1.3绝对值与相反数
- 格式:pptx
- 大小:242.32 KB
- 文档页数:15
冀教版数学七年级上册《1.3 绝对值和相反数》教学设计3一. 教材分析冀教版数学七年级上册《1.3 绝对值和相反数》是学生在学习了有理数的基础上进一步学习的知识点。
本节内容主要介绍绝对值和相反数的概念及其性质。
通过本节课的学习,学生能够理解绝对值和相反数的含义,掌握它们的运算规则,并能运用它们解决实际问题。
二. 学情分析七年级的学生已经具备了一定的有理数基础,对数学概念和运算规则有一定的认识。
但部分学生可能对抽象的概念理解起来较为困难,需要通过具体的例子和实际操作来加深理解。
三. 教学目标1.理解绝对值和相反数的概念,掌握它们的性质和运算规则。
2.能够运用绝对值和相反数解决实际问题。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.绝对值和相反数的概念及其性质。
2.绝对值和相反数的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生自主探究和合作交流,从而达到理解概念、掌握性质和运算规则的目的。
六. 教学准备1.教学PPT。
2.练习题。
3.小组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示几个实际问题,如地图上的距离、温度计的读数等,引导学生思考如何表示这些问题的数学关系。
从而引出绝对值和相反数的概念。
2.呈现(15分钟)讲解绝对值和相反数的定义,利用PPT展示相关例题,让学生观察和分析,引导学生总结出绝对值和相反数的性质和运算规则。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)以小组为单位,让学生互相出题,进行小组内部的讨论和解答。
教师选取部分题目进行讲解,巩固学生对概念和运算规则的理解。
5.拓展(10分钟)让学生思考绝对值和相反数在实际生活中的应用,如计算购物时的折扣、判断比赛成绩等。
引导学生运用所学知识解决实际问题。
6.小结(5分钟)教师引导学生总结本节课所学内容,让学生复述绝对值和相反数的定义、性质和运算规则。
冀教版数学七年级上册《1.3 绝对值和相反数》说课稿2一. 教材分析冀教版数学七年级上册《1.3 绝对值和相反数》是学生在初中阶段第一次接触到关于绝对值和相反数的概念。
这一节的内容是在学生已经掌握了有理数的概念和运算法则的基础上进行讲解的,旨在让学生能够更好地理解和运用有理数,提高他们的数学思维能力。
教材首先介绍了绝对值的概念,通过实例让学生理解绝对值的含义和性质,然后引入了相反数的定义,并通过大量的例子让学生掌握相反数的性质和运用。
最后,教材还介绍了绝对值和相反数在实际问题中的应用,让学生能够将所学的知识运用到实际问题中。
二. 学情分析学生在进入七年级之前,已经掌握了有理数的概念和运算法则,对于一些基本的数学概念和运算规则有一定的理解。
但是,由于学生的学习背景和能力不同,对于一些概念的理解可能会有所欠缺,需要教师在教学过程中进行详细的解释和引导。
同时,学生在学习过程中可能存在一些困难,比如对于绝对值和相反数的理解可能存在一些模糊的地方,需要教师通过具体的例子和讲解让学生加深理解。
此外,学生的思维能力和解决问题的能力也有待提高,需要教师在教学过程中进行有意识的培养和引导。
三. 说教学目标1.让学生理解绝对值和相反数的概念,掌握它们的性质和运用。
2.培养学生的数学思维能力和解决问题的能力。
3.让学生能够将所学的知识运用到实际问题中,提高他们的应用能力。
四. 说教学重难点1.绝对值和相反数的概念的理解和运用。
2.绝对值和相反数在实际问题中的应用。
五. 说教学方法与手段在教学过程中,我会采用讲解法、引导法、实践法等多种教学方法,通过讲解、举例、练习等方式让学生理解和掌握绝对值和相反数的概念和运用。
同时,我还会利用多媒体教学手段,比如PPT、视频等,来丰富教学内容和形式,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过引入实例,让学生理解绝对值的含义和性质,引导学生思考绝对值和相反数的关系。
2.讲解:讲解绝对值和相反数的定义和性质,通过具体的例子让学生理解和掌握。
北京课改版数学七年级上册1.3《相反数和绝对值》教学设计1一. 教材分析《相反数和绝对值》是北京课改版数学七年级上册1.3的教学内容,主要包括相反数和绝对值的定义、性质及其应用。
这一部分内容是学生学习实数的基础,对于学生理解数学概念和解决问题具有重要意义。
教材通过生动的例子和实际问题,引导学生探究相反数和绝对值的概念,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经掌握了有理数的概念,对数学运算有一定的基础。
但部分学生对抽象概念的理解还不够深入,需要通过具体的例子和实际问题来帮助学生理解和掌握相反数和绝对值的概念。
此外,学生对于数学在实际生活中的应用还比较陌生,需要通过实例让学生感受数学与生活的联系。
三. 教学目标1.理解相反数和绝对值的定义,掌握它们的性质。
2.能够运用相反数和绝对值的概念解决实际问题。
3.培养学生的抽象思维能力和实际问题解决能力。
四. 教学重难点1.相反数的定义和性质。
2.绝对值的定义和性质。
3.运用相反数和绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过提出问题,引导学生思考和探究相反数和绝对值的概念;通过具体的例子,让学生理解和掌握相反数和绝对值的性质;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的例子和实际问题。
2.准备课件和教学素材。
3.准备练习题和家庭作业。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、高度等,引出相反数和绝对值的概念。
提出问题,引导学生思考相反数和绝对值的意义和作用。
2.呈现(10分钟)呈现相反数和绝对值的定义和性质,通过具体的例子让学生理解和掌握。
引导学生进行思考和讨论,巩固所学内容。
3.操练(10分钟)对学生进行相反数和绝对值的运算训练,让学生熟练掌握运算法则。
通过练习题,检查学生对相反数和绝对值概念的理解。
4.巩固(5分钟)通过实例讲解,让学生进一步理解和掌握相反数和绝对值的概念。
北京版数学七年级上册《1.3 相反数和绝对值》说课稿2一. 教材分析北京版数学七年级上册《1.3 相反数和绝对值》这一节的内容,主要介绍了相反数和绝对值的概念,以及它们的性质和运算规律。
这部分内容是初中数学的基础知识,对于学生来说,掌握这部分内容对于后续的学习具有重要意义。
在教材中,首先介绍了相反数的概念,通过举例让学生理解相反数的含义,并引导学生通过观察、思考,发现相反数的性质。
接着,教材引入了绝对值的概念,并通过实例让学生理解绝对值的含义,同时引导学生发现绝对值的性质。
最后,教材介绍了相反数和绝对值之间的联系,并通过练习题让学生巩固所学知识。
二. 学情分析学生在学习这一节内容前,已经学习了有理数的概念,对于正数、负数、零有一定的认识。
但是,学生对于相反数和绝对值的概念可能是第一次接触,需要通过实例和讲解让学生理解和掌握。
同时,学生对于数学的抽象思维能力还在培养中,需要通过具体实例和实际操作,让学生理解和掌握相反数和绝对值的性质和运算规律。
三. 说教学目标1.知识与技能:学生能够理解相反数和绝对值的概念,掌握它们的性质和运算规律。
2.过程与方法:学生能够通过观察、思考和实际操作,发现相反数和绝对值的性质,培养学生的抽象思维能力。
3.情感态度与价值观:学生能够积极参与课堂学习,对数学产生兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.教学重点:相反数和绝对值的概念,它们的性质和运算规律。
2.教学难点:相反数和绝对值的性质,以及它们在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用讲授法、实例教学法、小组合作学习法等,引导学生通过观察、思考和实际操作,发现相反数和绝对值的性质。
2.教学手段:利用多媒体课件、实物模型、练习题等,帮助学生理解和掌握相反数和绝对值的概念和性质。
六. 说教学过程1.导入:通过复习有理数的概念,引导学生回顾正数、负数、零的概念,为新课的学习做好铺垫。
去绝对值符号的几种常用方法解含绝对值不等式的根本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。
因此掌握去掉绝对值符号的方法和途径是解题关键。
1.利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2.利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a 〞来求解,这是种典型的转化与化归的数学思想方法。
3.利用平方法去掉绝对值符号对于两边都含有“单项〞绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。
4.利用零点分段法去掉绝对值符号所谓零点分段法,是指:假设数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。