直流无刷电机与永磁同步电机区别
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
无刷直流电机与开关磁阻电机进行比较有哪些不同点?
无刷直流电机与开关磁阻电机进行比较,他们主要有以下几点不同:
1.无刷直流电机转子上嵌有高性能永磁材料,产生用于电机做工的主磁场,电机运转时不用从电网中吸收电能励磁,而开关磁阻电机转子上没有永磁体,电机需要从电网中吸收电能励磁,产生主磁场,造成能量消耗,因而无刷直流电机节能效果好。
2.无刷直流电机定子采用多槽结构,转子磁场与转子磁场几乎同步运转,电机运转平稳性好,震动小;开关磁阻电机定转子均开有少数的齿槽,电机转动时齿槽效应较大,电机震动较大、噪声大。
3.无刷直流电机永磁转子磁场强度高,在电机启动时很小的电流就能长生足够大的转矩,这是其它任何形式的电机所不能比拟的;开关磁阻电机的转矩来自于磁阻效应,起动转矩远不如无刷直流电机大。
4.因无刷直流电机转子上具有超强的磁场,在需要能量反馈的场合,如车辆新型刹车和下坡滑行时,该电动机马上变为发电机给电瓶充电,而不需要任何励磁电流,反馈性能优良;开关磁阻电机转子上既无磁钢又无可加励磁电流的线圈,只能靠磁阻效应发电,反馈性能很差。
5.开关磁阻电机转子既没有任何线圈或磁钢,电机本身的可靠性较高,电机成本较低。
综上所述无刷直流电机与开关磁阻电机相比具有以下特点:
☆电机转速平稳、振动小,增加系统可靠性。
☆系统效率提高20%以上,能使电网品质因数极大提高。
☆启动转矩大、启动电流小。
☆制动性能好,制动电流小。
☆回馈性能好,回馈线路简单。
☆成本较高、本身可靠性稍低。
直流无刷电机BLDCM与永磁同步电机PMSM的比较直流无刷电机BLDCMBrushless Direct Current Motor永磁同步电机(交流无刷电机) PMSM(BLACM)Permanent Magnet Synchronous Motor (Brushless Alternating Current Motor) 1 PMSM和BLDCM相同点和不同点1.1 PMSM和BLDCM的相似之处两者其实都是交流电机,起源不同但从结构上看,两者非常相似。
PMSM起源于饶线式同步电机,它用永磁体代替了绕线式同步电机的激磁绕组,它的一个显着特点是反电势波形是正弦波,与感应电机非常相似。
在转子上有永磁体,定子上有三相绕组。
BLDCM起源于永磁直流电机,它将永磁直流电机结构进行“里外翻”,取消了换相器和电刷,依靠电子换相电路进行换相。
转子上有永磁体,定子上有三相绕组。
1.2 PMSM和BLDCM的不同之处反电势不同,PMSM具有正弦波反电势,而BLDCM具有梯形波反电势。
定子绕组分布不同,PMSM采用短距分布绕组,有时也采用分数槽或正弦绕组,以进一步减小纹波转矩。
而BLDCM采用整距集中绕组。
运行电流不同,为产生恒定电磁转矩,PMSM需要正弦波定子电流;BLDCM需要矩形波电流。
PMSM和BLDCM反电势和定子电流波形如图1所示。
永磁体形状不同,PMSM永磁体形状呈抛物线形,在气隙中产生的磁密尽量呈正弦波分布;BLDCM永磁体形状呈瓦片形,在气隙中产生的磁密呈梯形波分布。
运行方式不同,PMSM采用三相同时工作,每相电流相差120°电角度,要求有位置传感器。
BLDCM采用绕组两两导通,每相导通120°电角度,每60°电角度换相,只需要换相点位置检测。
正是这些不同之处,使得在对PMSM和BLDCM的控制方法、控制策略和控制电路上有很大差别。
2 PMSM和BLDCM特性分析2.1按照空间应用中最关心的特性:功率密度、转矩惯量比、齿槽转矩和转矩波动、反馈元件、逆变器容量等特性对PMSM和BLDCM进行对比分析。
无刷直流电动机与永磁同步电动机的结构和性能比较1.在电动机结构与设计方面这两种电动机的基本结构相同,有永磁转子和与交流电动机类似的定子结构。
但永磁同步电动机要求有一个正弦的反电动势波形,所以在设计上有不同的考虑。
它的转子设计努力获得正弦的气隙磁通密度分布波形。
而无刷直流电机需要有梯形反电动势波,所以转子通常按等气隙磁通密度设计。
绕组设计方面进行同样目的的配合。
此外,BLDC控制希望有一个低电感的绕组,减低负载时引起的转速下降,所以通常采用磁片表贴式转子结构。
内置式永磁(IPM)转子电动机不太适合无刷直流电动机控制,因为它的电感偏高。
IPM结构常常用于永磁同步电动机,和表面安装转子结构相比,可使电动机增加约15%的转矩。
2.转矩波动两种电动机性能最引人关注的是在转矩平稳性上的差异。
运行时的转矩波动由许多不同因素造成,首先是齿槽转矩的存在。
已研究出多种卓有成效的齿槽转矩最小化设计措施。
例如定子斜槽或转子磁极斜极可使齿槽转矩降低到额定转矩的1%~2%以下。
原则上,永磁同步电动机和无刷直流电动机的齿槽转矩没有太大区别。
其他原因的转矩波动本质上是独立于齿槽转矩的,没有齿槽转矩时也可能存在。
如前所述,由于永磁同步电动机和无刷直流电动机相电流波形的不同,为了产生恒定转矩,永磁同步电动机需要正弦波电流,而无刷直流电动机需要矩形波电流。
但是,永磁同步电动机需要的正弦波电流是可能实现的,而无刷直流电动机需要的矩形波电流是难以做到的。
因为无刷直流电动机绕组存在一定的电感,它妨碍了电流的快速变化。
无刷直流电动机的实际电流上升需要经历一段时间,电流从其最大值回到零也需要一定的时间。
因此,在绕组换相过程中,输入到无刷直流电动机的相电流是接近梯形的而不是矩形的。
每相反电动势梯形波平顶部分的宽度很难达到120°。
正是这种偏离导致无刷直流电机存在换相转矩波动。
在永磁同步电动机中驱动器换相转矩波动几乎是没有的,它的转矩纹波主要是电流纹波造成的。
电动车无刷电机和有刷电机的区别电动车, 电机一)“无刷”“有刷”的基本概念:目前电动自行车广泛采用的是直流永磁电机,直流永磁电机按照是否采用电刷换向可分为有刷电机和无刷电机两种,有刷电机是直流电机的主流产品,目前绝大多数电动自行车电机都是有刷电机。
无刷电机是一种特殊的直流电机,它采用内置传感器外加电子换向器的方法进行电子换向,无刷电机主要是为了消除电刷的磨损,以及电刷接触所产生的噪声。
二)有刷电机的缺点没有成为阻碍它在电动自行车中广泛应用的要素:电刷磨损和电机噪声是“有刷”相对与“无刷”的两个最主要的缺点,但尽管存在这两个缺点,为什么国内绝大多数品牌厂家仍采用有刷电机的方案呢,难道他们没有意识到这个问题吗?原因在于:A)电刷的磨损不构成主要问题电动自行车是一种间断性工作的交通工具,一组电池通常最长的放电时间(骑行时间)一般为2-3个小时,使用者每天使用贸易的平均时间大约为1-2个小时,而现在,广泛应用于电动自行车的盘式转子电机采用平面式换向器和优质加长式电刷,工作寿命一般在1500小时以上,因此,按每个用户平均每天骑车1.5小时计算,一组电刷的使用时间已达1000天。
可以看出,一组合格的电刷服役时间已接近三年,而更换一组电刷的成本仅为5元左右,平均每年不足2元!更何况,电动自行车使用了3年也确实有必要对车辆作一些全面的检查和维护,更换一些磨损零件,宣扬贸易电机十年免维护这种夸大的观点,有误导消费者的嫌疑。
B)电机发出一点声音是正常的笔者在走访市场时,一位无刷电机电动车的促销员,演示无刷电机在空载条件下的静音特性,以此证明无刷电机要比有刷电机优越得多,其实,购买电动车绝不是购买空调设备,消费者大可不必为它是否毫无噪声而作出购买与否的决定。
事实上,使用过无刷电机电动车的用户会知道,无刷电机在空载时或低负载时(如平坦无风情况下)电机发出的声音确实很小,但是,当运行至重载状态如上坡,顶风,它往往会发出远远比有刷电机更为“巨大”的音响,甚至出现令人不适的电磁抖动,而这种声音在安静的店堂促销过程中是不会出现的。
⽆刷电机与有刷电机的区别,这样看⼀⽬了然!⽆刷电机:⽆刷直流电机由电动机主体和驱动器组成,是⼀种典型的机电⼀体化产品。
由于⽆刷直流电动机是以⾃控式运⾏的,所以不会像变频调速下重载启动的同步电机那样在转⼦上另加启动绕组,也不会在负载突变时产⽣振荡和失步。
中⼩容量的⽆刷直流电动机的永磁体,现在多采⽤⾼磁能级的稀⼟钕铁硼(Nd-Fe-B)材料。
因此,稀⼟永磁⽆刷电动机的体积⽐同容量三相异步电动机缩⼩了⼀个机座号。
有刷电机:有刷电机是内含电刷装置的将电能转换成机械能(电动机)或将机械能转换成电能(发电机)的旋转电机。
区别于⽆刷电机,电刷装置是⽤来引⼊或引出电压和电流的。
有刷电机是所有电机的基础,它具有启动快、制动及时、可在⼤范围内平滑地调速、控制电路相对简单等特点。
⽆刷电机与有刷电机⼯作原理的区别1、有刷电机⼯作原理有刷电机是⼤家最早接触的⼀类电机,中学时物理课堂上介绍电动机也是以它为模型来展⽰的。
有刷电机的主要结构就是定⼦+转⼦+电刷,通过旋转磁场获得转动⼒矩,从⽽输出动能。
电刷与换向器不断接触摩擦,在转动中起到导电和换相作⽤。
有刷电机采⽤机械换向,磁极不动,线圈旋转。
电机⼯作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流⽅向的交替变化是随电机转动的换相器和电刷来完成的。
在有刷电机中,这个过程是将各组线圈的两个电源输⼊端,依次排成⼀个环,相互之间⽤绝缘材料分隔,组成⼀个象圆柱体的东西,与电机轴连成⼀体,电源通过两个碳元素做成的⼩柱⼦(碳刷),在弹簧压⼒的作⽤下,从两个特定的固定位置,压在上⾯线圈电源输⼊环状圆柱上的两点,给⼀组线圈通电。
随着电机转动,不同时刻给不同线圈或同⼀个线圈的不同的两极通电,使得线圈产⽣磁场的N-S极与最靠近的永磁铁定⼦的N-S极有⼀个适合的⾓度差,磁场异性相吸、同性相斥,产⽣⼒量,推动电机转动。
碳电极在线圈接线头上滑动,象刷⼦在物体表⾯刷,因此叫碳“刷”。
相互滑动,会摩擦碳刷,造成损耗,需要定期更换碳刷;碳刷与线圈接线头之间通断交替,会发⽣电⽕花,产⽣电磁破,⼲扰电⼦设备。
二轮电动车电机分类二轮电动车电机是电动车的核心部件之一,根据其特点和结构不同,可以分为直流无刷电机和交流异步电机两大类。
直流无刷电机是目前应用最广泛的电动车电机之一。
它采用无刷电机控制器驱动,通过电流反馈实现对电机的精确控制。
直流无刷电机具有转速范围宽、转矩大、效率高等优点。
其中,永磁无刷电机和感应无刷电机是直流无刷电机的两种常见类型。
永磁无刷电机是利用永磁体产生的磁场与电流感应力产生转矩的一种电机。
由于永磁体具有较高的磁场强度,因此永磁无刷电机具有较高的功率密度和效率。
永磁无刷电机的转速范围较宽,适用于不同的工况要求。
感应无刷电机是利用感应电磁场产生的转矩的一种电机。
感应无刷电机采用异步电机的原理,通过变频器控制电机的转速和转矩。
感应无刷电机具有结构简单、成本低、可靠性高等优点,适用于中低速工况下的电动车。
交流异步电机是另一种常见的电动车电机类型。
它采用交流电源供电,通过电流的相位差产生转矩。
交流异步电机具有结构简单、可靠性高、成本较低等优点。
其中,感应电机和永磁同步电机是交流异步电机的两种常见类型。
感应电机是利用感应电磁场产生转矩的一种电机。
感应电机通过电流的相位差产生转矩,无需外部励磁。
感应电机具有结构简单、可靠性高、维护成本低等优点,广泛应用于电动车领域。
永磁同步电机是利用永磁体的磁场与电流感应力产生转矩的一种电机。
永磁同步电机具有高效率、高功率密度等优点,广泛应用于高性能电动车领域。
永磁同步电机通常与变频器配合使用,实现对电机的精确控制。
总结起来,二轮电动车电机可以分为直流无刷电机和交流异步电机两大类。
直流无刷电机包括永磁无刷电机和感应无刷电机,具有转速范围宽、转矩大、效率高等优点。
交流异步电机包括感应电机和永磁同步电机,具有结构简单、成本低、可靠性高等优点。
不同类型的电机适用于不同的工况要求,为电动车提供了多样化的选择。
新能源汽车驱动电机分类及其特点1.根据结构和工作原理分类驱动电机按照工作电源种类可分为直流电机和交流电机。
按结构和工作原理可分为直流电机、异步电机、同步电机。
目前,在新能源汽车领域,常用的驱动电机有直流电机(DC Motor)、感应电机(IM)、直流无刷电机(BLDC)、永磁同步电机(PMSM)以及开关磁阻电机(SRM)等。
(1)直流电机。
在电动汽车发展的早期,很多电动汽车都是采用直流电机方案。
主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。
但由于直流电机本身的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结构会产生损耗,提高了维护成本。
此外,电机运转时的电刷火花会使转子发热,浪费能量,散热困难,还会造成高频电磁干扰,这些因素都会影响整车性能。
由于直流电机的缺点非常突出,目前的电动汽车已经将直流电机淘汰。
(2)交流异步电机。
交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简单,运行可靠耐用,维修方便。
交流异步电机与同功率的直流电机相比效率更高,质量约轻了1/2。
如果采用矢量控制的控制方式,可以获得与直流电机相媲美的可控性和更宽的调速范围。
由于有着效率高、比功率较大、适合于高速运转等优势,交流异步电机是目前大功率电动汽车上应用较广的电机。
但在高速运转的情况下电机的转子发热严重,工作时要保证电机冷却,同时交流异步电机的驱动、控制系统很复杂,电机本体的成本也偏高,另外,运行时还需要变频器提供额外的无功功率来建立磁场,故相与永磁电机和开关磁阻电机相比,交流异步电机的效率和功率密度偏低,不是能效化的选择。
汽车一般以一定的高速持续行驶,所以能够让高速运转而且在高速时有较高效率的交流异步电机得到广泛应用。
(3)永磁同步电机。
通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。
永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。
两者区别可以认为是方波和正弦波控制导致的设计理念不同。
最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机” 也算是合适的。
无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。
无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。
控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM勺方法进行控制即可。
本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。
通常说勺永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加勺定子电压和电流也应为正弦波,一般靠交流变压变频器提供。
永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制勺先进控制策略。
两者区别可以认为是方波和正弦波控制导致勺设计理念不同。
最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机” 。
仅对电机结构而言,二者确实相差不大,个人认为二者勺区别主要在于:1概念上勺区别。
无刷直流电机指勺是一个系统,准确地说应该叫“无刷直流电机系统”,它强调勺是电机和控制器勺一体化设计,是一个整体,相互勺依存度非常高,电机和控制器不能独立地存在并独立工作,考核勺也是他们整体勺技术性能。
永磁直流无刷电机和永磁同步电机1. 引言说到电机,很多人可能觉得这就是个硬邦邦的技术话题,其实啊,电机就像我们生活中的小助手,默默为我们的日常服务。
今天,我们就来聊聊两种电机:永磁直流无刷电机(BLDC)和永磁同步电机(PMSM)。
它们都是以“永磁”命名,听起来是不是很高大上?实际上,这两位“电机明星”各有千秋,各有自己的粉丝群体,来,咱们一起深入了解一下它们的故事。
2. 永磁直流无刷电机(BLDC)2.1 什么是BLDC?首先,永磁直流无刷电机就像是一位现代的“高科技小伙”,它的无刷设计让它比传统的有刷电机更加出色。
大家知道,电机里有刷子,像是老古董,容易磨损,还得频繁换,真是让人烦。
可是BLDC就不同了,它彻底告别了刷子,效率高得惊人,使用寿命也大大延长。
听说,有的人用了好几年都没出毛病,简直就像是电机界的“长青树”!2.2 BLDC的应用场景说到应用,BLDC可不是个闲人,简直可以说是无处不在。
无论是电动车、空调,还是咱们常见的吸尘器,甚至是智能手机里的马达,BLDC都有一席之地。
试想一下,当你在炎热的夏天打开空调,清凉的风吹来,那可都是BLDC在默默工作呢!而且,它运行的时候安静得就像小猫咪,让你在家里享受宁静时光。
3. 永磁同步电机(PMSM)3.1 PMSM的特性再来说说永磁同步电机,PMSM也不甘示弱。
它像是一位稳重的绅士,拥有极高的扭矩密度和出色的控制性能。
这位绅士可是电机界的“技术流”,使用的是同步原理,能在各类负载下稳定工作,简直是个全能选手。
很多时候,PMSM被广泛应用在工业领域,比如数控机床、自动化设备等。
它的表现就像一位经验丰富的老手,踏实稳重,给人一种值得信赖的感觉。
3.2 PMSM的优缺点当然,PMSM也有自己的小脾气。
相比BLDC,它的制造成本稍高,毕竟技术含量在那里。
不过,物有所值,使用寿命和运行效率可都是杠杠的,能让你省不少电费呢!这就好比买了个高档手机,虽然贵,但它的性能和体验真心让人满意。
步进电机转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而异步电机和同步电机的区别异步电机又叫感应电机,转子上的电磁场是通过定子磁场感应出来的。
同步电机转子上要有自带的磁场。
异步电机的转速会随负载的不同,略有改变,而且这个转速是低于定子磁场的转速的,所以才叫异步电机。
同步电机转速严格的按定子磁场转速旋转,所以叫同步电机。
异步电动机可以直接启动。
同步电动机要有专门的启动装置或者启动绕组,所以制造工艺复杂,造价高。
异步电机一般用来做电动机,同步电机一般用来做发电机,也用来做补偿机。
同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。
当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。
异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。
所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。
异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。
同步电机的转速是和频率极数恒定的满足转速=60乘以频率除以极对数(同步转速)不随负荷的改变而该改变异步电机的转速永远低于同步转速但是带额定负荷时转速很接近同步转速随着负荷的增加转速会下降。
所以叫异步电机同步电机的转子有转子线圈和鼠龙,通入励磁电流。
而异步电机只有鼠龙(铜条)。
同步电机转速恒定,而异步电机低于同步转速无刷电机和有刷电机到底有何区别着电动车普及率越来越高,市场竞争的异常激烈,不少企业和商家除了在产品价格和外观上大肆做文章外,还在电动车一般的小细节上也打起了广告,其中最多的便是对于电机有刷和无刷的宣传,而无刷电机的广告宣传则是其中一大亮点。
当您看到这个名词时,你不禁会想既然有无刷,那肯定有有刷,那么有刷和无刷的区别到底在哪里呢?下面小编就为您解答一番。
电机在家用的电器内都是比较普通的设备,没有特殊的规格和作用;而工业电机则不同,比如永磁电机,用于矿业筛选,极大提高作业效率;那么永磁电机跟普通电机有什么区别呢?
无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。
嘉轩(JXS智能驱动,分体式)
无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。
控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。
本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。
通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。
永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制策略。
那么永磁电机跟普通电机的区别就可以很明显的区分了
普通电机:主要家用,比如风扇/洗衣机等内部电机,电源则是220V家用电,相应功率和应用范围比较小;
永磁电机:主要用于工业,比如煤矿磁选等等,使用环境和场地的要求也比较严格。
永磁同步电动机的分类和特点技术 2008-08-09 15:13:38 阅读178 评论0 字号:大中小一,永磁同步电动机的特点永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。
和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。
和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。
永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。
我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。
稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。
因此,对我国来说,永磁同步电动机有很好的应用前景。
二,永磁同步电动机的分类永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。
因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。
这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。
永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。
根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。
在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。
怎么辨别电动车的控制器是方波的还是正弦波的?
无刷直流电机是电机与控制技术相结合的产品,电调控制电机的运行,从电流驱动的角度看,无刷直流电机可以分为方波驱动和正弦波驱动。
通常我们将方波驱动的电机称之为无刷直流电机(BLDC),正弦波驱动的电机称之为永磁同步电机(PMSM)。
无刷直流电机和永磁同步电机的基本结构相同,主要区别在于控制器电流驱动方式不同。
无刷直流电机是方波电流驱动,永磁同步电机是正弦波电流驱动。
我们要将电机的气隙磁密波形与驱动电流波形相匹配,才能发挥出电机更好的性能。
因此,无刷直流电机的气隙磁密波形也要设计成方波,而永磁同步电机气隙磁密波形则要设计成正弦波。
无刷直流电机和永磁同步电机在性能上,在转矩平稳上存在着较大的差异。
电机运行时的转矩波形有许多因素造成,齿槽效应是无刷直流电机和永磁同步电机转矩波动的共同因素。
目前减小齿槽效应的措施也有多种,常见的如定子斜槽、转子斜极、分数槽等。
在理想情况下,无论是无刷直流电机还是永磁同步电机,电流与转矩的特性曲线是呈线性变化的,不管电机运转在任何位置都不会有转矩波动。
在实际情况下,由于无刷直流电机的绕组存在电感,它妨碍了电流的快速变化。
在换相过程中,电流从最大值到最小值、最小值到最大值
切换过程需要一定时间。
因此,输入到无刷电机中的电流波形是梯形而不是矩形的。
正是这种偏离导致无刷直流电机存在换相转矩波动。
在永磁同步电机中驱动器换相转矩波动几乎是没有的,它的转矩波动主要是由电流纹波造成的,而且在高速运转时,这些纹波转矩将会随着转子的惯性过滤掉。
通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。
永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。
两者区别可以认为是方波和正弦波控制导致的设计理念不同。
最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。
无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。
无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。
控制时各相电流也尽量控制成方波,
逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。
本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。
通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。
永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制
策略。
两者区别可以认为是方波和正弦波控制导致的设计理念不同。
最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。
仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于:
1 概念上的区别。
无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。
而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。
2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。
3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。
4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。
5 关于“那么三相无刷直流电机能不能使用三相正弦交流电呢如果可以,霍耳器件是否可以不用了”
从原理上讲,三相无刷直流电机使用三相正弦交流电是可以运行的,只不过是运行性能可能很差,如果三相无刷直流电机的反电势波形为方波,则使用三相正弦交流电时会产生很大的谐波损耗,温升很高。
是否需要霍耳器件与使用什么电源(三相正弦交流电或方波脉冲电源)无关,而与电机的控制算法、控制策略及控制方式等因素有关,如果是用无位置传感
器的控制方式则霍耳器件可以不用,如果采用有转子位置传感器的控制方式,则位置传感器还是必要的,当然可以不用霍耳器件而采用其他的传感器,如编码器、旋转变压器等
楼上说的很详细了,简单说下我的感受吧:
曾测过无刷直流电机的反电动势,并不是很完美的方波,是像削了顶的正弦波,用直流变频控制,电机转速还比较平稳,但是要看精度,在不在你的接受范围内了。
无刷直流电机的电机本体:定子绕组为集中绕组,永磁转子形成方波磁场;永磁同步电机的电机本体:定子绕组为分布绕组,永磁转子形成正玄磁场;
2、无刷直流电机的位置传感器:低分辨率,60度分辨率,霍尔元件,电磁式、光电式;永磁同步电机的位置传感器:高分辨率,1/256,1/1024,旋转变压器,光码盘;
3、控制不同:
无刷直流电机:120度方波电流,采用PWM控制;永磁同步电机:正玄波电流,采用SPWM SVPWM控制。