二维随机变量的独立性
- 格式:ppt
- 大小:639.00 KB
- 文档页数:2
§3.2 二维随机变量的独立性与条件分布1`二维随机变量的独立性定义3.2.1 设(,),(),()X Y F x y F x F y 依次为(,),,X Y X Y 的分布函数,若对任意实数,x y 都有(,)()()X Y F x y F x F y =则称两个随机变量X 与Y 相互独立.(1) 离散型随机变量的独立性定义3.2.2如果(X,Y )是二维离散型随机变量,如果对于它们的任意一对取值i x 及j y ,对(X ,Y )的任意一对取值(),i j x y ,都有{,} {} { } i j i j P X x Y y P X x P Y y ===== i ,j =1,2,… (3.2.2) 则称离散型随机变量X 和Y 是独立的。
例3.2.1例3.1.1中两个随机变量X 与Y 是相互独立吗? 解 由例3.1可得2222210,,,915p p p ⋅⋅===显见22 2..2,p p p ≠⋅因此X 与Y 不独立.(2) 连续型随机变量的独立性定义3.2.3 如果(X,Y )是二维连续型随机变量,其联合概率密度为p (x,y ),则X 与Y 也都是连续型随机变量,它们的概率密度分别为(),()X Y p x p y , 若对任意实数,x y 都有(,) (),()X Y p x y p x p y = 则称连续型随机变量X 和Y 是独立的。
例3.2.2本章第一节例3.2中随机变量X,Y 的边缘概率密度分别为p X (x )=⎰+∞∞-p (x,y )dy=2()2042, 0,0, x y x edy e x +∞-+-⎧=≥⎪⎨⎪⎩⎰其它.p Y (y )=⎰+∞∞-p (x,y )dx=2()2y 04x 2, y 0,0, x y ed e +∞-+-⎧=≥⎪⎨⎪⎩⎰其它.显然有 p (x,y )=p X (x )·p Y (y ), 所以X,Y 相互独立。
二维随机变量独立性分析及教学案例设计
贺方超;陈金玉;汪慧
【期刊名称】《科教导刊》
【年(卷),期】2022()27
【摘要】随机变量独立性分析是本科概率统计课程中的重要知识点。
本文首先回顾了二维随机变量独立性的三个性质,接着通过对一道课堂例题结果的观察与思考,从矩阵及向量线性相关的角度给出了二维离散型随机变量相互独立条件下的两个定理,并进一步将二维随机变量独立性的性质推广到连续型的情形。
最后,为使该性质得到更好的理解和运用,将其融入实际问题的求解中,以激发学生的数学思维,从整体掌握三个定理的应用。
【总页数】4页(P136-139)
【作者】贺方超;陈金玉;汪慧
【作者单位】湖北工业大学理学院
【正文语种】中文
【中图分类】G642;O211.5-4
【相关文献】
1.二维随机变量独立性度量及其在独立分量分析中的应用
2.二维随机变量独立性的判定定理
3.二维连续型随机变量独立性的判定
4.二维正态随机变量的线性组合的独立性
5.关于二维随机变量独立性问题的探讨
因版权原因,仅展示原文概要,查看原文内容请购买。
二维随机变量相互独立的充要条件一、引言随机变量是概率论和数理统计中的基本概念,而二维随机变量则是指由两个随机变量组成的随机向量。
在实际问题中,常常需要研究二维随机变量之间的关系,其中一个重要的问题就是如何判断二维随机变量是否相互独立。
本文就二维随机变量相互独立的充要条件进行详细介绍。
二、定义设 $(X,Y)$ 是一个二维随机变量,$F_{X}(x)$ 和 $F_{Y}(y)$ 分别是 $X$ 和 $Y$ 的分布函数,$f_{X}(x)$ 和 $f_{Y}(y)$ 分别是$X$ 和 $Y$ 的概率密度函数。
若对于任意的 $x,y$,有$$F_{XY}(x,y)=F_{X}(x)F_{Y}(y)$$或者$$f_{XY}(x,y)=f_{X}(x)f_{Y}(y)$$则称 $(X,Y)$ 是相互独立的。
三、充要条件二维随机变量相互独立的充要条件有两种形式,分别是基于分布函数和概率密度函数的充要条件。
1. 基于分布函数的充要条件设 $(X,Y)$ 是一个二维随机变量,$F_{X}(x)$ 和 $F_{Y}(y)$ 分别是 $X$ 和 $Y$ 的分布函数,则 $(X,Y)$ 相互独立的充要条件是$$F_{XY}(x,y)=F_{X}(x)F_{Y}(y)$$其中 $F_{XY}(x,y)$ 是 $(X,Y)$ 的联合分布函数。
2. 基于概率密度函数的充要条件设 $(X,Y)$ 是一个二维随机变量,$f_{X}(x)$ 和 $f_{Y}(y)$ 分别是 $X$ 和 $Y$ 的概率密度函数,则 $(X,Y)$ 相互独立的充要条件是$$f_{XY}(x,y)=f_{X}(x)f_{Y}(y)$$其中 $f_{XY}(x,y)$ 是 $(X,Y)$ 的联合概率密度函数。
四、举例说明为了更好地理解二维随机变量相互独立的充要条件,下面举一个例子。
设 $(X,Y)$ 是一个二维随机变量,它的概率密度函数为$$f_{XY}(x,y)=\begin{cases}x+y,&0\leq x\leq 1,0\leq y\leq1\\0,&\text{其他}\end{cases}$$我们需要判断 $(X,Y)$ 是否相互独立。
二维连续型随机变量相互独立的充要条件
二维连续型随机变量相互独立的充要条件是指,给定两个随机变量X和Y,它们的联合概率密度函数为f(x, y),如果满足以下条件,则称X和Y是相互独立的:
1. 边缘概率密度函数独立:X和Y的边缘概率密度函数分别为f_X(x)和f_Y(y),如果f(x, y)可以表示为f_X(x)乘以f_Y(y)的形式,即 f(x, y) = f_X(x) * f_Y(y),则X 和Y相互独立。
2. 条件概率密度函数独立:对于任意的实数a和b,如果f(x,y)不等于0,那么
条件概率密度函数满足以下条件:f_X|Y(x|y) = f_X(x) 和 f_Y|X(y|x) = f_Y(y)。
其中,f_X|Y(x|y)表示在给定Y=y的条件下,随机变量X的条件概率密度函数。
需要注意的是,这里的相互独立是指X和Y的取值之间没有任何关联,即对
于任意的x和y,知道了X的取值并不能提供任何关于Y的信息,反之亦然。
通过满足上述两个条件,我们可以判断二维连续型随机变量X和Y是否相互
独立。
这种相互独立的情况在概率统计学中是非常重要的,它简化了许多计算和分析的过程,为数理统计学的应用提供了基础。