第一章 利息理论
- 格式:ppt
- 大小:3.54 MB
- 文档页数:101
保险精算学-笔记-涵盖(利息,⽣命表,寿险精算及实务,⾮寿险,风险理论,内容丰富)第⼀章:利息理论基础第⼀节:利息的度量⼀、利息的定义利息产⽣在资⾦的所有者和使⽤者不统⼀的场合,它的实质是资⾦的使⽤者付给资⾦所有者的租⾦,⽤以补偿所有者在资⾦租借期内不能⽀配该笔资⾦⽽蒙受的损失。
⼆、利息的度量利息可以按照不同的标准来度量,主要的度量⽅式有1、按照计息时刻划分:期末计息:利率期初计息:贴现率2、按照积累⽅式划分:(1)线性积累:单利计息单贴现计息(2)指数积累:复利计息复贴现计息(3)单复利/贴现计息之间的相关关系单利的实质利率逐期递减,复利的实质利率保持恒定。
单贴现的实质利率逐期递增,复贴现的实质利率保持恒定。
时,相同单复利场合,复利计息⽐单利计息产⽣更⼤的积累值。
所以长期业务⼀般复利计息。
时,相同单复利场合,单利计息⽐复利计息产⽣更⼤的积累值。
所以短期业务⼀般单利计息。
3、按照利息转换频率划分:(1)⼀年转换⼀次:实质利率(实质贴现率)(2)⼀年转换次:名义利率(名义贴现率)(3)连续计息(⼀年转换⽆穷次):利息效⼒特别,恒定利息效⼒场合有三、变利息1、什么是变利息2、常见的变利息情况(1)连续变化场合(2)离散变化场合第⼆节:利息问题求解原则⼀、利息问题求解四要素1、原始投资本⾦2、投资时期的长度3、利率及计息⽅式4、本⾦在投资期末的积累值⼆、利息问题求解的原则1、本质任何⼀个有关利息问题的求解本质都是对四要素知三求⼀的问题。
2、⼯具现⾦流图:⼀维坐标图,记录资⾦按时间顺序投⼊或抽出的⽰意图。
3、⽅法建⽴现⾦流分析⽅程(求值⽅程)4、原则在任意时间参照点,求值⽅程等号两边现时值相等。
第三节:年⾦⼀、年⾦的定义与分类1、年⾦的定义:按⼀定的时间间隔⽀付的⼀系列付款称为年⾦。
原始含义是限于⼀年⽀付⼀次的付款,现已推⼴到任意间隔长度的系列付款。
2、年⾦的分类:(1)基本年⾦约束条件:等时间间隔付款付款频率与利息转换频率⼀致每次付款⾦额恒定(2)⼀般年⾦不满⾜基本年⾦三个约束条件的年⾦即为⼀般年⾦。
《利息理论》复习提纲第一章 利息的基本概念 第一节 利息度量 一. 实际利率某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。
利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 例题:1.1.1二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。
实际利率 i i n =例题:1.1.3 三.. 实际贴现率一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。
等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+例题:1.1.6 四.名义利率与名义贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。
所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。
与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。
名义贴现率()m d ,()1(1/)m m d d m -=-。
名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。
例题:1.1.9 五.利息强度定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=。