第8章:信号处理中常用的正交变换
- 格式:ppt
- 大小:826.50 KB
- 文档页数:11
正 交 变 换1.研究对象:空间中物体的位置变化。
观察空间中的物体,当我们把一个物体从一个地点搬到另一个地点时,物体有什么性质保持不变,有什么东西会起变化。
2. 正交变换的建立搬动物体,除了物体的位置发生变化外,物体的本身属性都保持不变。
用数学的相关知识进行描述之即长度、面积、角度、体积等保持不变。
从测量、计算的角度而言,物体的度量性质不变。
由于长度是各种计算的基础,长度不变将导致角度、面积、体积等不变,即长度不变是本质性的。
用数学语言——变换——描述上述现象,即搬动物体的过程是一个保持长度不变的变换。
定义:保持任两点间距离不变的变换称为正交变换。
3. 正交变换的不变系统直线、线段、单位向量、垂直性、平行性,······。
4. 笛卡尔直角坐标系为了用代数的方法来研究正交变换,我们应该建立一种在正交变换下保持不变的坐标系5. 特例物体位置的变动不外乎移动、转动和翻动(以及它们的组合),它们的数学表示为 (1) 平移 ⎩⎨⎧+='+='00y y y x x x(2) 旋转⎩⎨⎧+='-='θθθθc o s s i n s i n c o s y x y y x x 或 X X ⎪⎪⎭⎫⎝⎛-='θθθθc o s s i n s i n c o s。
(3) 反射⎩⎨⎧-='='yy xx 或 X X ⎪⎪⎭⎫⎝⎛-='1001 。
问题探索:绕点),(000y x P 6. 正交变换的代数表示M O O O M O ''+'=',另一方面, 21e y e x M O'+'='所以 M O O O e y e x ''+'='+'21(*) 又 2010e y e x O O+=',21e y e x OM+=,根据正交变换的性质知 21e y e x M O '+'=''由向量代数知识可知 22211222211111,e a e a e e a e a e+='+=' 将它们代入(*)可得202221101211222112221111201021)()()()(e y y a x a e x y a a e a e a y e a e a x e y e x e y e x+++++=+++++='+'所以 ⎩⎨⎧++='++='0222101211y y a x a y x y a x a x所以正交变换的代数表示为⎩⎨⎧++='++='232221131211a y a x a y a y a x a x ,其中 0,122211211222212221211=+=+=+a a a a a a a a 。
实数域上正交变换的分类一、正交变换定义1.1 设A是欧氏空间V的一个线性变换,若A保持向量的内积不变,即对于任意的α,βεV都有(Aɑ,Aβ) = (ɑv,β),则称A为V的正交变换.二、等价条件定理2.1 设A是n维欧氏空间V的一个线性变换,则下列命题等价:1)A是正交变换;2)A保持向量的长度不变,即对于V,|Aα|=|ɑ|;3)A把V的规范正交基变为V的规范正交基;4)A在规范正交基下的矩阵是正交矩阵.⇒2)对于αεV, 由证:1)(Aɑ,Aɑ)=(ɑ,ɑ),即得:|Aɑ|=|ɑ|2)⇒3)设ε1,ε2,…,εn是V的任一规范正交基,记εi+εj=ɑεV.由|Aɑ|=|ɑ|或(Aɑ,Aɑ)=(ɑ,ɑ)得(A(εi+εj),A(εi+εj))=(εi+εj,εi+εj)而(A(εi+εj),A(εi+εj))=(Aεi,Aεi)+2(Aεi,Aεj)+(Aεj,Aεj)=(εi ,εi)+2(εi ,εj)+(εj ,εj)(εi+εj,εi+εj )=(εi ,εi)+2(εi ,εj)+(εj ,εj)故 A ε1,A ε2,…,A εn 是V 的一组规范正交基. 3)⇒4)设ε1,ε2,…,εn 是V的规范正交基,A(ε1,ε2,…,εn)=(A ε1, A ε2,…,A εn)= (ε1,ε2,…,εn)A由3), A ε1,A ε2,…,A εn 是0,(,)(,)1,i j i j i j A A i j εεεε≠⎧∴==⎨=⎩V的规范正交基,故A可看作是由规范正交基ε1,ε2,…,εn到规范正交基Aε1,Aε2,…,Aεn的过渡矩阵,A是正交矩阵.4) 1)设ε1,ε2,…,εn是V 的规范正交基,且A在此基下的矩阵A为正交矩阵.由(Aε1,Aε2,…,Aεn)= (ε1,ε2,…,εn)A,知Aε1,Aε2,…,Aεn也是V的规范正交基,设α=x1ε1+x2ε2+……x nεn,Β=y1ε1+y2ε2+……y nεn,Aɑ=x1Aε1+x2Aε2+…+xnAεnAβ=y1Aε1+y2Aε2+…+ynAεn (Aα,Aβ)= x1y1+x2y2+…+xnyn(α,β)= x1y1+x2y2+…+xnyn 所以 (A α,A β)=(α,β),故A 为正交变换.三、规范正交基到规范正交基的过渡矩阵。
数字信号处理讲义第8章离散傅里叶变换数字信号处理讲义--第8章离散傅里叶变换第8章离散傅里叶变换教学目的1.理解离散傅里叶级数、傅里叶变换的概念和性质,掌握循环卷积的计算方法;2.掌控用线性傅里叶转换同时实现线性卷积的条件和方法。
教学重点与难点重点:1.理解离散傅里叶级数、傅里叶变换的概念和性质,掌握循环卷积的计算方法;2.掌控用线性傅里叶转换同时实现线性卷积的条件和方法。
难点:1.循环卷积的计算方法。
2.线性傅里叶转换同时实现线性卷积的条件与方法。
8.0开场白在前面讨论了序列的傅里叶变换和z变换。
由于数字计算机只能计算有限长离散序列,因此有限长序列在数字信号处理中就显得很重要,当然可以用z变换和傅里叶变换来研究它,但是,这两种变换无法直接利用计算机进行数值计算。
针对序列“有限长”这一特点,可以导出一种更有用的变换:离散傅里叶变换(discretefouriertransform,简写为dft)。
它本身也是有限长序列。
作为有限长序列的一种傅里叶表示法,离散傅里叶变换除了在理论上相当重要之外,而且由于存在有效的快速算法――快速离散傅里叶变换,因而在各种数字信号处理的算法中起着核心作用。
有限长序列的离散傅里叶变换(dft)和周期序列的离散傅里叶级数(dfs)本质上是一样的。
为了讨论离散傅里叶级数与离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式,见图8-1所示。
|x(j?)|x(t)1(a)oo?t-?-x(t)|x(jk??)|(b)otok?t?|x(e?)|x(nt)1/t(c)ntoo-tn点|x(e??)|x(n)aa00pppjjkspon点n(d)-?on点?s??图8-1各种形式的傅里叶变换一个非周期实已连续时间信号xa(t)的傅里叶转换,即为频谱xa(jω)就是一个已连续的非周期函数,这一转换对的示意图见到图8-1(a)。
该转换关系与第1章“已连续时间信号的取样”中所牵涉至的非周期已连续时间信号xa(t)的情况相同。
数字信号处理————信号正交的理解以及复数1.数学解释 正交最早出现于中的。
在三维中,两个向量的如果是零,那么就说这两个向量是正交的。
注: (1). 在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个并返回⼀个实数值的。
它是的标准。
(2). 向量积,数学中⼜称外积、叉积,物理中称⽮积、叉乘,是⼀种在中向量的。
与不同,它的运算结果是⼀个向量⽽不是⼀个标量。
并且两个向量的叉积与这两个向量和垂直。
例如:三⾓函数系{1,cosx,sinx,cos2x,sin2x,……,cosnx,sinnx,……} 在区间[-π,π]上正交,就是指在三⾓函数系⑴中任何不同的两个函数的乘积在区间[-π,π]上的积分等于0,即 ∫[-π->π]cosnxdx=0 ∫[-π->π]sinnxdx=0 ∫[-π->π]sinkxcosnxdx=0 ∫[-π->π]coskxcosnxdx=0 ∫[-π->π]sinkxsinnxdx=0 (k,n=1,2,3.....,k≠n)2.正交信号的理解 (1). 定义 正交信号的具有理想冲击函数的形式,为零。
然⽽由知道,这样的理想信号是不存在的。
因此,需要对发射信号进⾏优化设计,使得信号的和尽可能低。
到⽬前为⽌,国际上⼰经提出了⼀些针对MIMO的正交信号设计⽅法 正交信号,也称为复信号,被⽤于数字信号处理的很多领域,⽐如:数字通信系统、雷达系统、⽆线电测向中对到达时间差异的处理、相关脉冲测量系统、天线波束形成的应⽤、信号边带调制器等等。
实际表⽰复数变量使⽤实部和虚部两个分量。
正交信号也⼀样,必须⽤实部和虚部两路信号来表⽰它,两路信号传输会带来⿇烦,实际信号的传输总是⽤实信号,⽽在信号处理中则⽤复信号。
(实部和虚部的称谓是传统的叫法,在我们⽇常应⽤中⼀直被延⽤。
在通信⼯程中分别⽤同相和正交相表⽰。