(仅供参考)拉伸曲线、成形极限图介绍
- 格式:pdf
- 大小:1.02 MB
- 文档页数:14
试验原理:拉伸曲线分析拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。
试验材料的全面性能反映在拉伸曲线上,因此为了对拉伸试验透彻了解,首先复习一下拉伸曲线,根据试验材料的特性,拉伸曲线可分为两种类型,典型的拉伸曲线(低碳钢)。
第1阶段:弹性变形阶段(oa)两个特点:a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。
b 变形是完全可逆的。
加力时产生变形,卸力后变形完全恢复。
从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。
Oa段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。
由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是oa段的斜率,用公式求得:E=σ/εoa线段的a点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过a点,应力-应变则不再呈直线关系,即不再符合虎克定律。
比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。
第2阶段:滞弹性阶段(ab)在此阶段,应力-应变出现了非直线关系,其特点是:当力加到b点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。
拉伸曲线示意图
1.1.1 金属的常规性能指标
强度指标:
比例极限σp——应力与应变成正比关系的最大应力。
弹性极限σe——材料由弹性变形过渡到弹-塑性变形的应力。
应力超过弹性极限,即开始发生塑性变形。
微量塑性变形。
不允许有微量塑性变形的零件,应根据此极限设计。
屈服极限——金属发生明显塑性变形的抗力。
屈服点σs——屈服点对应的强度,有上、下屈服极限。
屈服强度σ0.2——规定产生0.2%残余伸长的应力。
抗拉强度(强度极限)σb——试样拉断前最大载荷所决定的条件临界应力。
国家标准中规定:σe (σ0.01),σS(σ0.2),σb。
解读塑料拉力机的拉伸曲线及参数
塑料拉力机是测量塑料制品的拉力等物理性能的,测试拉力性能后就会有一个拉伸曲线图,这个图需要我们去读懂,如果你什么都不知道,那么你肯定不知道上面的符号代表的是什么含义,因此在使用塑料拉力机前应该先了解如何读懂这些参数值。
塑料拉力机的拉伸曲线图:由试验机绘出的拉伸曲线,实际上是载荷-伸长曲线,如将载荷坐标值和伸长坐标值分别除以试样原截面积和试样标距,就可得到应力-应变曲线图。
图中op部分呈直线时,说明应力与应变成正比,其比值就是弹性模量,Pp表示呈正比时的最大载荷,p点应力表示比例极限σp.继续加载时,曲线偏离op,直到e点,这时如卸去载荷,试样仍然可以恢复到原始状态,若过e点试样便不能恢复原始状态。
e点应力为弹性极限σe.工程上由于很难测得真正的σe,常取试样残余伸长达到原始标距的0.01%时的应力为弹性极限,以σ0.01 表示。
继续加载荷,试样沿es曲线变形达到s点,此点应力为屈服点σS或残余伸长为0.2%的条件屈服强度σ0.2.过s 点继续增加载荷到拉断前的最大载荷b点,这时的载荷除以原始截面积即为强度极限σb.在b点以后,试样继续伸长,而横截面积减小,承载能力开始下降,直到k点断裂。
断裂瞬间的载荷与断裂处的截面的比值称断裂强度。
一般来说,塑料拉力机拉伸试验需要求取以下几项或七项的参数
1.试样拉伸至断裂过程中出现的最大力值(拉伸强度);
2.试样断裂时的力值(断裂强度);
3.屈服点对应的力值(屈服点拉伸应力);
4.试样拉伸到给定伸长率时的力值(定伸应力);
5.试样拉伸至给定应力时的伸长率(定应力伸长率);
6.屈服点对应的伸长率(屈服点伸长率);
7.试样断裂时的伸长率(扯断伸长率)。
试验原理:拉伸曲线分析拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。
试验材料的全面性能反映在拉伸曲线上,因此为了对拉伸试验透彻了解,首先复习一下拉伸曲线,根据试验材料的特性,拉伸曲线可分为两种类型,典型的拉伸曲线(低碳钢)。
第1阶段:弹性变形阶段(oa)两个特点:a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。
b 变形是完全可逆的。
加力时产生变形,卸力后变形完全恢复。
从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。
Oa段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。
由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是oa段的斜率,用公式求得:E=σ/εoa线段的a点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过a点,应力-应变则不再呈直线关系,即不再符合虎克定律。
比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。
第2阶段:滞弹性阶段(ab)在此阶段,应力-应变出现了非直线关系,其特点是:当力加到b点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。
:a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。
b 变形是完全可逆的。
加力时产生变形,卸力后变形完全恢复。
从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。
Oa 段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。
由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是 oa 段的斜率,用公式求得:E=σ/εoa 线段的 a 点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过 a 点,应力-应变则不再呈直线关系,即不再符合虎克定律。
比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。
第 2 阶段:滞弹性阶段(ab)在此阶段,应力-应变出现了非直线关系,其特点是:当力加到 b 点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。
这个阶段也称理论弹性阶段,当超过 b 点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第 1 此形成开环时所对应的点为 b 点。
第 3 阶段:微塑性应变阶段(bc)是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。
成形极限图的原理及应用引言成形极限图是在金属材料的成形加工过程中常用的一种分析工具。
它通过对金属材料在拉伸过程中的变形行为进行实验和数学建模,可以帮助工程师们更好地了解材料的成形极限,从而进行优化设计和预测形变过程中可能出现的问题。
本文将介绍成形极限图的原理以及在工程实践中的应用。
原理成形极限图是通过实验和数学模型得到的一种图表,它描述了金属材料在成形过程中的变形特性。
在金属材料的拉伸过程中,会发生两种类型的变形:弹性变形和塑性变形。
弹性变形弹性变形是指金属材料在受力后能恢复到原来形状的一种变形方式。
在弹性变形阶段,应力与应变之间呈线性关系,称为胡克定律。
弹性变形的应变是可逆的,即一旦去掉作用力,材料会恢复到原来的形状。
塑性变形塑性变形是指金属材料在受力后不能完全恢复到原来形状的一种变形方式。
在塑性变形阶段,应力与应变之间的关系不再呈线性,而是呈现出非线性的行为。
塑性变形的应变是不可逆的,一旦发生变形,材料的形状就会永久改变。
成形极限图成形极限图是描述金属材料塑性变形特性的图表。
它以应力和应变为坐标轴,绘制材料在拉伸过程中的应力-应变曲线。
通过实验获得材料的应力-应变数据,可以绘制出成形极限图。
成形极限图通常是一条曲线,其中包含了两个重要的参数:屈服强度和断裂强度。
屈服强度屈服强度是指金属材料在拉伸过程中开始发生塑性变形时的应力值。
在成形极限图上,屈服强度位于曲线的起点处。
屈服强度通常用屈服强度值或屈服点标记表示,是衡量材料抗拉强度的一个重要参数。
断裂强度断裂强度是指金属材料在拉伸过程中完全断裂时的应力值。
在成形极限图上,断裂强度位于曲线的终点处。
断裂强度是衡量材料脆性和韧性的一个重要指标,一般来说,断裂强度越高,材料的韧性越好。
应用成形极限图在工程实践中有着广泛的应用。
以下列举了几个常见的应用领域:1.材料选择与优化:通过绘制成形极限图,工程师们可以比较不同材料的成形性能,选择最合适的材料进行工程设计。