八年级数学上册第十三章轴对称章末复习导学案人教版.doc
- 格式:doc
- 大小:334.50 KB
- 文档页数:6
最新精品部编版人教初中八年级数学上册第十三章轴对称优秀学案(全章完整版)前言:该学案由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的学案是高效课堂的前提和保障。
(最新精品学案)13.1 轴对称一.学习目标1.能辨别轴对称图形和两图形成对称,及相互转化;认识对称点;认识中垂线及其性质;会作中垂线。
2.在学习过程中,培养学生的观察能力,动手能力和归纳的思维能力。
3.在活动中感受数学美,在合作中享受快乐,从而激发学生热爱数学的情趣。
二.学习重难点轴对称和中垂线及成轴对称与中垂线的关系。
三.学习过程第一课时认识轴对称(一)构建新知1.阅读教材58~60页(1)图13.1-1和13.1-2中,是轴对称图的画出它们对称轴,这些图形的共同特点是_________和___________。
(2)如图,在圆,棱形和平行四边形中,图①有____条对称轴,图②有____条对称轴,图③有____条对称轴。
(3)如图,在△ABC和△DEF中,①△ABC和________成轴对称,若AB=7,DF=,,EF=3,那么△ABC的周长是_________。
②连接对称点,我们发现对称点的连线段与对称轴的位置关系是_________ ___。
③当我们把△ABC和___________看成一个________时,这个图就是轴对称图。
(二)合作学习1.画正多边形的对称轴,我们发现正多边形的对称轴数量与______有关系;并等于__________。
(三)课堂学习检查1.正六边形形是轴对称图形,它的对称轴有()A.3条 B.4条 C.5条 D.6条2.下面几何图形中,一定是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3. 在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有 ____ _个。
第十三章轴对称13.1.1 轴对称学习目标1、初步认识轴对称图形;判掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、断一个图形是否是轴对称图形;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。
3、能够判别两个图形是否成轴对称。
通过试验,归纳出轴对称图形概念,能用概念;培养良好的动手试验能力、归纳能力和语言表述能力。
重点:理解轴对称图形的概念;轴对称图形的对应线段相等、对应角相等难点:判断图形是否是轴对称图形;两个图形成轴对称与轴对称图形两个概念的区别与联系。
一、预习新知P581、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.5、观察课本P59图13.1-3中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?6、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.7、在课本中的图13.1-3的第三个图中,(1)标出A、B、C的对称点,∠A、∠B、∠C的对应角,(2)连接AA′,BB′,CC′,你发现这三条线段有什么关系?你找到规律了吗?8、成轴对称的两个图形全等吗?为什么?9、全等的两个图形成轴对称吗?试举例说明。
(可以画图说明)10、课本P60练习题做下面的题,检验你预习的结果1、轴对称图形的对称轴是一条___________(A ) (B ) (C )(D )(A ) (B ) (C ) (D ) A 直线 B 射线 C 线段1、 右面的图形是轴对称图形吗?如果是,指出对称轴。
BA 第13章第1节轴对称(第3课时)【学习目标】1.掌握线段垂直平分线的判定定理,并能运用定理解决简单几何问题; 2.会用“尺规作图”作线段的垂直平分线,会作两个图形成轴对称或 轴对称图形的对称轴;3.经历探索线段垂直平分线判定定理的证明过程,进一步培养学生 的探究能力【学习重点】线段垂直平分线的判定定理,线段的垂直平分线的画法. 【学习难点】对称轴的画法.【学前准备】认真阅读课本P61—P63,完成练习 1. 回顾:线段垂直平分线的性质:.2.如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么? 归纳:垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的上. 定理的数学符号语言: ∵AB=AC∴点A 在BC 的.3.思考:怎样用尺规作图的方法作线段AB 的垂直平分线?试作出下图中线段AB 的垂直平分线.4. 如图,作出正五角星的所有对称轴.作法:(1)分别以点A 和点B 为圆心,大于AB 21的长为半径作弧,两弧相交于点C ,D 两点; (2)作直线CD . CD 就是所求作的直线.M NBA【课堂探究】5.如图,在△ABC 中,已知点D 是BC 的中点,且点D 在AB 的垂直平分线上,求证:点D 也在AC 的垂直平分线上.6.如图,AB=AC ,MB=MC .直线AM 是线段BC 的 垂直平分线吗?有几种证明方法?7.如图,某地由于居民增多,要在公路MN 上增设一个公共汽车站,A ,B 是公路同一侧新建的两个小区,这个公共汽车站建在什么位置,能使两个小区到车站的距离相等?(请用尺规作图,不要求写出作法和证明,但要写出结论)【课堂检测】1.如图,在△ABC 中,BC 、AB 的垂直平分线交于点P . (1) 求证:PA=PB=PC .(2) 点P 是否在边AC 的垂直平分线上呢?由此你还能得出什么结论?【课堂小结】1.线段垂直平分线的判定定理:.2.用“尺规作图”作线段的垂直平分线,以及作两个图形成轴对称或轴对称图形的对称轴. 课后作业1303--轴对称(课时3)1.如图2,△ABC 中,AB 的垂直平分线交AC 于D ,如果AC =5,BC =4,那么△DBC 的周长是( ).A .6B .7C .8D .92.如图3,已知︒=∠=∠90C BA CDA ,且B D C C =,则点C 在的角平分线上, 点C 在垂直平分线上.3.如图4,已知DE= CE ,BD 交AC 于E ,∠C =∠D=90°,求证: (1)△ADE≌△BCE; (2)点E 在AB 的垂直平分线上.4.三角形三边的垂直平分线交于一点,且这点到三个顶点的距离_________. 5.如图,AB =AD ,BC =CD ,求证:AC 是线段BD 的垂直平分线. 请用线段垂直平分线判定定理证明.6.如图,在△ABC 中,已知点D 在BC 上,且BD +AD =BC .求证:点D 在AC 的垂直平分线上.7.如图,AD 与BC 相交于点O ,OC OA =,C A ∠=∠,DE BE =. 求证:OE 垂直平分BD .8.电信部门要在S 区修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等.到两条公路m 和n 的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.【教学反思】 答案: 课堂探究:图4EDABCBAED nmBASEODCBA图3DA图2E DC:∵点D在AB的垂直平分线上,∴AD=BD∵点D为BD的中点∴BD=DC∴AD=DC∴点D也在AC的垂直平分线上:是,理由如下:∵AB=AC,∴点A在线段BC的垂直平分线上∵MB=MC∴点M在线段BC的垂直平分线上∴AM是线段BC的垂直平分线证明方法还可以用全等7. 解:连接AB,作AB的垂直平分线与直线l于O,交AB于E∵EO是线段AB的垂直平分线∴点O到A,B的距离相等∴这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长课堂检测:1.证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.课后作业:1.D2.∠BAD BD3.证明:在△ADE和△BCE中∠D=∠C=90°∠AED=∠BEC∴△ADE≌△BCE(ASA)∴AE=BE∴点E在AB的垂直平分线上:∵AB=AD∴点A在线段BD的垂直平分线上∵BC=CD∴点C在线段BD的垂直平分线上∴AC是线段BD的垂直平分线6.证明:∵BD+DC=BC,BD+AD=BC∴AD=DC∴点D在AC的垂直平分线上:在△ABO和△CDO中∠A=∠CAO=CO∠AOB=∠COD∴△ABO≌△CDO∴BO=OD∴点O在线段BD的垂直平分线上∵BE=DE∴点E在线段BD的垂直平分线上∴OE垂直平分BD8.作出线段AB的垂直平分线,与∠COD的平分线交于P点,则P点为所求。
第十三章轴对称复习与小结教学稿〔定稿〕课型:新授课主备:张艳玲协备:王明杰【教学内容】:轴对称复习【教学目标】:1.进一步认识轴对称、轴对称图形, 掌握轴对称的根本性质, 对应点连线被对称轴垂直平分的性质;2.能按照要求作出简单图形经过一次或两次轴对称后的图形;3.熟练掌握线段的垂直平分线的概念、等腰三角形、等边三角形的有关概念, 并能用它们的性质及判定方法解决相关问题【教学重点】:线段的垂直平分线、等腰三角形、等边三角形的性质及判定【教学难点】:运用线段的垂直平分线、等腰三角形、等边三角形的性质及判定解决相关问题.【教法学法】:教法:归纳总结学法:思考合作交流展示【教学准备】:多媒体课件【教学过程】:一、自主明标〔一〕诊断练习1.以下图案是轴对称图形的有〔〕A.1个B.2个C.3个D.4个2.△ABC中, DE是AC的垂直平分线, 垂足为E,交AB于点D, AE=5cm, △CBD的周长为24cm, △ABC的周长是 .3.等腰三角形是轴对称图形, 其对称轴是_______________________________.°, 那么另外两个角的度数是A〔x, -4〕与点B〔3, y〕关于x轴对称, 那么x+y的值为____________.6. 如图, △ABC中, ∠ACB=错误! 未找到引用源. , CD是△ABC的高, ∠A=错误! 未找到引用源. , AB=4, 求BD长.〔二〕明标预习板书目标:会用线段的垂直平分线、等腰三角形、等边三角形的性质及判定解决相关问题一.本章知识框架图1、轴对称、线段垂直平分线、角平分线、等腰三角形性质判定的应用2、等腰三角形边与角计算中的分类讨论思想与方程思想〔1〕、等腰三角形的一个内角是800, 那么它的另外两个内角是〔2〕、等腰三角形的周长为24, 一边长为6, 那么另外两边的长是〔3〕、等腰三角形一腰上的高与另一腰的夹角为30°, 那么它的底角为二、互动达标(轴对称、线段垂直平分线、角平分线、等腰三角形性质判定的应用〕探究一轴对称、线段垂直平分线、角平分线、等腰三角形性质判定的应用3.如下图, AD是△ABC的角平分线, EF是AD的垂直平分线, 交BC的延长线于点F, 连结AF.求证:∠BAF=∠ACF.探究一等边三角形的性质, 30°所对的直角边等于斜边的一半的应用例2:如图, 在等边ABC△中, 点D E,分别在边BC AB,上, 且BD AE, AD与CE交于点F.〔1〕求DFC∠的度数.〔2〕假设CH⊥AD于H, 求证:CF=2FH〔3〕假设FH=3,EF=1,求AD的长.例:3:如图1, △ACB和△DCE均为等边三角形, 点A, D, E在同一直线上,连接BE.〔1〕①∠AEB的度数为_____②线段AD, BE之间的数量关系为______.〔2〕如图2, △ACB和△DCE均为等腰直角三角形, ∠ACB=∠DCE=90°, 点A, D, E在同一直线上, CM为△DCE中DE边上的高, 连接BE, 请判断∠AEB的度数及线段CM, AE, BE之间的数量关系, 并说明理由.〔三〕归纳小结〔1〕本章的核心知识有哪些?这些知识间有哪些联系?〔2〕通过本节课的复习, 你学会了哪些数学方法?四、多元测标〔5分钟, 1、2号互换, 对抗批阅, 核算达标人数进行小组考核〕1.点P(3, -1)关于y轴的对称点Q的坐标为(a+b, 1-b), 那么a b的值为.2.如图, AB∥CD, 点E在BC上, 且CD=CE, ∠D=74°, 那么∠B的度数为()A.68°B.32°C.22°D.16°3.如图, 在△ABC中, ∠B=30°, BC的垂直平分线交AB于E, 垂足BAFED C为D .假设ED =4, 那么CE 的长为()4.如图, 在△ABC 中, ∠ABC 和∠ACB 的平分线交于点E , 过点E 作MN ∥BC 交AB 于M , 交AC 于N , 如果MB +CN =6, 那么线段MN 的长为.5. 如图, ∠DEF =36°, AB=BC=CD=DE=EF, 求∠A 五、拓展练习1.等腰三角形一腰上的高与另一腰的夹角为60°, 那么这个等腰三角形的顶角为2.A 〔2, -1〕为平面直角坐标系内一点, O 为原点, P 是x 轴上的一个动点, 如果以点P 、O 、A 为顶点的三角形是等腰三角形, 那么符合条件的动点P 共有个.3.如下图, ∠ABC =90°, AB =BC , AE 平分∠BAC 交BC 于E , CD ⊥AE 交AE 的延长线于D . 求证:CD =21AE .4.如图, 在Rt △ABC 中, AB=AC, ∠BAC=90°, D 为 BC 的中点.〔1〕写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系〔不要求证明〕 〔2〕如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM, 请判断△DMN 的形状, 并证明你的结论6、如图, △ABC, △ADE 是等边三角形, B, C, D 在同一直线上.求证:(1)CE =AC +DC ;(2)∠ECD =60°第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( )A .y 是x 的函数B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1FEDCBADE CBAN MDCAC .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(1)y 是x 的函数吗?为什么?(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置A 种树苗x 棵, 造这片树林的总费用为y 元, 解答以下问题: (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章 反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x 吨, 这批原材料能用y 天, 那么y 与x 之间的函数表达式为〔 〕 A .y =100x B .y =C .y =+100D .y =100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m 3的圆柱形煤气储存室, 那么储存室的底面积S 〔单位:m 2〕与其深度d 〔单位:m 〕的函数图象大致是〔 〕A .B .C .D .3.甲、乙两地相距s 〔单位:km 〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y 〔单位:h 〕关于行驶速度x 〔单位:km /h 〕的函数图象是〔 〕A .B .C .D .4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min 〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y 〔℃〕和时间x 〔min 〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔 〕 A .7:50B .7:45C .7:30D .7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y 与x 之间的关系的式子是〔 〕 体积x 〔mL 〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y =D.y =6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y =〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A .B .C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A .B.3C.﹣3D .9.直线y=x+3与x轴、y轴分别交于A, B点, 与y =〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF 的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D .﹣10.如图, 点A、B 在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A .B .C .D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k ≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热,水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A15 95% 3 B2099%4(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。
数学活动——轴对称的运用一、新课导入1.导入课题:在电子屏幕上投影一些汉字、英文字母、阿拉伯数字、花边图案及等腰三角形折叠图片,并提问:(1)屏幕上的汉字、英文字母、阿拉伯数字有什么特点吗?(2)屏幕上的花边图案你知道是利用什么来设计的吗?(3)等腰三角形利用折叠的方法得出它的性质,折叠方法是利用了等腰三角形的什么特征?学生回答后,板书活动主题.2.学习目标:(1)体验轴对称渗透到了我们的文化生活之中.(2)能用轴对称设计图案.(3)会用轴对称探讨等腰三角形性质.3.学习重、难点:重点:用轴对称设计图案,用轴对称探讨等腰三角形的性质.难点:用轴对称设计图案.二、分层学习1.自学指导:(1)自学内容:教材第88页活动1:美术字与轴对称.(2)自学时间:5分钟.(3)自学要求:阅读教材,体验美术字的轴对称特征.(4)自学参考提纲:①阅读教材,完成教材中布置的学习任务要求.②“喆”字你认识吗?读“zhé”,它是轴对称的吗?试画出它的对称轴,对称轴两旁均是什么汉字?是轴对称的,均是“吉”字.③以虚线为对称轴,将虚线右边和下边的部分补充完整,看它表示什么?④写出几个轴对称的美术字,画出它们的对称轴.2.自学:学生根据学习指导进行学习.3.助学:(1)师助生:教师巡视课堂,对困难学生进行指导.(2)生助生:学生之间相互帮助.4.强化:(1)对称性是汉字(美术字)及英文字母、阿拉伯数字的重要特征之一(2)利用轴对称可以书写一些美术字.1.自学指导:(1)自学内容:教材第88页活动2:利用轴对称设计图案.(2)自学时间:8分钟.(3)自学要求:观察教材中的图2、图3,分析并说明图案的形成过程(4)自学参考提纲:①教材图2中每相邻两朵花之间成什么关系?每两朵花之间成什么关系?②图2中,第二朵花可由第一朵花轴对称得到,第三、四朵花可由第一、二朵花平移得到.③图3中有两条对称轴,右上风车图案能由左上或右下平移得到吗?右上风车图案能由左下图案平移得到吗?不能;能.④有些美丽的图案,可以通过将平移和轴对称结合起来得到.⑤说说教材图4的图案是怎样设计形成的.由第一朵花轴对称得到第二朵花,再平移第一、二朵花,依次得到第三、四、五、六朵花.2.自学:学生结合自学指导进行学习.3.助学:(1)师助生:对课本中的图案设计过程不理解的学生进行指导.(2)生助生:学生之间相互指导交流帮助.4.强化:(1)利用轴对称(或平移),可以由一个基本图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(2)将平移和轴对称结合设计更丰富的图案.1.自学指导:(1)自学内容:教材第89页活动3:等腰三角形中相等的线段.(2)自学时间:5分钟.(3)自学要求:学生剪纸、折叠、观察和归纳.(4)自学提纲:①阅读教材,完成教材中布置的学习任务.②图5中,DE与DF的关系是DE=DF,可通过证明Rt△AED≌△AFD来推得.③当DE、DF分别是AB、AC上的中线时,DE=DF.④当DE、DF分别是∠ADB、∠ADC的平分线时,DE=DF.⑤过AD上任一点作BC的平行线交AB于M,AC于N,试判断MD和ND的关系?并证明你的结论.MD=ND.证明:∵AB=AC,∴∠B=∠C.∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.∴∠AMN=∠ANM.∴AM=AN,在△AMD和△AND中,AM=AN,∠MAD=∠NAD,AD=AD,∴△AMD≌△AND(SAS).∴MD=ND.2.自学:学生结合自学指导进行学习.3.助学:(1)师助生:了解学生的判断及证明是否正确,错误原因在哪里?(2)生助生:学生之间相互展示交流帮助.4.强化:利用轴对称,通过折叠法得出相等线段.这是我们今后探究几何图形中相等线段的一个重要思路.三、评价1.学生的自我评价:介绍自己在活动中的表现和收获.2.教师对学生的评价:(1)表现性评价:点评学生在学习中的态度、方法和成果及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时活动1、2,通过实例的多媒体展示,唤起学生的好奇心,提出问题,引导学生进入活动,创造一种探索的情境.在学习活动中,只有调动学生的非智力因素,才能使他们产生强烈的未知欲望和饱满的热情参与活动中来.整节课是一个动眼观察,动脑思考实践体验和共同提高的动态过程,在活动3中,以实际动手操作画图并猜想线段间的关系,最后用所学知识加以验证,进行分层教学.一、基础巩固(每题20分,共60分)1.以下列各图中的虚线为对称轴,补充图形.2.下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是(C)A.1B.2C.3D.43.下列图案是利用轴对称设计的吗?若是,请用虚线画出对称轴;若不是,请说明理由.解:不是;因为它们不能关于某条直线对称.二、综合应用(20分)4.观察下列图案:(1)图①到②是利用轴对称得到,图④可以由图(③)经过平移直接得到;(2)由上面图案设计说明,有时需将轴对称和平移结合起来设计图案.三、拓展延伸(20分)5.通过折纸猜想:等腰三角形两个底角的平分线是什么关系?并利用三角形全等知识加以证明.解:猜想:等腰三角形两个底角的平分线相等.证明:如图.∵AB=AC,∴∠ABC=∠ACB,∵BE平分∠ABC,CD平分∠ACB,∴∠EBC=12∠ABC,∠DCB=12∠ACB,∴∠EBC=∠DCB.在△BCD和△CBE中,∠DBC=∠ECB,BC=CB,∠DCB=∠EBC,∴△BCD≌△CBE(ASA).∴CD=BE.。
新人教版八年级数学上册《13.1——13.2轴对称复习》导学案班级小组姓名一、学习目标:目标:对轴对称的概念、性质、判定及画法的进一步巩固和应用二、知识点回顾三、考点透视考点1:轴对称的概念及性质:1、下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是(写出序号即可),理由是.2、已知△ABC与△A1B1C1关于直线MN对称,且BC与B1C1交于直线MN上一点O,则() A.点O是BC的中点; B.点O是B1C1的中点; C.线段OA与OA1关于直线MN对称; D.以上都不对.3、已知平面上的两点A、B,下列说法不正确的是()A.点A、B关于AB的中垂线对称B.点A、B可以看作以直线AB为轴的轴对称图形C.点A、B是轴对称图形,有且只有一条对称轴D.点A、B是轴对称图形,有两条对称轴4、如图,若两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x= .5、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 .6、在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A. 21:02B. 21:05C. 20:15D. 20:05考点2:线段垂直平分线的性质7、 如图,有A 、B 、C 三个村庄,现要建一个车站,到三个村庄的距离相等,这样的车站选址有( ) A.1处 B. 2处 C. 3处 D. 4处8、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D , ① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.9、如图,已知AB 比AC 长3cm ,BC 的垂直平分线交AB 于D ,交BC 于E ,△ACD•的周长是15cm ,求AB 和AC 的长.考点3:线段垂直平分线的判定:10、点P 是△ABC 中边AB 的垂直平分线上的点,则一定有( ) A .PB=PC B.PA=PC C.PA=PB D.点P 到∠ABC 的两边距离相等(7题)(8题)∶(4题)(5题)(6题)(9题)11、下列说法错误的是()A.D、E是线段AB的垂直平分线上的两点,则 AD=BD,AE=BEB.若AD=BD,AE=BE,则线段DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线12、已知E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB 垂足分别为C、D.求证:OE是CD的垂直平分线.考点4:轴对称的作图13、如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形。
人教版数学八年级上全章导学案 第13章轴对称全章导学案 人教版数学八年级上导学案 13.1.2 线段的垂直平分线的性质第1课时 线段的垂直平分线的性质和判定一、学习目标1、掌握线段垂直平分线的性质2、掌握线段垂直平分线的判定3、运用线段垂直平分线的性质解决问题二、复习右面的图形是轴对称图形吗?如果是,画出它的对称轴。
三、探究(一) 教材探究问题1、 量出AP 1、AP2、AP3、与BP 1、BP 2、BP 3…讨论发现什么样的规律: 。
总结线段垂直平分线的性质 : 2、你能利用判定两个三角形全等的方法证明这个性质吗? 如图(1),直线l AB ⊥,垂足是C ,AC=BC,点P 在l 上。
求证: PA PB =探究(二)反过来,图(2)中如果PA=PB,那么点P 是否在线段AB 的垂直平分线上呢?说明理由. (1)已知: (2)求证:(3)需要作辅助线吗?怎么作?证明:AB总结线段垂直平分线的性质判定:四、练习1.如右图所示,△ABC 中,BC =10,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,BE =6,求△BCE 的周长。
2、如图,△ABC 中,AB =AC =18cm ,BC = 10cm ,AB 的垂直平分线ED 交AC 于D 点,求:△BCD 的周长。
五、小结与反思:人教版数学八年级上导学案第2课时线段的垂直平分线的有关作图一、学习目标1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。
二、温故知新(口答)1、下面的图形是轴对称图形吗?如果是,请说出它的对称轴。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对所连的线.3、与一条线段两个端点距离相等的点,在这条线段的上。
三、自主探究合作展示【问题】1、如果我们感觉两个图形是成轴对称的,你准备用什么方法去验证?2、两个成轴对称的图形,不经过折叠,你有什么方法画出它的对称轴?归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的的线,就可以得到这两个图形的对称轴.【新知应用】例题1:如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?1、请同学们按照以下作法在图(1)中完成作图。
轴对称单元复习【学习目标】1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用;2. 了解垂直平分线的概念,并掌握其性质;3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【学习重点】轴对称与轴对称图形的性质以及两者的区别与联系,线段垂直平分线的性质与判定,综合应用等腰三角形的性质与判定解决问题。
【学习难点】画轴对称图形或成轴对称两个图形的对称轴,根据轴对称的性质进行简单的轴对称作图,分析证明问题的思路,恰当地用符号表示推理过程。
【知识网络】【要点梳理】考点一、轴对称图形1、如果一个平面图形沿一条______折叠,_______两旁的部分能够_________,这个图形就叫做_________,这条________就是它的_________.2、轴对称图形的性质:________________________________________________________________例1、如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种。
针对练习:1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2、下列图形中的所有轴对称图形的对称轴条数之和为()A.13条B.11条C.10条D.8条考点二、画轴对称图形在下面的图中,画△A´B´C´,使得△A´B´C´与△ABC关于l成轴对称图形。
注:画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
考点三、关于坐标轴对称的点的坐标1、 点(x ,y )关于x 轴对称的点的坐标为(-x ,y );2、 点(x ,y )关于y 轴对称的点的坐标为(x ,-y );3、 点(x ,y )关于原点对称的点的坐标为(-x ,-y )。
章末复习
一、复习导入
1.导入课题:
轴对称的知识在日常生活中应用得非常广泛,我们通过本章的学习已经了解到轴对称的相关知识,这节课我们对轴对称的知识进行系统的复习.
2.复习目标:
(1)认识生活中的轴对称;
(2)掌握轴对称的性质;
(3)熟知等腰三角形和等边三角形的性质和判定.
3.复习重、难点:
重点:轴对称的性质.等腰三角形和等边三角形的性质和判定.
难点:运用轴对称寻求“最短路径”的方法.
二、分层复习
1.复习指导:
(1)复习内容:复习教材第58页到第93页的内容.
(2)复习时间:10分钟.
(3)复习方法:看书、整理、记录、反思以前学习得失.
(4)复习参考提纲:
知识回顾:请你带着下面的问题,复习一下全章的内容:
①你能举出一些实际生活中轴对称应用的例子吗?
衣架,房梁,风筝,飞机.
②成轴对称的两个图形有哪些特点?“轴对称”与“成轴对称”有何区别?
成轴对称的两个图形沿对称轴折叠能够完全重合,轴对称是指单一图形,成轴对称是指两个图形.
③在平面直角坐标系中,如果两个图形关于x轴或y轴对称,那么对称点的坐标有什么关系?
关于x轴对称,对称点的横坐标相等,纵坐标互为相反数;关于y轴对称,对称点的纵坐标相等,横坐标互为相反数.
④利用等腰三角形的轴对称性,我们发现了它的哪些性质?你能通过全等三角形的知识进行证明吗?
性质一:等腰三角形的两个底角相等.性质二:等腰三角形“三线合一”.
⑤等腰三角形和等边三角形之间有什么联系和区别?等边三角形有哪些特殊的性质?
等边三角形是特殊的等腰三角形.等边三角形三条边相等,三个角相等且都为60°,等
边三角形每条边上都具有“三线合一”.
⑥在解决最短路径问题时,通常利用轴对称、平移等变换变“折线”为同一直线上.
2.自主复习:同学们可结合复习指导进行复习.
3.互助复习:
(1)师助生:
①明了学情:通过本章的学习,了解学生基础知识的缺失,加深运用知识的准确性和灵活性的思想方法的掌握程度.
②差异指导:引导学生系统整理知识结构,查找遗漏,指导运用.
(2)生助生:学生之间相互交流帮助.
4.强化复习:
(1)归纳全章重点知识及要点.
(2)填空:
图形
名称
等腰三角
形
等腰梯形长方形
等边三角
形
正方形圆圆环
对称轴条
数
1 1
2
3
4 无数无数
1.复习指导:
(1)复习内容:解答参考提纲中的例题.
(2)复习时间:10分钟.
(3)复习方法:独立尝试解决问题,注意所学知识的灵活运用.
(4)复习参考提纲:
①巧借轴对称知识解决生活中的实际问题.
例1:小华在镜中看到身后墙上的钟,钟面上显示的时刻为8:45,那么此时的实际时间是多少?
解:此时的实际时间是3:15.
②灵活地运用等腰三角形的性质与判定进行计算与证明
例2:在△ABC中,AB=AC,在AB上取一点E,在AC延长线上
取一点F,使BE=CF,EF交BC于G,求证:EG=FG.
证明:如图作FD∥BE交BC的延长线于点D.则∠B=∠D.
∵AB=AC,∴∠B=∠ACB.又∠ACB=∠FCD,∴∠D=∠FCD,
∴FC=FD,又BE=CF,∴BE=DF.
在△BEG和△DFG中,∠B=∠D,∠BGE=∠DGF,BE=DF,
∴△BEG≌△DFG (AAS).∴EG=FG.
(引导学生回顾证明线段相等的方法,注重“AB=AC”这个条件的作用)
③巧借等腰三角形的性质与判定解决探究题.
例3:如图,点O到△ABC的两边AB、AC所在的直线的距离相等,且OB=OC.
图1 图2
(1)如图1,若点O在边BC上,求证AB=AC;
(2)如图2,若点O在△ABC内部,求证AB=AC;
(3)若点O在△ABC外部,AB=AC成立吗?请画图表示.
解:(1)证明:(1)连接AO,∵点O到AB,AC的距离相等,
∴AO是△ABC的角平分线.∴∠BAO=∠CAO.
∵OE⊥AB,OF⊥AC,∴∠BEO=∠CFO=90°.
在Rt△BEO在Rt△CFO中,OB=OC,OE=OF,
∴Rt△BEO≌Rt△CFO (HL).∴∠B=∠C.
∴AB=AC.
(2)作OE⊥AB,OF⊥AC,垂足分别为E、F,则∠BEO=∠CFO=90°.
在Rt△BEO和Rt△CFO中,OB=OC,OE=OF,
∴Rt△BEO≌Rt△CFO(HL).
∴∠ABO=∠ACO.
连接AO,∵OE=OF,则AO是∠BAC的平分线,∴∠BAO=∠CAO.
在△ABO和△ACO中,∠BAO=∠CAO,∠ABO=∠ACO,AO=AO,∴△ABO≌△ACO (AAS).∴AB=AC.
(3)成立,如图所示.
2.自主复习:先动手独立完成,有困难可以合作探究.
3.互助复习:
(1)师助生:
①明了学情:了解学生分析例题条件是否全面,由条件到结论需用到的知识是否清楚.
②差异指导:引导学生分析例题中的关键条件,点拨条件与问题的联系点.
(2)生助生:学生之间相互交流帮助.
4.强化复习:
(1)重要知识点提示.
(2)解题方法的归纳.
三、评价
1.学生的自我评价:学生交谈自己的学习收获和学后体会.
2.教师对学生的评价:
(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.
(2)纸笔评价(课堂评价检测);
3.教师的自我评价(教学反思):
本章知识与现实生活联系密切,是人们日常生活和生产中应用较广的几何图形,是三角形知识的延续与拓展,涉及的轴对称、线段垂直平分线、等腰三角形知识,可让解题从全等的模式中解脱出来,而且可简便解决相关的计算、证明问题,使解题过程简化,在复习中应强化这些知识.
一、基础巩固(第(一)题每小题5分,第(二)题每小题5分,第(三)题10分,共60分)
(一)填空(每题5分)
1.如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,那么这个图形就是轴对称图形,折痕所在的直线叫做对称轴.
2.圆的对称轴有无数条,半圆形的对称轴有1条.
3.在轴对称图形中,对应点所连线段被对称轴垂直平分.
4.等边三角形有三条对称轴,等腰三角形有一条对称轴.
5.正方形有4条对称轴,长方形有2条对称轴,线段有1条对称轴.
6.如图,△ABC中,∠A=30°,∠C=90°,BD平分∠ABC,若AD=6cm,则AC=9cm.
(二)判断(每题5分)
7.等腰三角形、角和圆都是轴对称图形.(√)
8.所有的直径都是圆的对称轴.(×)
9.在轴对称图形中,对应线段的延长线不一定交在对称轴上.(×)
10.等腰三角形只有一条对称轴.(×)
(三)11.画出下列是轴对称图形的所有对称轴.
二、综合应用(20分)
12.如图,∠A=60°,CE⊥AB于E,BD⊥AC于D,BD与CE相交于点H,HD=1,HE=2,试求BD和CE的长.
解:∵∠A=60°,CE⊥AB,BD⊥AC,
∴∠ABD=30°,∠ACE=30°.
∵HE=2,∴BH=2HE=4.
∵HD=1,∴HC=2HD=2.
∴BD=BH+HD=5,CE=CH+HE=4.
三、拓展延伸(20分)
13.如图,点P是∠AOB内一点,∠AOB=30°,OP=10,点M、N分别是OA、OB上的动点,试通过作图说明△PMN周长的最小值是多少?
解:如图,分别作P点关于OA、OB的对称点P1,P2,连接P1P2与OA相交于点M,与
OB相交于点N,则此时△PMN的周长最小(三点共线).连接OP1,OP2,则∠P1OP2=2∠AOB=60°,OP1=OP=OP2,∴△OP1P2是等边三角形,∴P1P2=OP1=OP=10,
∴PM+MN+NP=P1M+MN+NP2=P1P2=10.即△PMN周长的最小值为10.。