第九章 振动
- 格式:ppt
- 大小:6.12 MB
- 文档页数:66
第9章振动学基础习题9.1 质量为10×10-3kg的小球与轻弹簧组成的系统,按x=0.1cos(8πt+2π/3)(SI)的规律振动,求:(1)振动的圆频率、周期、振幅、初相以及速度与加速度的最大值;(2)最大回复力、振动能量、平均动能和平均势能;(3)t=1、2、5、10s等各时刻的相位;(4)分别画出振动的x-t图线,v-t图线和a-t图线;(5)画出这些振动的转动矢量图示,并在图中指明t=1、2、5、10s时矢量的位置。
9.2 一个弹簧振子m=0.5kg,k=50N/m,振幅A=0.04m,求:(1)振动的圆频率,最大速度和最大加速度;(2)当振子对平衡位置的位移为x=0.02m时的瞬时速度、加速度和回复力;(3)以速度具有正的最大值时为计时起点,写出振动的表达式。
9.3 一质点在x=0附近沿x轴作简谐振动。
在t=0时位置为x=0.37cm,速度为零,振动频率为0.25Hz。
试求:(1)周期、圆频率、振幅;(2)在时刻t的位置和速度;(3)最大速度和最大加速度的值;(4)在t=3.0s时的位置和速率。
9.4 作简谐振动的小球,速度最大值为v m=3cm/s,振幅A=2cm,若从速度为正的最大值时开始计算时间,求:(1)振动的周期;(2)加速度的最大值;(3)振动表达式。
9.5 如图,两轻弹簧与小球串联在一直线上,将两弹簧拉长后系在固定点A、B之间,整个系统放在水平面上。
设弹簧的原长为l1、l2,倔强系数为k1、k1,A、B间距离为L,小球的质量为m。
(1)试确定小球的平衡位置。
(2)使小球沿弹簧长度的方向作一微小位移后放手,小球将作振动,这一振动是否是简谐振动?振动的周期为多少?9.6 一轻弹簧的倔强系数为k,其下悬有一质量为m的盘子。
现有一质量为M的物体从离盘h高度处自由下落到盘中并和盘子粘在一起,盘子开始振动起来。
(1)此时振动周期与空盘振动的周期各为多少?(2)此时振动的振幅。
第九章 简谐振动一、填空题(每空3分)9-1 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。
(3:1,22A ±)9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。
(0.05m )9-3两个同方向同频率的简谐振动的表达式分别为X 1=6.0×10-2cos(T π2t+4π) (SI) , X 2=4.0×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=2.0×10-2cos(T π2t+4π) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2A处所需要的最短时间为_________。
(12T) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4cos(1πω+=t A x m 、)43cos(32πω+=t A x m ,则合振动的振幅为 。
(2 A)9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2A处所需要的最短时间为_________。
(6T) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。
(0.01m )9-8 质量0.10m kg =的物体,以振幅21.010m -⨯作简谐振动,其最大加速度为24.0m s -⋅,通过平衡位置时的动能为 ;振动周期是 。
(-32.010,10s J π⨯) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。
(3,1:3π)9-10质量为0.1kg 的物体,以振幅21.010m -⨯作谐振动,其最大加速度为14.0m s -⋅,则通过最大位移处的势能为 。
高二物理第九章机械振动第一、二、三节人教版【本讲教育信息】一. 教学内容:第九章 机械振动第一节 简谐振动 第二节振幅、周期和频率 第三节 简谐运动的图象二. 知识要点: 〔一〕简谐振动1. 机械振动的定义:物体在某一中心位置两侧所做的往复运动。
2. 回复力的概念:使物体回到平衡位置的力。
注意:回复力是根据力的效果来命名的,可以是各种性质的力,也可以是几个力的合力或某个力的分力。
3. 简谐运动概念:物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动。
特征是:kx F -=;m kx a /-=。
〔特例:弹簧振子〕4. 简谐运动中位移、回复力、速度、加速度的变化规律。
〔参看课本〕〔1〕振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置、大小为这两位置间的直线距离,在两个“端点〞最大,在平衡位置为零。
〔2〕加速度a 的变化与回F 的变化是一致的,在两个“端点〞最大,在平衡位置为零,方向总是指向平衡位置。
〔3〕速度大小v 与加速度a 的变化恰好相反,在两个“端点〞为零,在平衡位置最大。
除两个“端点〞外任一个位置的速度方向都有两种可能。
〔二〕振幅、周期、频率1. 振幅A 的概念:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
2. 周期和频率的概念:振动的物体完成一次全振动所需的时间称为振动周期,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹。
周期和频率都是描述振动快慢的物理量。
注意:全振动是指物体先后两次运动状态........〔位移和速度〕完全一样....所经历的过程。
振动物体在一个全振动过程通过的路程等于4个振幅。
3. 周期和频率的关系:fT 1=4. 固有频率和固有周期:物体的振动频率,是由振动物体本身的性质决定的,与振幅的大小无关,所以叫固有频率。
振动周期也叫固有周期。
〔三〕简谐运动的图象 1. 简谐运动的图象:〔1〕作法:以横轴表示时间,纵轴表示位移,根据实际数据取单位,定标度,描点。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
第9章振动信号的处理和分析飞行器的振动现象,表现为结构振动量的时间和空间的函数。
人们希望通过对飞行器结构振动信号的测量和分析,来了解飞行器结构本身的物理特性,建立适宜的数学模型,从而预测飞行器在工作条件或所处环境中的运行行为及其对结构的强度、刚度,以及运行安全乃至相关人员的舒适性的影响。
简言之,飞行器结构的振动特性是通过振动信号的测量、处理和分析确定的。
在确定结构动特性时,数据采集应归于测量,而出于分析的需要,将信号进行数据离散(变换)、截断(加窗)、滤波等则可狭义地归为处理。
传统地看法将变换视为分析,其实这也是一种处理。
但广义地说,处理也是一种分析手段。
因此,本章内容在阐述时并不严格地区分哪些是处理,哪些是分析,而是把处于处理和分析的每一个环节都作为一种方法来阐述。
§9.1 振动信号的分类不同类型的信号将有不同的分析方法和选定不同的分析参数,按照信号本身的特性,最基本的分类可概括为稳态信号和非稳态信号两类,如图9.1.1所示。
图 9.1.1 振动信号的类型稳态信号是其统计特性不随时间而变化的信号,它可以分为稳态确定性信号和稳态随机信号。
其中稳态随机信号可认为是一种其平均特性不随时间变化,因而可以用任意一条样本记录来决定的随机信号。
这也是所谓稳态的一般含义,无论对于确定性信号或是对于随机性信号皆是如此。
但对于随机信号来说,稳态不是理解为从不同的记录样本所得到的结果都必须完全一样,而只意味着它们是等价的。
稳态确定性信号对于任意稳定的时刻,其信号值是可以预知的。
而对于稳态随机信号,只能确知其统计特性,如平均值、方差等。
非稳态信号可粗略地分为连续性非稳态信号和瞬态信号,语言信号是典型的连续性非稳态信号。
两者最基本的区别是,瞬态信号可以作整体处理,而连续非稳态信号一般可分成若干短时信号段来处理,每一段常常可以看成是拟稳态的。
稳态确定性信号是完全由具有离散频率成分的正弦信号组成的信号,又可分为周期性信号和拟周期性信号。
第九章 弹性体振动的准确解9.1 引言在引论中我们曾经提到,实际的振动系统都是弹性体系统。
弹性体具有分布的物理参数(质量,阻尼,刚度)。
它可以看做由无数个质点借弹性联系组成的连续系统,其中每个质点都具有独立的自由度。
所以,一个弹性体的空间位置需要用无数个点的独立空间坐标来确定。
也就是说,弹性体具有无限多个自由度。
在数学上,弹性体的运动需要用偏微分方程来描述。
前面我们论述的多自由度系统只是弹性体的近似力学模型。
本章讨论理想弹性体的振动,所谓理想弹性体.....是指满足以下三个条件的连续系统模型:(1)匀质分布;(2)各向同性;(3)服从虎克定律。
通过对一些简单形状的弹性体的振动分析,着重说明弹性体振动的特点,弄清它与多自由度系统振动的共同点与不同点。
我们将看到,任何一个弹性体具有无限多个固有频率以及无限多个与之相应的主振型;而且这些主振型之间也存在着关于质量与刚度的正交性;弹性体的自由振动也可以表示为各个主振动的线性叠加;而且对于弹性体的动响应分析,主振型叠加法仍然是适用的。
所以说,弹性体振动与多自由度系统的振动,二者有着一系列共同的特性,这就是它们的共性。
而二者的差别仅在于数量上弹性体有无限多个固有频率与主振型,而多自由度系统只有有限多个。
我们还将看到,对于一些简单情形下的弹性体振动问题,可以很方便地找到它们的准确解。
尽管实际问题往往是复杂的,很少可以归结为这些简单情形;但是了解这些简单情形下准确解的特征,对于处理复杂问题是有帮助的。
为了避免用到弹性力学的知识,而仅以材料力学作为基础,我们将限于讨论一维弹性体(梁,轴,杆等)。
9.2弦的振动设有理想柔软的细弦张紧于两个固定支点之间,张力为T ,跨长为l ,弦单位长度的质量为ρ。
两支点连线方向取为x 轴(向右为正),与x 轴垂直的方向取为y 轴(向上为正),如图9.2-1(a )。
设弦的振动发生在xoy 平面内,弦的运动可表示为y=y (x,t ).还假设弦的振动幅度是微小的,即 y 与xy∂∂均为小量;在这假设下弦的张力T 可近似地看做常量。
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。