变形为3331()(1)((1))3xx f x x x=+=+,其中()3x x φ=,且当x →∞时,3x→∞,故有31lim(1)3x x e x →∞+=.解 3333311lim(1)lim(1)lim((1))33x xx x x x e x x x→∞→∞→∞+=+=+=.1.6 利用洛必达法则求极限在解决未定式的极限时,最简单的方法是约去分子、分母中趋于零的公因子.洛必达法则正是以求导的方法解决了这个问题.洛必达法则: 设)(),(x g x f 满足①在点0x 的领域内(点0x 可以除外)有定义,且0lim ()0x x f x →=,lim ()0x x g x →=.②在该领域内可导,且0)(≠'x g .③A x g x f x x =''→)()(lim 0. (A 可为实数,也可为∞±或∞)则A x g x f x g x f x x x x =''=→→)()(lim )()(lim00.如果()()f x g x ''在0x x →时,仍为00或∞∞型,且这时()f x '与()g x '仍满足定理中的条件,则可继续使用洛必达法则.例11 求22230sin cos lim sin x x x x x x→-.解 2223400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x x x x→→-+-= 320000sin cos sin cos cos cos sin 2sin 2limlim 2lim lim 333x x x x x x x x x x x x x x x x x x x →→→→+--+=⋅===. 1.7 利用无穷小求极限1.7.1 利用无穷小量的性质求函数的极限 性质1 有限个无穷小量的代数和是无穷小量. 性质2 有限个无穷小量之积是无穷小量. 性质3 任一常数与无穷小量之积是无穷小量. 性质4 无穷小量与有界变量之积是无穷小量. 例12 求1lim()cosx x x πππ→--. 解 0)(lim =-→ππx x ,而1cos1x π≤-,所以1lim()cos 0x x x πππ→-=-.1.7.2 利用等价无穷小量替换求函数的极限 若11()~(),()~()x x x x ααββ且11()lim()x x αβ存在,则()lim ()x x αβ也存在,并且11()()limlim ()()x x x x ααββ= 注 1. 常用的几对等价无穷小量.(当0x →时)2sin ~,tan ~,ln(1)~,1~,1cos ~2xx x x x x x x e x x +--.2. 等价无穷小量替换,来源于分数的约分,只能对乘除式里的因子进行代换,在分子(分母)多项式里的单项式通常不可作等价代换.例13求0lim x +→.分析函数经过变形可化为00lim lim x x ++→→0x +→时,利用21cos ~,1~22x xx --等价无穷小来计算极限.解原式00lim lim x x ++→→==2000112lim lim lim222x x x x x x +++→→→==⋅=⋅. 例14 求0ln(1sin )lim x x x α+→-(α是实数).解 当0x →时,ln(1sin )~sin ~x x x --- 1000,1ln(1sin )lim lim()1,1,1x x x x x ααααα++-→→<⎧-⎪=-=-=⎨⎪-∞>⎩. 1.8 利用降幂法求极限 1.8.1 分子分母为有理式()lim()x P x Q x →∞,其中()P x ,()Q x 均为多项式函数方法:将分子、分母同除以x 的最高次幂.例15 求2256lim 2x x x x x →∞+++-.分析 该函数是分式函数,分子2()56P x x x =++,分母2()2Q x x x =+-均为二次多项式函数,且自变量x 趋近于∞时均趋近于∞,故采取将分子、分母同除以最高次幂2x ,即消去2x ,有22562x x x x +++-22561121x x x x++=+-而1lim 0x x →∞=,21lim 0x x →∞=,再利用极限的运算法则,即可求出函数的极限. 解 222256156100lim lim 11221001x x x x x x x x x x→∞→∞++++++===+-+-+-. 一般地,对于()lim()x P x Q x →∞(其中()P x ,()Q x 均为多项式函数),当分子的次数高于分母次数,该函数极限不存在; 当分子的次数等于分母次数,该函数极限等于分子、分母的最高次项的系数之比;当分子的次数低于分母次数,该函数极限为0.即11101110lim 0nmn n n n m m x m m a n m b a x a x a x a n m b x b xb x b n m---→∞-⎧=⎪⎪++++⎪=∞>⎨++++⎪<⎪⎪⎩ .1.8.2 分子分母为无理式(1)当x →∞时,将分子、分母同除以x 的最高方次. 例16求limlimx x →+∞.解lim lim lim 1x x x ===. limlim 021x x x x→+∞→+∞==++. (2)当0x x →时,若 1) 0()0Q x ≠,则000()()lim()()x x P x P x Q x Q x →=;2) 00()0,()0Q x P x =≠,则0()lim()x x P x Q x →=∞;3) 00()()0Q x P x ==可利用有理化分子(或分母)的方法求极限. 例17求2x → 分析 该函数是分式函数,并且含有根式,当0x →时,分子、分母均趋近于0,故将分子、22221)x x ==1而当0x →12→,故可求得此极限.解220x x →→=22001)lim 12x x x x→→+==+=. 1.9 利用中值定理求极限例18 求xx e e x x x sin lim sin 0--→.解 设xe xf =)(,对它的应用微分中值定理得:[]sin ()(sin )(sin )sin (sin )(01)x x e e f x f x x x f x x x θθ'-=-=-+-<< ,即sin [sin (sin )](01).sin x xe ef x x x x xθθ-'=+-<<- 因为 ()x f x e '=连续,所以0lim [sin (sin )](0) 1.x f x x x f e θ→''+-===从而有 sin 0lim1sin x xx e e x x→-=-. 例19 设函数()f x 在0x =处连续,又设函数102()11sin 02x x x x x xϕ⎧+≤⎪⎪=⎨⎪>⎪⎩ , 求220()()cos lim()xx xf x x t dtx x ϕϕ→+⎰.解 利用积分中值定理有,2220cos 2cos 02xt dt x x ξξ=<<⎰,因为001lim 0lim ()2x x x ξϕ→→==,,,所以2220()()cos ()()2cos limlim ()()xx x xf x x t dtxf x x x x x x x ϕϕξϕϕ→→++⋅=⎰ 200()()2cos lim lim 2(0)2()()x x xf x x x f x x x x ϕξϕϕ→→⋅=+=+. 1.10 利用泰勒公式求极限若一个函数的表达式比较复杂时,我们可以将它展成泰勒公式,使其化成一个多项式和一个无穷小量的和,而多项式的计算是比较简单的,从而此方法能简化求极限的运算.例20 计算0()sin(sin )limsin x tg tgx x tgx x→--.分析 此题虽是型,但使用洛必达法则求极限太复杂.而分母无穷小的最低阶数为3,故写出诸函数三阶泰勒公式,便可求得结果.解 33sin ()3!x x x x ο=-+ 331()()3tgx x x x ο=++. 3333111sin ()()()33!2tgx x x x x x οο-=++=+.又33333331sin(sin )sin(())(()())3!3!3!3!x x x x x x x x x x οοο=-+=---++ 333331()()3!3!3x x x x x x x οο=--+=-+. 333331111()(())(())3333tg tgx tg x x x x x x x x οο=++=++++ 3333312()()33x x x x x x x οο=+++=++.所以33()sin(sin )()tg tgx x x x ο-=+.330033()sin(sin )()lim lim 21sin ()2x x tg tgx x x x tgx x x x οο→→-+==-+. 例21 求21lim(cos sin )x x x x x →+.解 应用cos ,sin ,ln(1)x x x +的泰勒展式有2232311cos sin 1()1()22x x x x x x x x οο+=-++=++23331ln(cos sin )ln(1())()22x x x x x x x οο+=++=+因此,232200111lim ln(cos sin )lim [()]22x x x x x x x x x ο→→+=+=于是,原式211ln(cos sin )20lim x x x xx e e +→==. 例22 设()f x 在点0x =处二阶可导,且320sin 3()lim[]0x x f x x x→+=,求(0),(0),(0)f f f '''并计算极限2203()lim()x f x x x→+. 解 由已知条件,并利用麦克劳林公式,有320sin 3()0lim[]x x f x x x →=+33223201(0)3(3)()(0)(0)()3!2lim[]x f x x x f f x x x x x οο→'''-++++=+ 233301(0)9lim [(3(0))(0)()()]22x f f x f x x x x ο→'''=+++-+. 得(0)3,(0)0,(0)9f f f '''=-==. 于是2203()lim[]x f x x x →+222011lim [3(0)(0)(0)()]2x f f x f x x x ο→'''=++++ 2220199lim [33()]22x x x x ο→=-++=. 2 典型方法2.1 重要极限的再推广定理 设lim ()1,lim ()f x g x ==∞,则()lim[(()1)()]lim[()]g x f x g x f x e -=证明 1(()1)()()()1lim[()]lim[1(()1)]f xg x g x f x f x f x --=+-1lim(()1)()lim[(()1)()]()1{lim[1(()1)]}f xg x f x g x f x f x e ---=+-=例1 求211lim(1)xx x x→∞++解 这是1∞型极限,2211111()1,(),(()1)()()1f x g x x f x g x x x x x x x=++=-=+=+, 所以2111lim [(11)]lim (1)211lim(1)x x x x x x xx ee e x x→∞→∞++-⋅+→∞++==. 另解 对211lim(1)x x x x →∞++令211(1)x y x x =++取对数得211ln ln(1)y x x x=++于是有211ln(1)lim ln lim1x x x x y x→∞→∞++= (00型,可洛必达法则)232221212211lim lim 11121x x x x x x x x x x →∞→∞--+++===-++ 所以1212lim lim(1)x x x y e e x x→∞→∞=++==显然这样解要复杂的多.例2 求21lim(cos 2)x x x →.解 21()cos 2,()f x x g x x ==因为2001limcos 21,lim x x x x →→==∞所以是1∞型极限, 有2222112sin limlim (cos21)20lim(cos 2)x x x x x x x x x e e e →→---→===.例3 求1222234lim()238x x x x x x -→+--+. 解 1222234lim()238x x x x x x -→+--+222341exp{lim(1)}2382x x x x x x →+-=-⋅-+- 425222241216exp(lim )exp(lim )2382238x x x x x e x x x x x →→+-+=⋅==-+--+.2.2 洛必达法则的应用例4 计算极限2[(1)]lim(1cos )xx x arctg t dt dx x x →+-⎰⎰.分析 对0,0∞∞等未定式的极限,常可用洛必达法则来计算. 解 原式22000(1)(1)2lim lim(1cos )sin 2sin cos x x x arctg t dtarctg x xx x x x x x→→++⋅==-+⋅+⋅⎰222042(1)1lim 3cos sin 6x x arctg x x x x x π→+++==-⋅. 3 一题多解举例每一个题目并非只能用一种方法进行求解,通常可采用多种途经去解决它. 例1 求1lim(12)xx x →-.[解法一] 利用重要极限10lim(1)xx x e →+=112220lim(12)lim[(12)]xx x x x x e ---→→-=-=.[解法二] 用取对数法 令1(12)xy x =-,两边取对数,得1ln ln(12)y x x=- 由0002112limln lim[ln(12)]lim 21x x x x y x x →→→--=-==-,所以1200lim lim(12)x x x y x e -→→=-=.[解法三] 用换元法 令2x t -=,则12x t-=所以112200lim(12)lim[(1)]xt x x x t e --→→-=+=.[解法四] 利用对数式的性质001112ln(12)lim ln(12)lim2120lim(12)lim x x x x x xxx x x x eeee →→-----→→-====.例2 求22201cos lim sin x x x x →-.[解法一] 用洛必达法则和重要极限0sin lim1x xx→=原式2222222222200022sin 2sin sin 1lim lim lim sin 2sin 2cos sin cos 2cos x x x x x x x x x x x x x x x x x x x →→→====+⋅++.[解法二] 三角函数公式及洛必达法则原式2222222220002232(sin )sin cos222lim lim lim 2sin cos cos 2cos sin22222x x x x x x x x x x x xx x x x →→→===- 22202cos12lim 22cos sin22x x x x x →==-. [解法三] 三角函数恒等变换和重要极限0sin lim1x xx→= 原式2222222220022(sin )sin sin11222lim lim sin sin 2222x x x x x x x x x x x →→==⋅⋅=⋅. [解法四] 分子分母同除以4x 用重要极限和洛必达法则原式222440224002201cos 1cos lim 1cos lim lim sin sin lim x x x x x x x x x x x x x x →→→→---===2232002sin 1sin 1lim lim 224x x x x x x x →→==⋅=. [解法五] 分子分母同乘21cos x +原式2222222222222000(1cos )(1cos )sin sin lim lim lim sin (1cos )sin (1cos )(1cos )x x x x x x x x x x x x x x x →→→-+===+++22200sin 11lim lim 1cos 2x x x x x →→==+. [解法六] 变换替换后用洛必达法则令2u x = 原式0001cos sin cos 1limlim lim sin sin cos 2cos sin 2u u u u u u u u u u u u u u →→→-====+-又00sin 11lim sin cos 2lim(1cos )sin u u u uu u u u u→→==++⋅. [解法七] 用等价无穷小来代替原式222242222400012sin 2()1222lim lim lim 2sin x x x x x xx x x x x →→→⋅====⋅. 原式22430001cos 2sin 21lim lim lim 424x x x x x x x x x x→→→-====. [解法八] 级数解法因为462cos 12!4!x x x =-+- 622sin 3!x x x =-+所以4682822048()1cos 12!4!lim sin 2()3!x x x x x x x x x x οο→-+-==-+. [解法九] 连续使用两次洛必达法则原式22222222002sin sin lim lim 2cos 2sin cos sin x x x x x x x x x x x x x →→==⋅++222222222002cos cos 1lim lim 2cos 2sin 2cos 2cos sin 2x x x x x x x x x x x x x x x →→===-⋅+-. 例3[]()728P 设()x ϕ连续,0()lim2sin t t t t t ϕ→=-,求0()lim sin t t xt t tϕ→-.[解法一] 从0()lim2sin t t t t t ϕ→=- 可得0()lim 2sin 1t t ttϕ→=-所以0lim ()0t t ϕ→=.又()x ϕ连续,因此(0)0ϕ=这样可以得到:当0x =时,00()(0)lim lim 0sin sin t t t xt t t t t tϕϕ→→==--;当0x ≠时,作变量代换xt u =,有000()()()lim lim lim sin sin sin t u u uu t xt u u x u u ut t u x x x xϕϕϕ→→→==--- 00()sin lim limsin sinu u u u u u uu u u x xϕ→→-=⋅--以下利用已知极限,以及两次洛必达法则,即可求出极限为22x , 所以,原式22,00,0x x x ⎧≠=⎨=⎩.[解法二] 利用等价无穷小求解,注意到31sin ~(0)6t t t t -→这样,从0()limsin t t t t t ϕ→- 03()lim 216t t t tϕ→==可知21()~(0)3t t t ϕ→于是220031()()3lim lim 2(0)1sin 6t t t xt t xt x x t t t ϕ→→⋅==≠-;当0x =时,根据法一可得结果.综上所述,原式22,00,0x x x ⎧≠=⎨=⎩.例4 求2lim lnx x ax x a→∞++. [解法一] 原式221()(2)12ln2()lim lim 11x x x a x a x a x a x a x a x a x x→∞→∞+⋅+-+⋅+⋅+++==-222limlim 12()(2)(1)(1)x x ax ax x a a a ax a x a x x→∞→∞===⋅=++++. [解法二] 因为(2)lnln(1)()x a a x a x a +=+++ 又所以x →∞时,0ax a→+,所以ln(1)~a a x a x a +++则2lim ln lim lim 1x x x x a a a x x a a x a x a x→∞→∞→∞+⋅=⋅==+++.总之,极限的解题方法很多,这就要求我们多做练习,学会总结归纳,学会举一反三.这对拓展我们的思维,进一步学好数学是有帮助的。
探讨数学分析中求极限的方法摘要:极限的概念是高等数学中一个最基本、最重要的概念 ,极限理论是研究连续、导数、积分、级数等的基本工具 ,因此正确理解和运用极限的概念、掌握极限的求法 ,对学好高等数学是十分重要的。
极限思想贯穿整个高等数学的课程之中,而给定函数的极限的求法则成为极限思想的基础,因此有必要总结极限的求法。
本文详细介绍了一些典型的极限计算方法 ,给出解题思路及相应技巧 ,并辅以典型的例题 ,最后还强调了求极限时的注意事项。
关键词:极限;类型;方法。
一、 利用函数连续性求极限由于初等函数在定义区间内处处连续,所以求初等函数在定义区内任意点处的极限值,就是求其函数在该点处的函数值。
由函数)(x f y =在x 0 点连续定义知,)()(lim 00x f x f x x =→。
例1 求)52(lim 22-+→x x x . 解 ∵52)(2-+=x x x f 是初等函数,在其定义域(全体实数)内连续∴所以用代入法求出该点的函数值就可。
即原式=2⨯2+2⨯2-5=3 例2 求632lim 220++-→x x x x . 解 由于632)(22++-=x x x x f 在x=0处连续 所以2163632lim 220==++-→x x x x 例3 求1352lim 22+-+→x x x x分析 由于552225lim lim lim 2)52(lim 2222222=-+⨯=-+=-+→→→→x x x x x x x x 71231lim lim 3)13(lim 222=+⨯=+=+→→→x x x x x所以采用直接代入法解 原式=751235222)13(lim )52(lim 2222=+⨯-+⨯=+-+→→x x x x x二、利用无穷小的性质求极限我们知道无穷小的性质有:性质1:有限个有界函数与无穷小的乘积为无穷。
性质2:在自变量同一变化的过程中无穷大量的倒数为无穷小。
求数列极限的若干方法求解数列极限是数学分析中一个重要的问题,常用的方法有以下几种:1.直接求解最简单的方法是直接计算数列的通项公式,然后逐渐增加项数,观察数列的变化趋势,看是否有收敛或发散的特性。
如果数列趋向于一个确定的数,即极限存在,则该数即为极限值。
这种方法适用于简单数列,例如等差数列、等比数列等。
2.夹逼定理夹逼定理是数学分析中的一个基本定理,可以用来求解一些复杂数列的极限。
夹逼定理的基本思想是将待求极限数列夹在两个已知极限数列之间。
如果两个已知极限数列的极限相同,那么待求极限就是它们的共同极限。
夹逼定理适用于求解一些无法通过直接求解得到极限的数列,例如级数、递推数列等。
3.利用数列性质数列具有一些基本性质,例如收敛数列的任意子列也收敛,并且极限相同;发散数列的一些子列无极限等。
可以通过这些性质来判断数列的极限是否存在,或者通过子列的极限值来确定数列的极限。
4.数列分解对于一些复杂的数列,可以将其分解成多个部分,然后分别求解每个部分的极限。
通过对各个部分的极限进行分析,再根据极限的性质进行组合,可以得到整个数列的极限。
这种方法常用于数列具有递推关系或递归定义的情况。
5.数列收敛性的判别数列收敛有一系列的判别法则,例如柯西收敛准则、单调有界准则、无穷大准则等。
这些准则可以用来判断一个数列是否收敛,或者一部分的数列是否收敛。
6.使用极限性质根据极限的性质,例如极限的四则运算性质、极限的保号性等,可以推导出一些数列的极限值。
通过运用这些性质,可以简化数列极限的求解过程。
总结起来,求解数列极限的方法是多种多样的。
我们可以根据数列的特点和性质,选择适合的方法进行求解。
常用的方法包括直接求解、夹逼定理、数列性质、数列分解、数列收敛性的判别和使用极限性质等。
数学分析中求极限的方法总结1 利用极限的四则运算法则和简单技巧极限的四则运算法则叙述如下:定理1.1(1(2(3)若B ≠0(4(5)[]0lim ()lim ()nnn x x x x f x f x →→⎡⎤==A ⎢⎥⎣⎦(n 为自然数)i由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例1. 求225lim3x x x →+- 解:由定理中的第三式可以知道()()22222lim 55lim 3lim 3x x x x x x x →→→++=--22222lim lim5lim lim3x x x x x x →→→→+=+225923+==--例2. 求3x →33x x→→=3x→=14=式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知()11112231nxn n=+++⨯⨯-⨯观察11=1122-⨯111=2323-⨯因此得到()11112231nxn n=+++⨯⨯-⨯11111111223311n nn=-+-+-+---1lim lim11nn nxn→∞→∞⎛⎫=-=⎪⎝⎭2 利用导数的定义求极限导数的定义:函数f(x)如果()()00lim limx xf x x f xyx x∆→∆→+∆-∆=∆∆存在,则此极限值就称函数f(x)()'f x。
即f(x)在定点0x 的导数。
例4.lim()212lim'22x x f x f x f πππ→⎛⎫- ⎪⎝⎭==⎛⎫- ⎪⎝⎭12=3 利用两个重要极限公式求极限两个极限公式:(1(2)1lim 1xx ex →∞⎛⎫+= ⎪⎝⎭但我们经常使用的是它们的变形:(1,(2例5:xx x x 10)1()21(lim +-→解:为了利用极限故把原式括号内式子拆成两项,使得第一项为e x xx =+→10)1(lim 1,第二项和括号外的指数互为倒数进行配平。
函数极限的几种求解方法函数极限是微积分中一个重要的概念,它在数学中有着广泛的应用。
在求解函数极限时,我们可以通过多种方法来得到结果。
本文将介绍几种常用的函数极限求解方法,帮助读者更好地理解和掌握这一重要的数学概念。
一、直接代入法直接代入法是求解函数极限最简单的方法之一,它适用于绝大多数函数。
在这种方法中,我们只需将自变量x的值代入到我们要求解的函数中,然后计算得到函数的极限值。
对于函数f(x) = x^2,要求解lim(x→3) x^2的极限值,我们只需将x=3代入到函数中得到9,即lim(x→3) x^2 = 9。
这种方法简单直接,适用范围广泛,但在某些情况下可能会出现不确定形式的极限,这时就需要借助其他方法来求解。
二、夹逼定理夹逼定理也是求解函数极限常用的方法之一,它适用于一些复杂的函数极限问题。
夹逼定理的基本思想是通过找到一个上界函数和一个下界函数,使得它们的极限值相同,并且夹住要求解的函数,在夹逼定理的约束下,我们可以通过求解上界函数和下界函数的极限值来得到要求解函数的极限值。
对于函数f(x) = x*sin(1/x),要求解lim(x→0)x*sin(1/x)的极限值,我们可以找到上界函数g(x) = |x|和下界函数h(x) = -|x|,满足lim(x→0) g(x) = 0,lim(x→0) h(x) = 0,同时g(x) ≤ f(x) ≤ h(x),因此根据夹逼定理,我们可以得到lim(x→0) x*sin(1/x) = 0。
夹逼定理在求解复杂的函数极限问题时非常有用,它可以帮助我们找到一些难以直接代入求解的函数极限的解析形式。
求解函数极限有多种不同的方法,每种方法都有其适用的范围和特点。
在实际应用中,我们可以根据具体的问题情况选择合适的方法来求解函数极限,从而得到准确的结果。
通过掌握这些方法,读者可以更加深入地理解和应用函数极限的概念,提高数学分析问题的能力和水平。
希望本文能够帮助读者更好地理解和掌握函数极限的求解方法,为进一步学习数学分析和微积分打下坚实的基础。
数学分析中求极限的方法总结一、数列极限:1.利用通项公式或递推公式求出数列的表达式,进而通过数学运算和性质进行极限求解;2.利用引理,例如夹逼定理、单调有界定理等,根据已知的性质以及所要求的极限关系,确定一个与之相关的已知极限,然后运用引理求解未知极限。
二、函数极限:1.利用函数的性质,例如连续性、导数性质等,结合极限的定义进行计算;2.利用夹逼定理、单调有界准则等物理建模方法,将复杂的函数极限问题转化为更简单的函数极限问题,然后求解;3.利用泰勒展开、极坐标变换、特殊函数性质等数学分析工具进行极限计算。
三、级数极限:1.根据级数极限的定义,利用极限计算原理进行求解;2.利用级数的收敛判别法,例如比较判别法、积分判别法、根值判别法等,确定级数的收敛性质,进而求解其极限。
在具体的求极限中,还可以运用以下方法和技巧:1. 运用数列极限的性质,例如子数列性质、Cauchy准则等,进行极限求解;2.将复杂的极限问题化为较为简单的形式,例如利用变量替换或函数分解等方法;3.利用数列和函数的收敛性质,例如极限的保序、保号、保比、保和等运算规则;4. 运用Stolz定理、L'Hopital法则等特殊的求极限方法;5.利用正弦函数、余弦函数、指数函数、对数函数等特殊函数的性质,进行计算。
最后,对于一些复杂的极限问题,如果经过常规方法无法求解,可以尝试使用数值逼近法,例如牛顿法、二分法等,来逼近极限值。
综上所述,数学分析中求极限的方法主要包括数列极限、函数极限和级数极限等多个方面。
除了利用极限的定义和性质进行计算外,还可以利用引理、准则、工具和技巧等进行解题。
在实际的极限求解中,还需要根据具体问题选择最合适的方法,灵活运用,提高解题效率。
数学分析求极限的方法
在数学分析中,常用的求极限的方法有以下几种:
1. 代入法:将变量替换为极限点的值,然后计算极限。
如果结果存在有限数或无穷大,则极限存在;否则,极限不存在。
2. 夹逼准则:对于一个数列或函数,如果存在两个收敛数列或函数,它们的极限都是所求极限的话,那么所求极限也是存在的。
3. 函数极限的性质:根据函数极限的性质,如和差乘商的极限,复合函数的极限等,可以间接求得极限。
4. 极限的四则运算法则:对于形如极限运算的表达式,可以利用极限的四则运算法则,将其化简成简单的形式来求解。
5. 柯西收敛准则:对于一个数列或函数,如果对于任意给定的正数ε,存在正整数N,使得当n和m大于等于N时,数列或函数的值之差小于ε,则称该数列或函数是柯西收敛的,进而通过该准则求得极限。
6. 初等函数极限:对于一些常见的初等函数的极限,如指数函数、对数函数、三角函数等,可以利用它们的性质直接求得极限。
需要注意的是,在使用这些方法求解极限时,需要结合具体的题目和问题,选择合适的方法来求解。
极限是数学分析中的重要概念,也是微积分的基础。
求极限的方法有很多种,下面将对常用的几种方法进行总结和解析。
1. 直接代入法直接代入法是最基本的求极限方法,适用于函数单调、连续,且直接代入可知极限值的情况。
具体步骤如下:(1)将极限表达式中的变量替换为具体的数值。
(2)根据函数的定义和性质,计算替换后的表达式。
(3)得出极限值。
2. 因式分解法因式分解法适用于有理函数的极限求解,通过分解函数,消除分子、分母中的共同因子,简化极限表达式。
具体步骤如下:(1)对有理函数进行因式分解。
(2)对分解后的表达式进行约分,消除共同因子。
(3)根据约分后的表达式求极限。
3. 泰勒公式法泰勒公式法是利用泰勒公式将函数展开,近似表示函数在某一点附近的值,从而求解极限。
具体步骤如下:(1)确定函数在某一点附近的泰勒展开式。
(2)根据泰勒展开式求极限。
4. 洛必达法则洛必达法则(L’Hôpital’s Rule)适用于求解“0/0”或“∞/∞”形式的极限。
该法则通过对分子、分母同时求导,将极限问题转化为导数的极限问题。
具体步骤如下:(1)判断极限形式是否为“0/0”或“∞/∞”。
(2)对分子、分母分别求导。
(3)将求导后的表达式代入原极限表达式。
(4)求解新的极限表达式。
5. 夹逼定理夹逼定理(Squeeze Theorem)适用于求解形如“f(x) = (g(x))/(h(x))”,且当x趋向于某一点时,g(x)和h(x)分别趋向于a和b(a ≠ b)的极限。
具体步骤如下:(1)找到两个函数p(x)和q(x),使得p(x) ≤ f(x) ≤ q(x)。
(2)证明当x趋向于某一点时,p(x)和q(x)分别趋向于a和b。
(3)根据夹逼定理,得出f(x)趋向于a。
6. 有界函数法有界函数法适用于求解形如“f(x) = g(x)/h(x)”,且当x趋向于某一点时,g(x)趋向于0,h(x)趋向于无穷大的极限。
具体步骤如下:(1)证明g(x)在x趋向于某一点时趋向于0。
求极限的基本方法引言在数学中,求极限是一种重要且常见的数学操作,它在微积分、数学分析等领域中起着核心作用。
本文将介绍求极限的基本方法,从极限的概念出发,逐步讲解具体的计算方法和技巧。
极限的概念极限是一个数列或函数逐渐接近某个特定值的过程。
在数学上,我们通常用符号lim来表示极限。
如果数列{an}(或函数f(x))当n(或x)趋于一个特定值a时,它的极限存在且为L,则记作:lim(n->∞) an = L或lim(x->a) f(x) = L在具体计算极限过程中,我们需要遵循一系列基本方法。
基本方法一:代入法代入法是求极限的最基本方法之一。
对于连续函数,这种方法往往能够快速得到极限的结果。
假设我们需要求函数f(x)在x=a处的极限,可以先通过代入x=a,计算出f(a)的值,进而得到极限的结果。
基本方法二:夹逼定理夹逼定理(又称“夹挤定理”)是一种常用的求极限方法。
当我们对某个数列或函数无法直接计算极限时,可以通过找到两个已知的数列(或函数),它们分别上下夹住待求的数列(或函数),且这两个数列的极限相等。
根据夹逼定理,待求数列(或函数)的极限也与这两个数列的极限相等。
基本方法三:分解因式法分解因式法是一种常见的用于求解极限的方法。
当我们在计算极限时遇到无法直接代入或夹逼的情况,可以尝试将函数进行因式分解,从而简化计算。
通过分解因式,可以将复杂的函数转化为多个简单的部分,进而计算出极限。
基本方法四:洛必达法则洛必达法则是一种高等数学中常用的求极限的方法,特别适用于0/0或∞/∞型的不定型极限。
该法则基于导数的定义,通过计算函数的导数来确定其极限值。
具体步骤为先对分子和分母分别求导,然后计算所得导数的极限。
基本方法五:泰勒展开法泰勒展开法是一种通过泰勒级数来求解函数极限的方法。
该方法适用于各种函数的极限计算,可以将复杂的函数逼近为一个多项式。
通过截取泰勒级数的有限项,可以得到较好的近似结果。
具体方法1.利用函数极限的四则运算法则来求极限定理1①:若极限lim f (x)和lim g(x )都存在,贝U 函数f (x ) g(x ), f (x )g (x )xxx x当X X o 时也存在且①lim f (x) g(x) lim f(x) lim g(x)X 0X X oX X.o利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所 给的变量都不满足这个条件,如 一、0等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌 握饮因式分解、有理化运算等恒等变形。
例1 :求limX 1 22. 用两个重要的极限来求函数的极限sin x① 利用lim 于1来求极限令g x 0,当x x o 或x 时,贝U 有求极限的万法,2f(x) g(x )lim f(x) X X olim g(x)x x oX g若又X在XXf gX 。
时也存在,且有X /V -T/Vgm解:原式=limX 1 21lim x 2 0sin x1的扩展形为:利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。
- 般常用的方法是换元法和配指数法。
3. 利用等价无穷小量代换来求极限所谓等价无穷小量即lim 丄凶 1•称f(x)与g(x)是xx o 时的等价无穷2 x 0g(x) 小量,记作 f (x) ~ g(x) . (xx o ).limx X 0sin g x g x '亠 sin g x1或 lim glimxsin x解:令 t= x 则 sinx=sin( t)=sint, 且当 x 时 tOsin xlimxsin t .Umu 1例3 : 求 2 ”* sin x 1 伽x 1解:原式=li x m x 1 sin x 21x 1 x 1Im xsin x 2 1 x 21②利用limx1(1 ) e 来求极限xlim (1的另一种lim (11)".事实上,令0.所以elim x(1E )X "m(11)「例 4:求 li m (1x 012x)x 的极限 解:原式=lim1(1 2x)2x (1 12x)2xe 2x定理2②:设函数f (x), g(x), h(x)在u (x 0)有定义, 且有 f (x) ~ g(x) . (x X 。
求极限的方法总结在数学中,求极限是一个非常重要的概念,它在微积分、数学分析等领域都有着广泛的应用。
求极限的方法有很多种,下面我将对一些常用的方法进行总结和介绍。
首先,我们来看一下最基本的求极限方法——代入法。
当我们求一个函数在某一点的极限时,最简单直接的方法就是将这一点的值代入函数中,看看函数在这一点附近的取值情况。
如果函数在这一点附近的取值趋近于某个确定的值,那么这个确定的值就是这个函数在这一点的极限。
代入法适用于一些简单的函数,但对于一些复杂的函数,代入法可能不太适用,这时候我们就需要使用其他的方法来求极限了。
其次,夹逼定理是另一个常用的求极限方法。
夹逼定理的核心思想是通过夹逼的方式确定函数在某一点的极限值。
具体来说,如果我们能找到两个函数,一个比原函数小,一个比原函数大,并且这两个函数在这一点的极限都等于同一个值,那么原函数在这一点的极限也等于这个值。
夹逼定理在求一些复杂函数的极限时非常有用,它可以帮助我们通过简单的函数来确定复杂函数的极限值。
另外,还有一种常用的求极限方法是洛必达法则。
洛必达法则适用于求不定型的极限,即当我们将一个函数在某一点代入后得到0/0或者∞/∞这样的不定型时,我们就可以使用洛必达法则来求极限。
具体来说,洛必达法则的核心思想是对函数的分子和分母同时求导,然后再求极限,这样可以帮助我们求出原函数在这一点的极限值。
最后,还有一种常用的求极限方法是泰勒展开。
泰勒展开的核心思想是将一个函数在某一点附近用多项式来逼近,从而求出这一点的极限值。
泰勒展开适用于一些复杂的函数,通过将函数进行泰勒展开,我们可以将原函数转化为多项式函数,从而更容易求出其极限值。
综上所述,求极限的方法有很多种,每一种方法都有其适用的范围和特点。
在实际应用中,我们可以根据具体的问题和函数特点来选择合适的方法来求极限,从而更准确地求出函数在某一点的极限值。
希望以上总结的方法可以对大家有所帮助。
高等数学求极限的方法高等数学中,求极限是一个非常重要的知识点,它是数学分析、微积分和数值计算的基础。
在数学中,极限表示的是某个变量无限趋近于某个特定的值时,函数的值会趋近于什么。
而在实际应用中,求解极限往往是解决问题的关键步骤之一。
下面我将介绍一些常用的求极限的方法。
1. 代入法:代入法是求解极限最常用的方法之一,它适用于函数在某一点定义,且该点处函数值可直接计算的情况。
具体步骤是:将变量逐渐趋近于某个特定的值,然后把这个特定值代入含有极限的函数中计算。
2. 夹逼定理:夹逼定理是求解极限常用的方法之一,它适用于复杂的极限问题,可以通过其它已知的极限来计算。
具体步骤是:通过找到比较函数,将待求的极限问题夹在两个比较函数之间,然后利用夹逼定理,推导出待求的极限值。
3. 等价无穷小替换法:等价无穷小替换法是求解极限的一种常用方法,它适用于函数含有无穷小量,并且无法直接求得极限的情况。
具体步骤是:将待求的极限中的无穷小量进行替换,使得替换后的式子可以计算出极限。
往往可以将函数和其等价的无穷小量进行比较,得到极限的值。
4. L'Hospital法则:L'Hospital法则是求解极限最常用的方法之一,它适用于函数为不定型的情况。
具体步骤是:将待求的极限转化为形式上是0/0或∞/∞的极限,然后对两个函数求导数,再将导数求极限。
该法则适用于函数求导后的极限可以直接计算的情况。
5. 泰勒展开法:泰勒展开法是求解极限问题的一种常见方法,它适用于函数在某一点附近可以展开成无穷级数的情况。
具体步骤是:将待求的极限展开成泰勒级数,然后根据级数的收敛性来计算极限。
该方法适用于函数在某一点附近的近似计算。
6. 函数的性质法:函数的性质法是求解极限的一种常用方法,它利用函数的性质来计算极限。
具体步骤是:通过函数上下确界的性质,来推导出极限的值。
该方法适用于函数在某一区间上有特殊的性质,可以直接得到极限的结果。
求数列极限的几种常用方法一、运用极限的定义来求极限定义:设{an}为数列,a为常数,若对任给的正数ε,总存在正整数N,使得当nN时,有|an-a|ε,则称数列{an}收敛于a,常数a称为数列{an}的极限.二、利用极限四则运算法则及重要公式和初等变形求极限(1)四则运算法则:若limn→∞an=a,limn→∞bn=b.limn→∞(an±bn)=a±b,limn→∞(anbn)=ab,limn→∞anbn=ab(b≠0).(2)limn→∞alnl+al-1nl-1+…+a0bknk+bk-1nk-1+…+b0=limn→∞alnlbknk.当l=k时,原式=albk;当lk时,原式=+∞.(3)limn→∞qn=0(|q|=0).(4)limn→∞na=1(a0).(5)limn→∞an=a.则① limn→∞a1+a2+…+ann=a.② 若an0,limn→∞na1a2…an=a.(6)若{an}是等比数列,其前n项和为Sn,公比q满足|q|=1,则limn→∞Sn=a11-q.三、利用重要极限求数列的极限(1)limn→∞sinxx=1.变形limn→∞sinφ(n)φ(n)=1(n→∞,φ(n)→0).(2)limn→∞ax-1x=lna(a0).变形limn→∞aφ(n)-1φ(n)=lna(a0)(n→∞,φ(n)→0).(3)limn→∞1+1nn=e.變形limn→∞(1+φ(n))1φ(n)=e(n→∞,φ(n)→0).推广:(1)n→∞.若φ(n)→0,f(n)→∞且φ(n)·f(n)→A,则limn→∞(1+φ(n))f(n)=limn→∞ef(n)ln(1+φ(n))=limn→∞ef·φ=eA.(2)n→∞.若φ(n)→1,f(n)→∞且(φ(n)-1)f(n)→B,则limn→∞φ(n)f(n)=limn→∞ef(ln(φ(n))-1)=eB.四、单调有界数列法、单调有界数列必收敛(即存在极限)(1)利用“单调数列必收敛”证明极限存在;(2)令limn→∞an=a,对an+1=f(an)两边取极限,转化为关于a的方程,求出a的值.五、利用迫敛性准则求数列极限如果数列{xn},{yn},{zn}满足下列条件:(1)从某项起,均有yn≤xn≤zn;(2)limn→∞yn=a,limn→∞zn=a,则limn→∞xn=a.六、利用柯西收敛准则证明极限的存在性例证明an=b112+b222+b332+…+bnn2(|bn|≤M,n=1,2,…)收敛.证明ε0,N0,使得当nN,P∈N+,有1n2≤1n(n-1)=1n-1-1n,|an+p-an|=M1n+p-1-1n+p+1n+p-2-1n+p-1+…+1n-1-1n≤M1nε.七、利用等价无穷小代换求极限重要的近似公式:当x→0时(1)sinx~x;(2)tanx~x;(3)ex-1~x;(4)1-cosx~12x2;(5)arcsinx~x;(6)arctanx~x;(7)ln(1+x)~x;(8)ax-1~xlna(a0且a≠1).八、利用定积分求数列极限(此类方法主要是处理无限项求和或求积的形式)定积分的定义的数学形式:实际使用中[a,b]→[0,1]比较常见.∫baf(x)dx=limn→∞∑ni=1fa+i(b-a)nb-an(取右端点定义,x0=a),∫baf(x)dx=limn→∞∑n-1i=0fa+i(b-a)nb-an(取左端点定义,xn=b).以上方法是数学分析中常用的求解数列极限的重要方法.除了以上的常用的方法外,还有许多求数列极限的方法等着我们不断去探索和挖掘,每一种方法的产生都源于多样的表达方式和细心地发现,所以在求解极限的过程中要巧妙地运用技巧,找到合适的方法,使问题迎刃而解.。
求极限的方法总结求极限是数学中非常重要的一个概念,它在微积分、数学分析等领域中都有着广泛的应用。
在学习求极限的过程中,我们常常会遇到各种各样的极限问题,而求解这些问题的方法也是多种多样的。
下面我将对一些常见的求极限的方法进行总结和归纳。
首先,我们来看一下常用的求极限的方法之一——代数运算法。
这种方法通常适用于一些简单的极限问题,通过对极限式进行一系列代数运算,最终得到极限的值。
例如,对于极限lim(x→2)(x^2-4)/(x-2),我们可以将分子进行因式分解,得到lim(x→2)(x+2),然后直接代入x=2,得到4。
这种方法在一些简单的极限问题中比较方便快捷,但在复杂的极限问题中往往不太适用。
其次,我们来看一下夹逼定理。
夹逼定理是求解极限问题中非常重要的一个定理,它通常适用于一些比较复杂的极限问题。
夹逼定理的核心思想是通过构造一个上下夹逼的数列,来确定极限的值。
例如,对于极限lim(n→∞)(1/n),我们可以构造两个数列an=1/n和bn=2/n,然后利用夹逼定理可以得到极限的值为0。
夹逼定理在求解一些复杂的极限问题时非常有用,它能够帮助我们确定极限的值并得到严谨的证明。
另外,还有一种常见的求极限的方法是利用泰勒展开。
泰勒展开是微积分中的一个重要概念,它可以将一个函数在某一点附近用无限项的多项式来表示。
通过利用泰勒展开,我们可以将一些复杂的函数转化为多项式,从而更容易求解极限。
例如,对于极限lim(x→0)(sinx/x),我们可以利用泰勒展开将sinx展开为x-x^3/3!+x^5/5!-...,然后可以得到极限的值为1。
泰勒展开在求解一些复杂的极限问题时非常有用,它能够帮助我们将复杂的函数转化为简单的多项式,从而更容易求解极限。
最后,我们来看一下利用换元法求极限的方法。
换元法是求解极限问题中常用的一种方法,它通常适用于一些复杂的极限问题。
通过对极限式进行适当的变量替换,可以将原极限式转化为一个更容易求解的形式。
求极限的方法具体方法⒈利用函数极限的四则运算法则来求极限定理1①:若极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又若0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。
例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x x x x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。