工程数学-复变函数 3-6 解析函数的高阶导数
- 格式:ppt
- 大小:1.68 MB
- 文档页数:9
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示 1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下: 当0,x >arg arctan y z x =;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z eθθ+=;()121122i z z e z z θθ-= 3.乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=。
2022年自考27391工程数学(线性代数\复变函数)复习资料2022年自考27391工程数学(线性代数\复变函数)复习资料线性代数部分本课程考试采纳教材:《工程数学——线性代数》〔附大纲〕,申亚男、卢刚主编,外语教学与讨论出版社,2022年版。
考试的重点内容第一章行列式1.行列式的定义了解行列式的定义,掌控行列式的余子式与代数余子式,牢记上〔下〕三角行列式的计算公式,掌控用行列式定义计算含0特别多或结构非常的行列式。
2.行列式的性质理解行列式的性质,会用行列式性质化简行列式。
3.行列式按一行〔或一列〕开展娴熟掌控行列式按一行〔或一列〕开展的方法计算行列式。
第二章矩阵1.矩阵的概念理解矩阵的概念,掌控非常的方阵:上〔下〕三角形矩阵、对角矩阵和单位矩阵、对称矩阵和反对称矩阵。
2.矩阵的运算娴熟掌控矩阵的线性运算〔加法及数乘〕、乘法、方阵的方幂、转置等运算。
3.可逆矩阵4.矩阵的初等变换与初等矩阵娴熟掌控矩阵的初等变换,理解初等矩阵和初等变换的关系,会用初等行变换法求可逆矩阵的逆矩阵。
5.矩阵的秩知道矩阵的秩的定义,会用初等行变换求矩阵的秩。
第三章向量空间1.维向量空间2.向量间的线性关系会判断向量组的线性相关或线性无关,将给定的向量由向量组线性表出。
3.向量组的极大线性无关组掌控用矩阵的初等行变换求向量组的极大线性无关组。
4.向量组的秩与矩阵的秩掌控用矩阵的初等行变换求向量组的秩或矩阵的秩。
第四章线性方程组1.齐次线性方程组会判断齐次线性方程组是否有非零解,娴熟掌控用初等行变换求齐次线性方程组的基础解系及其通解。
2.非齐次线性方程组会判断非齐次线性方程组解的状况〔无解、有唯一解、有无穷解〕,娴熟掌控用初等行变换求非齐次线性方程组的通解。
第五章矩阵的相像对角化1.特征值与特征向量理解特征值与特征向量的定义,掌控求特征值与特征向量的方法。
2.相像矩阵与矩阵对角化理解矩阵相像的概念,掌控将矩阵化为相像对角矩阵的方法。
§3.3 高阶导数公式)(,ζf D D Γ+=在闭域D 上解析。
ΓD计算⎰Γ-ζζζd z f 0)(作圆周ρζρ=-|:|0z C 位于D 内,则⎰⎰-=-ΓρζζζζζζC d z f d z f 00)()( (复闭路定理)⎰⎰-=-→ΓρζζζζζζρC d z f d z f 000)(lim )( (假设lim 与⎰可换)⎰-=→ρζζζρC d z f 00)(lim(由于)(ζf 于D 内连续)⎰-=ρζζC d z z f 00)( )(21)(000z if d z z f C πζζρ=-=⎰推测 ⎰Γ=-)(2)(00z if d z f πζζζ定理(柯西积分公式)D 是以简单闭路或复闭路Γ为边界的有界区域,)(ζf 在D 上解析,则,0D z ∈∀有)(2)(00z if d z f πζζζ=-⎰Γ证:因,0,0)(>∃>∀εδεζ内连续,故在D f 只要εδρζ<=-||0z 时,有πεζ2|)()(|0<-z f f 由于 |)(2)(|||000⎰=---ρζπζζζz z if d z f|)()(||)()(|||00||||000000⎰⎰⎰=-=-=---=---=ρζρζρζζζζζζζζζz z z d z z f f d z z f d z f επρπρεζρπεζζζρζρζ=⋅=⋅<--≤⎰⎰=-=-22||12|||||)()(|||||0000z z d d z z f f 即⎰=-→=-ρζρπζζζ||0000)(2)(lim z z if d z f )(2)(lim )(0||0000z if d z f d z f z πζζζζζζρζρ=-=-⎰⎰=-→Γ 当z 在D 内变动时,(*))()(21z f d z f i =-⎰Γζζζπ当为圆周R z =-||0ζ时,参数方程为)20(,Re 0πθζθ≤≤+=i z ,代入(*)得⎰+=πθθπ2000)Re (21)(d z f z f i 若用此公式来求解,则计算量太大。