金属材料及热处理 03 回复与再结晶退火共47页
- 格式:ppt
- 大小:5.20 MB
- 文档页数:47
金属学与热处理原理中的退火与再结晶在金属学与热处理原理中,退火与再结晶是常见的热处理方法,它们在改善金属材料的性能和微观结构方面起着重要的作用。
本文将对退火与再结晶的定义、过程和影响因素进行探讨。
一、退火的定义与过程退火是指将金属材料加热到一定温度,然后通过恒温保温或缓慢冷却等方法使其达到平衡状态的一种热处理过程。
退火可以消除应力、提高材料的延展性和塑性,同时改善材料的晶体结构和性能。
1.1 固溶退火固溶退火是指将金属材料加热到固溶温度,使溶质原子溶解在基体晶格中,然后经过恒温保温和缓慢冷却使其达到平衡状态。
固溶退火可以改善金属的塑性和韧性,提高其可加工性。
1.2 球化退火球化退火是一种特殊的退火方式,主要用于去除冷加工后金属材料的组织应变能和应力集中。
球化退火通过高温加热和缓慢冷却,使金属材料的晶粒成长、边界迁移,从而使组织更加均匀、细致,并减少晶界的能量。
1.3 软化退火软化退火是为了提高金属材料的延展性、韧性和塑性而进行的一种退火处理。
软化退火通过加热材料到高温,达到材料的再结晶温度,然后缓慢冷却,使材料的晶粒重结晶,从而消除材料的应变硬化效应,使其恢复塑性。
二、再结晶的定义与过程再结晶是指在退火过程中,材料的晶粒由不稳定的形态逐渐转变为稳定的形态的过程。
再结晶可以改变金属材料的晶界结构,提高其延展性和塑性。
2.1 动态再结晶动态再结晶是在金属材料进行塑性变形时发生的再结晶过程。
在塑性变形过程中,晶粒会发生位错堆积形成应变能,当达到一定程度时,再结晶核心在位错云区域形成,随着位错云的扩散和晶粒的重结晶,最终形成新的细小晶粒。
2.2 静态再结晶静态再结晶是在高温下进行的再结晶过程。
当金属材料处于高温下保温一段时间后,原始晶粒逐渐长大,而大晶粒之间的晶界则变得更加清晰。
静态再结晶可以通过调节退火温度、保温时间和形变量等参数来控制。
三、退火与再结晶的影响因素退火与再结晶过程受到多种因素的影响,包括温度、时间、形变量和原始晶粒尺寸等。
金属材料的再结晶与再结晶退火探索材料晶粒细化的途径金属材料的再结晶和再结晶退火是金属加工中常用的工艺,通过调整材料的结构来改变其力学性能和微观组织。
本文将探讨金属材料再结晶与再结晶退火的原理以及几种常用的晶粒细化方法。
一、再结晶的原理再结晶是指在金属材料的冷变形过程中,通过升温和应力消除来改变材料的晶体结构和性能。
再结晶过程可以分为三个阶段,即原始晶体的奥氏体再结晶核心的产生、再结晶晶粒的长大和最终的后晶粒修饰。
再结晶退火则是指通过升温处理,使冷变形后的材料得以恢复和细化晶粒结构,增强材料的延展性和韧性。
再结晶退火是一种重要的热处理工艺,可以明显改善金属材料的力学性能。
二、晶粒细化的途径1. 冷变形与再结晶退火冷变形是指将金属材料在室温下通过压力或拉伸等形式进行加工,使其产生塑性变形。
冷变形能够引起材料中的位错密度增加,晶界能量的积累,从而促使晶界迁移与再结晶发生。
再结晶退火可以通过降低位错密度,细化晶粒结构,提高材料的延展性和韧性。
2. 粒度控制和晶界工程通过控制材料的晶粒大小,可以间接控制材料的性能。
通常情况下,晶粒尺寸越小,材料的塑性和强度越高。
晶界工程是一种通过控制晶界的类型和分布来调整材料性能的方法。
例如,在金属材料中加入适量的微合金元素,能够改变晶界的能量和迁移速度,从而实现细化晶粒的效果。
3. 弹塑性变形与细化弹塑性变形是指材料在应力作用下发生的弹性和塑性变形。
在变形过程中,应力会引起材料的位错运动和晶界迁移,从而促使晶粒的细化。
通过合理设计工艺参数,如应力应变状态和变形速率等,可以实现晶粒细化的效果。
同时,不同的金属材料具有不同的再结晶温度,通过合理选择合适的变形温度和退火温度,也可以实现晶粒细化。
总结:金属材料的再结晶和再结晶退火是调控材料晶粒细化的重要手段。
通过冷变形与再结晶退火、粒度控制和晶界工程、弹塑性变形与细化等途径,可以改变材料的晶体结构和性能。
在实际应用中,根据金属材料的具体情况和加工要求,选择合适的再结晶方法和工艺参数,能够获得理想的材料性能和微观结构。
常用金属材料热处理汇总表该文档旨在汇总常用金属材料的热处理方法和工业应用。
通过对这些金属材料的不同热处理方法的了解,可以更好地选择适合特定应用的材料和处理方法,以满足项目的需求。
金属材料热处理简介热处理是通过加热和冷却金属材料来改变其结构和性能的过程。
热处理通常包括四个基本步骤:加热、保温、冷却和回火。
根据对金属材料进行的热处理方式的不同,可以改变其硬度、强度、韧性、耐腐蚀性和其他物理和机械性能。
常用金属材料的热处理方法1. 钢普通碳素钢•正火:将钢加热至临界温度,保温一段时间然后迅速冷却。
•淬火:将钢加热至临界温度,迅速冷却,使其变硬。
•马氏体淬火:将钢加热至临界温度,迅速冷却到贝氏体转变温度以下,再回火处理。
•淬火回火:先淬火再回火,以降低硬度,提高韧性。
不锈钢•固溶处理:加热钢至固溶温度,保温一段时间然后迅速冷却。
•奥氏体化处理:将不锈钢加热至临界温度,保温一段时间后迅速冷却。
•全淬火:将不锈钢加热至临界温度,迅速冷却到室温。
•弥勒体化处理:将不锈钢加热至适当温度,保温一段时间后迅速冷却。
2. 铝合金固溶处理•固溶退火:将铝合金加热至固溶温度,保温一段时间后冷却,以解决硬化问题。
•固溶加时效:固溶处理后,再进行时效处理,以进一步提高强度。
热变形处理•热轧:将铝合金加热至塑性变形区,然后进行压力塑性变形。
•挤压:将铝合金加热至挤压温度,然后通过模具挤出。
3. 铜和铜合金固溶处理•固溶退火:将铜合金加热至固溶温度,然后迅速冷却,以解决冷变脆问题。
冷变形处理•冷轧:将铜合金加热至退火温度以下后进行塑性变形。
热变形处理•热轧:将铜合金加热至塑性变形区,然后进行压力塑性变形。
4. 镍合金固溶处理•固溶退火:将镍合金加热至固溶温度,保温一段时间后冷却,以解决冷变脆问题。
冷变形处理•冷轧:将镍合金加热至退火温度以下后进行塑性变形。
热变形处理•热轧:将镍合金加热至塑性变形区,然后进行压力塑性变形。
金属材料热处理的工业应用1. 汽车制造业在汽车制造业中,常用的金属材料如钢、铝合金和铜合金等都可通过热处理来提高强度和耐腐蚀性。
金属及合金的回复与再结晶回复:冷变形金属在低温加热时,其显微组织无可见变化,但其物理、力学性能却部分恢复到冷塑性变形以前的过程。
晶粒仍保持伸长的纤维状.再结晶:冷变形金属被加热到适当温度后,在变形组织内部新的无畸变的等轴晶粒逐步取代变形晶粒,而使形变强化效应完全消失的过程。
回复与再结晶的驱动力都是储存能的降低储存能:存在于冷形变金属内部的一小部分(约为10%)变形功.形变温度越低,形变量越大,则储存能越高。
储存能存在形式:弹性应变能(3%~12%)+点阵畸变能点阵畸变能包括点缺陷能和位错能,点缺陷能所占的比例较小,而位错能所占比例较大,约占总储存能的80~90%。
力学性能的变化在回复阶段:强度、硬度均略有下降,而塑性有所提高.在再结晶阶段:硬度、硬度均显著下降,塑性大大提高.在晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗化严重时下降另外,金属的电阻与晶体中点缺陷的浓度有关。
随着加热温度的升高,变形金属中的点缺陷浓度明显降低,因此在回复和再结晶阶段,电阻均发生了比较明显的变化,电阻不断下降。
此外,点缺陷浓度的降低,应力腐蚀倾向显著减小。
回复过程及其动力学特征回复是指经冷塑性变形的金属在加热时,在光学显微组织发生变化前所产生的某些亚结构和性能的变化过程.回复的程度是温度和时间的函数.温度越高,回复的程度越大.温度一定时,回复的程度随时间的延长而逐渐增加.但在回复初期,变化较大,随后就逐渐变慢,当达到一个极限值后,回复停止。
回复机制低温回复时,主要涉及空位的运动。
空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。
电阻率对空位密度比较敏感,因此其数值会有显著下降。
而力学性能对空位的变化不敏感,没有变化。
中温回复时,主要涉及位错的运动。
由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。