高阶导数函数的微分
- 格式:pptx
- 大小:336.65 KB
- 文档页数:3
《高等数学》上册教案第二章导数与微分第二章导数与微分§3、高阶导数教学目的:熟练初等函数的求导方法,了解高阶导数的概念,会求简单的n阶导数教学重点:高阶导数的求法教学难点:高阶导数的归纳方法变速直线运动的质点的路程函数为s=s(t),则速度为v(t)=s′(t)=lim加速度a(t)=lims(t+Δt)−s(t) Δt→0ΔtΔvv(t+Δt)−v(t),即a(t)=v′(t)=[s′(t)]′。
=limΔt→0ΔtΔt→0Δt定义、设函数y=f(x)在点x的邻域内一阶导数f′(x)存在,如果极限Δx→0limf′(x+Δx)−f′(x) Δx存在,称函数y=f(x)在点x二阶可导,并称极限值为y=f(x)在点x的二阶导数,记d2yd⎛dy⎞d2f作:2=⎜⎟,2,f′′(x)或y′′ 。
dxdx⎝dx⎠dx同理,如果将二阶导数f′′(x)作为函数,可以定义出三阶导数:d3yf′′(x+Δx)−f′′(x)=lim 3Δx→0dxΔxd3yd⎛d2y⎞d3fdn−1y⎟,3,y′′′或f′′′(x);一般利用函数y=f(x)的n−1阶导数n−1,记作:3=⎜2⎟⎜dxdxdx⎝dx⎠dxdnydnyf(n−1)(x+Δx)−f(n−1)(x)(n)可以定义出n阶导数:n=lim;并记为:y,n 等;称函数的Δx→0dxΔxdx二阶及其以上阶的导数为高阶导数。
通常记作:y′,y′′,y′′′,y(4),y(5),L,y(n),L。
d2s由此定义,质点的加速度可以写作:a(t)=s′′(t)=2。
dt例1.设函数y=sinx2,求y′′。
解:y′=2xcosx2,y′′=2xcosx2()′=2(cosx2+x−2xsinx2=2cosx2−4x2sinx2 ())《高等数学》上册教案第二章导数与微分例2.求函数y=ln(x++x2)的二阶导数。
解:y′=1x++x2⋅(1+12x2+x2=1+x32 −x122 y′′=(y′)′=( ′=−(1+x)⋅2x=−222+x(1+x)注:求二阶导数之前,应该将一阶导数作适当的化简、整理。
高等数学(1)学习辅导(三)第三章 导数与微分导数与微分这一章是我们课程的学习重点之一。
在学习的时候要侧重以下几点:⒈理解导数的概念;了解导数的几何意义;会求曲线的切线和法线;会用定义计算简单函数的导数;知道可导与连续的关系。
)(x f 在点0x x =处可导是指极限xx f x x f x ∆-∆+→∆)()(lim000存在,且该点处的导数就是这个极限的值。
导数的定义式还可写成极限0)()(limx x x f x f x x --→函数)(x f 在点0x x =处的导数)(0x f '的几何意义是曲线)(x f y =上点))(,(00x f x 处切线的斜率。
曲线)(x f y =在点))(,(00x f x 处的切线方程为)())((000x f x x x f y +-'=函数)(x f y =在0x 点可导,则在0x 点连续。
反之则不然,函数)(x f y =在0x 点连续,在0x 点不一定可导。
⒉了解微分的概念;知道一阶微分形式不变性。
⒊熟记导数基本公式,熟练掌握下列求导方法 (1)导数的四则运算法则 (2)复合函数求导法则 (3)隐函数求导方法 (4)对数求导方法(5)参数表示的函数的求导法正确的采用求导方法有助于我们的导数计算,如一般当函数表达式中有乘除关系或根式时,求导时采用取对数求导法, 例如函数xx y 2)1(-=,求y '。
在求导时直接用导数的除法法则是可以的,但是计算时会麻烦一些,而且容易出错。
如果我们把函数先进行变形,即21212322212)1(-+-=+-=-=xx x xx x xx y再用导数的加法法则计算其导数,于是有2321212123----='x x x y这样计算不但简单而且不易出错。
又例如函数321-+=x x y ,求y '。
显然直接求导比较麻烦,可采用取对数求导法,将上式两端取对数得)2ln(31)1ln(21ln --+=x x y 两端求导得)2(31)1(21--+='x x y y 整理后便可得)2(682123---⋅-+='x x x x x y若函数由参数方程⎩⎨⎧==)()(t y t x ϕψ 的形式给出,则有导数公式)()(d d t t x y ϕψ''=能够熟练地利用导数基本公式和导数的四则运算法则、复合函数的求导法则计算函数的导数,能够利用隐函数求导法,取对数求导法,参数表示的函数的求函数的导数。
高等数学第二章知识总结在这一章里需要掌握的是求一阶导数的多种方法和求高阶导数的计算公式。
微分和导数的关系求导数与求微分方法相同,只不过在求微分时要在后面加上dx.函数在某点处的导数就是函数在该点处的变化率. 导数有很多种表现形式.一.(1)单侧导数即左右导数.函数可导的充要条件是:左右导数存在且相等. (2)可导与连续的关系:可导必然连续,连续不一定可导.注:函数的导数就是函数在某点处因变量与自变量比值的极限.◆求导数的方法有:(1)利用导数的定义.(简单一点就是△y/△x的极限)(2)利用导数的几何意义解决几何及物理,化学的实际问题.(3)利用初等函数的求导公式.(在书P59)(4)利用反函数求导法.(反函数的导数就是原函数导数的倒数.)(5)利用复合函数求导法.(由外到内,逐层求导)(6)利用隐函数求导法(7)利用参数方程确定函数的求导法.(8)利用分段函数求导法.(9)利用函数连续,可导的定义,研究讨论函数的连续性与可导性.二.高阶导数高阶导数可细分为:一阶导数,二阶导数,三阶导数……N阶导数等等.(一阶导数的导数是二阶导数) 应该掌握的是高阶导数的运算.方法有两种:(1)直接法.(2)间接法.间接法适用于阶数较高的运算.其规律性较强.常用的高阶导数公式在书P63上.注意查看.■计算uv相乘形式的高阶导数时,首先要判断u,v从一阶到n阶的结果,再运用莱布尼兹公式求出结果。
三.隐函数和由参数方程确定的函数的导数什么是隐函数?如果变量x,y的函数关系可以用一个二元方程表示,且对在给定范围内的每一个x,通过方程有确定的y与之对应,即Y是X的函数,这种函数就叫做隐函数F(x,y)=0从二元方程中解出y的值,就是隐函数的显化.有些隐函数不易显化,甚至不能显化.隐函数的求导方法:(例题在书P66 例40,41)(1)把y看做是复合函数的中间变量,把y看作y(x)即可。
再在方程两边分别对X求导.(2)从求导后的方程中求出y’.(3)在隐函数的求导结果中允许含有y,但是求某一以知点的导数时不仅要代X的值,还要代Y的值. 对数求导法:先两边取对数,再关于X求导.例题在书P68,例44(遇到指数形式的函数时就采用此类方法)对参数方程确定的函数求导方法很简单,就是用y’/x’.四.函数的微分.可微就可导,可导就可微.求函数的微分就是对函数求导,主要就是在所求结果后面加上dx.微分的几何意义是某点处的切线纵坐标的增量.常用的微分公式在书P76.五.微分的应用.1.微分在近似计算,误差估计中的应用.在书P80 P81.。
高等数学第四版教材答案第一章导数与微分1.1 函数与极限在这一章中,我们将学习函数的性质以及如何计算函数的极限。
了解函数的极限是理解微积分的基础。
1.2 导数的定义与性质导数是描述函数变化率的概念。
我们将研究导数的定义、性质以及常见函数的导数。
1.3 高阶导数与隐函数求导高阶导数是导数的导数。
我们将学习如何计算高阶导数,并介绍隐函数求导的方法。
1.4 微分微分是导数的应用之一,它可以帮助我们更好地理解函数的变化。
我们将研究微分的概念和性质,并解决一些应用问题。
第二章微分学的应用2.1 极值与最值极值是函数取得的最大值或最小值。
我们将研究如何找到函数的极值,并解决一些极值应用问题。
2.2 中值定理中值定理是微分学中重要的定理之一,它描述了函数在某个区间内的平均变化率与瞬时变化率相等的关系。
我们将学习中值定理的几种形式以及其应用。
2.3 函数的单调性与曲线的凹凸性函数的单调性描述了函数的增减趋势,曲线的凹凸性则描述了函数曲线的弯曲程度。
我们将学习如何确定函数的单调区间和凹凸区间,并解决相关的应用问题。
第三章定积分3.1 定积分的概念与性质定积分是微积分中的一个重要概念,它描述了曲线下面积的大小。
我们将学习定积分的定义、性质以及计算方法。
3.2 定积分的几何应用定积分的几何应用包括计算曲线下面积、计算旋转体的体积等。
我们将解决一些相关的几何应用问题。
3.3 定积分的物理应用定积分在物理学中也有广泛的应用,如计算质点的质量、计算功、计算质心等。
我们将学习如何应用定积分解决物理问题。
第四章微分方程4.1 微分方程的基本概念微分方程是描述函数与其导数之间关系的方程。
我们将学习微分方程的基本概念,并分析一些简单的微分方程。
4.2 一阶线性微分方程一阶线性微分方程是一类特殊的微分方程,其解可以通过积分得到。
我们将学习一阶线性微分方程的解法以及应用。
4.3 高阶线性微分方程高阶线性微分方程是多个导数的函数关系。
我们将学习高阶线性微分方程的解法,并解决一些实际问题。
微分方程阶数判断
微分方程的阶数是指微分方程中最高阶导数的阶数。
判断微分方程的阶数有以下几种方法:
1.观察微分方程中最高阶导数:最高阶导数是指微分方程中出现的最高阶的导数。
如果方程中只出现了一阶导数,则该微分方程是一阶微分方程。
如果方程中出现了二阶导数,则该微分方程是二阶微分方程。
依此类推,可以通过观察微分方程中最高阶导数的阶数来确定微分方程的阶数。
2.推导法:如果给定方程本身不明确表明其阶数,可以通过对给定方程进行推导,逐步求得阶数。
例如,我们可以对给定方程进行重复求导,直到其中一次求导后得到一个不依赖于未知函数及其导数的恒等式为止。
这样,求导的次数就是原方程的阶数。
3.整理方程法:对微分方程进行整理,重新排序,使其变为明确的阶数形式。
例如,如果方程中出现了一阶导数和二阶导数的线性组合,则可以通过整理方程为二阶导数形式,从而确定方程的阶数。
4.常系数法:对于常系数齐次线性微分方程,通过观察特征方程的阶数,可以确定微分方程的阶数。
特征方程的阶数等于微分方程的阶数。
5.常微分方程标准形式:一些特定形式的微分方程已经被定义为特定阶数的微分方程,例如,一阶线性常系数微分方程、二阶齐次线性微分方程等。
对于这些标准形式的微分方程,其阶数已经通过定义确定。
总结起来,判断微分方程的阶数可以通过观察最高阶导数、推导法、整理方程法、常系数法和常微分方程标准形式等方法。
在实际应用中,需要依据具体的微分方程形式和问题背景,选择合适的方法来判断微分方程的阶数。