专题 25 配方法--拔高题
- 格式:pdf
- 大小:258.48 KB
- 文档页数:8
《配方法》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)用配方法解方程x2﹣6x+7=0,将其化为(x+a)2=b的形式,正确的是()A.(x+3)2=2B.(x﹣3)2=16C.(x﹣6)2=2D.(x﹣3)2=2 2.(5分)用配方法解一元二次方程x2+4x+1=0,下列变形正确的是()A.(x﹣2)2﹣3=0B.(x+4)2=15C.(x+2)2=15D.(x+2)2=3 3.(5分)用配方法解方程x2﹣8x+2=0,则方程可变形为()A.(x﹣4)2=5B.(x+4)2=21C.(x﹣4)2=14D.(x﹣4)2=8 4.(5分)下列方程配方正确的是()A.x2﹣2x﹣1=(x﹣1)2﹣1B.x2﹣4x+1=(x﹣2)2﹣4C.y2﹣2y﹣2=(y﹣1)2+1D.y2﹣6y+1=(y﹣3)2﹣85.(5分)用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11二、填空题(本大题共5小题,共25.0分)6.(5分)将一元二次方程x2+2x﹣1=0化成(x+a)2=b的形式,其中a,b是常数,则a =,b=.7.(5分)用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,则m=.8.(5分)把方程x2+2x﹣5=0配方后的方程为.9.(5分)一元二次方程x2﹣8x﹣1=0配方后可变形为.10.(5分)方程4x2﹣4x+1=0的解为.三、解答题(本大题共5小题,共50.0分)11.(10分)(1)解不等式组:(2)解方程2x2﹣4x﹣1=012.(10分)解方程.(1)(x﹣1)2﹣4=0(2)x2﹣2x﹣2=0(3)x2﹣6x+9=013.(10分)解一元二次方程:4x2=4x﹣1.14.(10分)小明在解方程x2﹣2x﹣1=0时出现了错误,其解答过程如下:x2﹣2x=﹣1(第一步)x2﹣2x+1=﹣1+1(第二步)(x﹣1)2=0(第三步)x1=x2=1(第四步)(1)小明解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.15.(10分)解方程:x2﹣2x=4.《配方法》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)用配方法解方程x2﹣6x+7=0,将其化为(x+a)2=b的形式,正确的是()A.(x+3)2=2B.(x﹣3)2=16C.(x﹣6)2=2D.(x﹣3)2=2【分析】移项,配方,即可得出选项.【解答】解:x2﹣6x+7=0,x2﹣6x=﹣7,x2﹣6x+9=﹣7+9,(x﹣3)2=2,故选:D.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.2.(5分)用配方法解一元二次方程x2+4x+1=0,下列变形正确的是()A.(x﹣2)2﹣3=0B.(x+4)2=15C.(x+2)2=15D.(x+2)2=3【分析】移项,配方,即可得出选项.【解答】解:x2+4x+1=0,x2+4x=﹣1,x2+4x+4=﹣1+4,(x+2)2=3,故选:D.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.3.(5分)用配方法解方程x2﹣8x+2=0,则方程可变形为()A.(x﹣4)2=5B.(x+4)2=21C.(x﹣4)2=14D.(x﹣4)2=8【分析】移项,配方,即可得出选项.【解答】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选:C.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.4.(5分)下列方程配方正确的是()A.x2﹣2x﹣1=(x﹣1)2﹣1B.x2﹣4x+1=(x﹣2)2﹣4C.y2﹣2y﹣2=(y﹣1)2+1D.y2﹣6y+1=(y﹣3)2﹣8【分析】利用配方法解一元二次方程的方法将四个选项中的一元二次方程进行变形,由此即可得出结论.【解答】解:A、∵x2﹣2x﹣1=(x﹣1)2﹣2,故错误;B、x2﹣4x+1=(x﹣2)2﹣3,故错误;C、∵y2﹣2y﹣2=(y﹣1)2﹣3,故错误;D、∵y2﹣6y+1=(y﹣3)2﹣8=0,故正确.故选:D.【点评】本题考查了解用配方法解一元二次方程,解题的关键是熟练掌握配方法解一元二次方程的方法.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元二次方程的解法是关键.5.(5分)用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.【解答】解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.二、填空题(本大题共5小题,共25.0分)6.(5分)将一元二次方程x2+2x﹣1=0化成(x+a)2=b的形式,其中a,b是常数,则a =1,b=2.【分析】方程常数项移到右边,两边加上1,变形得到结果,即可确定出a与b的值.【解答】解:方程x2+2x﹣1=0,变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,则a=1,b=2.故答案为:1,2.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.(5分)用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,则m=17.【分析】将方程的常数项移到右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2﹣8x﹣1=0,移项得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17.所以m=17.故答案为17.【点评】此题考查了解一元二次方程﹣配方法,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.8.(5分)把方程x2+2x﹣5=0配方后的方程为(x+1)2=6.【分析】移项后配方,再变形,即可得出答案.【解答】解:x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.9.(5分)一元二次方程x2﹣8x﹣1=0配方后可变形为(x﹣4)2=17.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17,故答案为(x﹣4)2=17.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.10.(5分)方程4x2﹣4x+1=0的解为x1=x2=.【分析】方程的左边是完全平方式,则方程即可变形成(2x﹣1)2=0,再利用直接开平方法即可求解.【解答】解:∵4x2﹣4x+1=0,∴(2x﹣1)2=0,则2x﹣1=0,解得:x1=x2=,故答案为:x1=x2=.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)(1)解不等式组:(2)解方程2x2﹣4x﹣1=0【分析】(1)先求出每个不等式的解集,再求出不等式组的解集即可.(2)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1),解不等式①,得x≥﹣1.解不等式②,得x<3.则原不等式的解集为:﹣1≤x<3.(2)2x2﹣4x﹣1=0,2x2﹣4x=1,x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,开方得:x﹣1=,解得:x1=,x2=.【点评】考查了配方法解一元二次方程和解一元一次不等式组,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(10分)解方程.(1)(x﹣1)2﹣4=0(2)x2﹣2x﹣2=0(3)x2﹣6x+9=0【分析】(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可;(3)先分解因式,再开方,即可得出一元一次方程,求出方程的解即可.【解答】解:(1)(x﹣1)2﹣4=0(x﹣1)2=4,x﹣1=±2,x1=﹣1,x2=3;(2)x2﹣2x﹣2=0,b2﹣4ac=(﹣2)2﹣4×1×(﹣2)=12,x=,x1=1+,x2=1﹣;(3)x2﹣6x+9=0,(x﹣3)2=0,x﹣3=0,即x1=x2=3.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.13.(10分)解一元二次方程:4x2=4x﹣1.【分析】方程化成一般式后,左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;【解答】解:原方程可化为:4x2﹣4x+1=0∴(2x﹣1)2=0,解得:x1=x2=.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握解方程的方法是解本题的关键.14.(10分)小明在解方程x2﹣2x﹣1=0时出现了错误,其解答过程如下:x2﹣2x=﹣1(第一步)x2﹣2x+1=﹣1+1(第二步)(x﹣1)2=0(第三步)x1=x2=1(第四步)(1)小明解答过程是从第一步开始出错的,其错误原因是不符合等式的性质1;(2)请写出此题正确的解答过程.【分析】(1)先把常数项移到方程右边,再把方程两边加上9,然后把方程左边写成完全平方的形式即可;(2)先把方程两边加上1,再把方程两边加上1,利用完全平方公式得到(x﹣1)2=2,然后利用直接开平方法解方程.【解答】解:(1)小明解答过程是从第一步开始出错的,因为把方程两边都加上1时,方程右边为1.故答案为一;不符合等式性质1;(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=±,所以x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.15.(10分)解方程:x2﹣2x=4.【分析】利用配方法得到(x﹣1)2=5,然后利用直接开平方法解方程.【解答】解:x2﹣2x+1=5,(x﹣1)2=5,x﹣1=±,所以x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.。
一元二次方程的解法(2)——配方法一选择题1.用配方法解一元二次方程x 2−4x=5时,此方程可变形为( )A. (x+2)2=1B. (x −2)2=1C. (x+2)2=9D. (x −2)2=92.用配方法解方程x 2+4x+1=0,配方后的方程是( )A. (x+2)2=3B. (x-2)2=3C. (x-2)2=5D. (x+2)2=53.方程x 2+2x −1=0的两个根为( )A. x 1=1+2x 2=1−2B. x 1=2,x 2=−2C. x 1=−1+2,x 2=−1−2D. x 1=2+1,x 2=2−14.方程x 2+4x=2的正根为( )A. 2−6B. 2+6C. −2−6D. −2+65.用配方法解一元二次方程x 2−4x=5时,此方程可变形为( )A. (x+2)2=1B. (x −2)2=1C. (x+2)2=9D. (x −2)2=96.如果用配方法将20mx n x -+=变形为()217x -=-的形式,那么m 、n 的值分别为 ( )A. m=-2,n=6 B .m=-2,n=8 C .m=2,n=6 D .m=2,n=8二、填空题1.用配方法解方程2420x x -+=,可以变形为 .2.方程25302x x --=的实数根是 .3.当m= 时,22160mx x ++=是完全平方式.4.若x=0是一元二次方程()2223280m x m x m -+++-=的实数根,则m= .5.x 2+6x+______=(x+______)26.若把方程x 2−4x=6化成(x+m)2=n 的形式,则m+n=______.三、解答题1.用配方法解下列方程:(1) 2520x x --=; (2) 2670x x +-=:(3) 27402x x +-=; (4) 2443x x -=.2.等腰三角形的底和腰是方程2680x x -+=的实数根,求这个三角形的周长.3.用配方法证明:无论x 为何值时,2123130x x --=的值恒小于0.4阅读并解答问题:配方法可以用来解一元二次方程,还可以用它来解决很多问题。
配方法解方程练习题及答案解方程是数学中的基础内容,也是数学中的重要部分之一。
配方法解方程是一种常用的解方程的方法,它适用于一些特定的方程。
在本文中,我们将介绍一些配方法解方程的练习题,并提供答案以帮助大家巩固和加深理解。
一、配方法解一元二次方程练习题1. 解方程:x^2 - 5x + 6 = 0解答:首先,我们观察方程的系数,发现a=1,b=-5,c=6。
根据配方法解方程的步骤:Step 1: 计算b^2 - 4ac= (-5)^2 - 4(1)(6)= 25 - 24= 1Step 2: 如果b^2 - 4ac > 0,则方程有两个不相等的实数解。
计算并求解。
计算:x_1 = (-b + √(b^2 - 4ac)) / (2a)= (-(-5) + √(1)) / (2(1))= (5 + 1) / 2= 3计算:x_2 = (-b - √(b^2 - 4ac)) / (2a)= (-(-5) - √(1)) / (2(1))= (5 - 1) / 2= 2因此,方程x^2 - 5x + 6 = 0的实数解为x = 3和x = 2。
2. 解方程:2x^2 + 5x + 2 = 0解答:观察方程的系数,发现a=2,b=5,c=2。
根据配方法解方程的步骤:Step 1: 计算b^2 - 4ac= (5)^2 - 4(2)(2)= 25 - 16= 9Step 2: 如果b^2 - 4ac > 0,则方程有两个不相等的实数解。
计算并求解。
计算:x_1 = (-b + √(b^2 - 4ac)) / (2a)= (-(5) + √(9)) / (2(2))= (-5 + 3) / 4= -1/2计算:x_2 = (-b - √(b^2 - 4ac)) / (2a)= (-(5) - √(9)) / (2(2))= (-5 - 3) / 4= -2因此,方程2x^2 + 5x + 2 = 0的实数解为x = -1/2和x = -2。
配方法计算专题配方法可是数学里超有趣的一个小技能呢!那啥是配方法呢?简单来说,就是把一个式子或者一个等式,通过加上或者减去一些数,让它变成一个完全平方式。
就像变魔术一样哦!比如说对于二次函数\(y = ax^{2}+bx + c\)(\(a\neq0\)),我们就可以用配方法把它变成\(y=a(x + h)^{2}+k\)的形式。
具体咋做呢?1. 先提出二次项系数\(a\)。
就像\(ax^{2}+bx + c=a(x^{2}+\frac{b}{a}x)+c\)。
2. 然后在括号里加上和减去一次项系数一半的平方。
\(x^{2}+\frac{b}{a}x\),一次项系数一半就是\(\frac{b}{2a}\),那它的平方就是\((\frac{b}{2a})^{2}\),式子就变成\(a(x^{2}+\frac{b}{a}x + (\frac{b}{2a})^{2}-(\frac{b}{2a})^{2})+c\)。
3. 把前三项写成完全平方式\(a((x + \frac{b}{2a})^{2}-(\frac{b}{2a})^{2})+c\),然后再化简一下就好啦。
再举个简单的例子吧,比如\(x^{2}+6x + 5 = 0\)。
1. 先看\(x^{2}+6x\),一次项系数\(6\),一半是\(3\),它的平方是\(9\)。
2. 就在式子上加上和减去\(9\),变成\(x^{2}+6x+9 - 9+5 = 0\)。
3. 前三项写成\((x + 3)^{2}\),式子就成了\((x + 3)^{2}-4 = 0\),这样就很容易求解\(x\)啦。
下面来做几道练习题吧,每题20分哦。
1. 用配方法解方程\(x^{2}-4x - 5 = 0\)。
•首先把\(x^{2}-4x\)拿出来,一次项系数\(-4\),一半是\(-2\),平方是\(4\)。
•式子变成\(x^{2}-4x+4 - 4 - 5 = 0\)。
初三配方法例题20道题目一某班有35名学生,其中男生和女生的人数比为4:5,那么男生和女生各有多少人?解析:设男生人数为4x,女生人数为5x。
根据题目可得:4x + 5x = 35 解得:x = 7 所以男生人数为4x = 4 * 7 = 28人,女生人数为5x = 5 * 7 = 35人。
题目二某校举行篮球比赛,男生和女生共有60人参加比赛,男生人数比女生人数多8人,那么男生和女生各有多少人参加比赛?解析:设女生人数为x,男生人数为x + 8。
根据题目可得:x + (x + 8) = 60 解得:2x + 8 = 60 解得:2x = 52 解得:x = 26 所以女生人数为26人,男生人数为26 + 8 = 34人。
题目三某班共有40人,男生和女生的人数比为2:3,那么男生和女生各有多少人?解析:设男生人数为2x,女生人数为3x。
根据题目可得:2x + 3x = 40 解得:5x = 40 解得:x = 8 所以男生人数为2x = 2 * 8 = 16人,女生人数为3x = 3 * 8 = 24人。
题目四一群人分成4组,每组人数相等,共有36人,那么每组有多少人?解析:设每组人数为x。
根据题目可得:4x = 36 解得:x = 9 所以每组有9人。
题目五一群人分成3组,每组人数相等,共有30人,那么每组有多少人?解析:设每组人数为x。
根据题目可得:3x = 30 解得:x = 10 所以每组有10人。
题目六一群人分成5组,每组人数相等,共有40人,那么每组有多少人?解析:设每组人数为x。
根据题目可得:5x = 40 解得:x = 8 所以每组有8人。
题目七某班共有48人,男生和女生的人数比为2:3,那么男生和女生各有多少人?解析:设男生人数为2x,女生人数为3x。
根据题目可得:2x + 3x = 48 解得:5x = 48 解得:x = 9.6 由于人数必须为整数,所以x不能为小数。
因此不能找到满足题目条件的解。
配方法及其应用(题目)配方法及其应用一、配方法配方法是恒等变形的重要手段,也是求最大最小值的常用方法,在数学中有广泛的应用。
它是对数学式子进行一种定向变形的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时需要使用配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
二、基本配方配方法使用的最基本的配方依据是二项完全平方公式(a+b)²=a²+2ab+b²。
将这个公式灵活运用,可得到各种基本配方形式,如:a²+b²=(a+b)²-2ab=(a-b)²+2ab;a+ab+b=(a+b)-ab=(a-b)+3ab=(a+3b)/2+(b+3a)/2;a²+b²+c²+ab+bc+ca=[(a+b)²+(b+c)²+(c+a)²]。
三、应用实例1.求字母的值已知a,b满足a+2b-2ab-2b+1=0,求a+2b的值。
分析:可将含a,b的方程化为两个非负数和为0的形式,从而求出两个未知数的值。
解:a+2b-2ab-2b+1=0,整理得到(a-b)+(b-1)=0.因为(a-b)≥0,(b-1)≥0,所以a-b=0,b-1=0.解得a=1,b=1,因此a+2b=3.变式练:1.已知x²y²+x²+4xy+13=6x,求x和y的值。
解:将方程变形为(x²+4x+4)(y²+1)=25,整理得到(x+2)²(y²+1)=25.因为x,y为实数,所以(x+2)²和(y²+1)都是非负数,所以(x+2)²=1或25,(y²+1)=1或25.当(x+2)²=1时,解得x=-3或-1;当(x+2)²=25时,解得x=-7或3.将x的四个解代入原方程,可得y的四个解为-3,-1,1/2,3/2.因此,方程的解为(-3,-3),(-1,-1),(3/2,-1/2),(1/2,3/2)。
初中数学竞赛专题[配方法]一、内容提要1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2土2ab+b2写成完全平方式(a土b) 2.有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a +b配上2ab, ②由 2 ab 配上a +b ,③由a2土2ab配上b2.2. 运用配方法解题,初中阶段主要有:①用完全平方式来因式分解例如:把x4+4因式分解.2 2 2 2 2母乱=x +4 + 4x — 4x =(x +2) — 4x = ...........这是由a2+b2配上2ab.②二次根式化简常用公式:福|a ,这就需要把被开方数写成完全平方式.例如:化简、一5一2 6.我们把5-2*写成2 - 2逐+ 3=(克V - ^ 2^3 + (V3)2=(V2 —V3 ).这是由2 ab配上a2+b2.③求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即a >0, .,•当a=0时, a2的值为0是最小值.例如:求代数式a2+2a — 2的最值... a2+2a— 2= a2+2a+1 - 3=(a+1) 2- 3当a=— 1时,a +2a— 2有最小值—3.这是由a2土2ab配上b2④有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程x2+y2+2x-4y+5=0的解x, y.解:方程x2+y2+2x-4y+1 + 4= 0.配方的可化为(x+1) 2+(y - 2) 2=0.要使等式成立,必须且只需x 1 0y 2 0x 1 y2解得此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.二、例题2 2 2 2例 1.因式分解:a b —a +4ab— b +1.解:a b — a +4ab — b +1 = a b +2ab+1+( — a +2ab — b ) (折项,分组)=(ab+1 ) 2 - (a - b):(配方)= (ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)本题的关键是用折项,分组,树立配方的思想^例2.化简下列二次根式:①J7 5 ;②*2焰;③了10时3 2豆. 解:化简的关键是把被开方数配方①(7 4>/3 = J4 2 2/3 3 = J(2 V3)2=2 < 3 = 2 + 43.②户=居=疗=\吁<2(73 1)=无V2 2 . 2③\;10 4^3 2龙=寸10 4》(。
配方法解方程练习题300道1. 通过配方法解下列方程:(a) $x^2-3x+2=0$(b) $2x^2+5x-3=0$(c) $3x^2+7x+2=0$(d) $4x^2-6x+2=0$(e) $5x^2-4x-1=0$解答:(a) $x^2-3x+2=0$可以通过配方法进行求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$-3$,积等于$2$。
显然,$-2$和$-1$满足这个条件。
因此,我们可以将方程改写为$(x-2)(x-1)=0$,从而得到$x=2$和$x=1$作为方程的解。
(b) $2x^2+5x-3=0$同样可以通过配方法进行求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$5$,积等于$-6$。
可以得到,$6$和$-1$满足这个条件。
因此,将方程改写为$(2x-1)(x+3)=0$,可得到$x=\frac{1}{2}$和$x=-3$作为方程的解。
(c) $3x^2+7x+2=0$可以进行配方法求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$7$,积等于$6$。
可以得到,$6$和$1$满足这个条件。
将方程改写为$(3x+1)(x+2)=0$,可得到$x=-\frac{1}{3}$和$x=-2$作为方程的解。
(d) $4x^2-6x+2=0$可以通过配方法求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$-6$,积等于$8$。
可以得到,$-4$和$-2$满足这个条件。
将方程改写为$(2x-1)(2x-2)=0$,可得到$x=\frac{1}{2}$和$x=1$作为方程的解。
(e) $5x^2-4x-1=0$同样可以进行配方法求解。
我们需要找到两个数$q$和$p$,使得它们的和等于$-4$,积等于$-5$。
很明显,$1$和$-5$满足这个条件。
将方程改写为$(5x+1)(x-1)=0$,我们可以得到$x=-\frac{1}{5}$和$x=1$作为方程的解。
标题:初中数学拔高题:配方法解一元二次方程一、引言在初中数学学习中,解一元二次方程是一个重要的内容,而用配方法解一元二次方程更是一个拔高的难题。
本文将以初中数学拔高题:配方法解一元二次方程为主题,深入探讨配方法的原理、应用及解题技巧,帮助读者更全面地理解和掌握这一知识点。
二、配方法的原理和应用1. 配方法的原理在初中数学中,当一元二次方程的普通解法(如公式法、因式分解法)难以进行时,可以尝试使用配方法。
配方法的原理是利用完全平方公式,将一元二次方程转化为一个完全平方的形式,从而更容易求解未知数的值。
2. 配方法的应用配方法在实际应用中具有重要意义。
比如在物理、工程等领域,经常会遇到需要解一元二次方程的情况,而有些问题无法直接运用公式法或因式分解法求解,这时就需要用到配方法。
深入理解配方法对解决实际问题具有重要意义。
三、配方法解一元二次方程的拔高题以学习初中数学的同学为例,我们可以通过一个拔高题来深入探讨配方法的应用。
比如以下的一元二次方程:\[x^2 + 6x + 9 = 0\]这个方程看似普通,但是采用配方法后会发现并不容易求解。
我们可以通过以下步骤来解决这个拔高题:1. 对方程两边同时减去9,化为\[x^2 + 6x = -9\]2. 通过配方法转化为完全平方的形式:\[x^2 + 6x + 9 = (x+3)^2\]3. 原方程变为:\[(x+3)^2 = 0\]4. 进一步得出:\[x+3 = 0\]\[x = -3\]通过以上步骤,我们成功地用配方法解决了这个拔高题,展现了配方法在解决一元二次方程中的重要作用。
四、解题技巧和个人观点在使用配方法解一元二次方程时,我们需要注意一些解题技巧。
要灵活运用完全平方公式,找出方程中的完全平方项;要注意方程中各项之间的关系,确定变形的方向。
多做练习是掌握配方法的关键。
在个人看来,配方法是解一元二次方程中的一种高级解法,能帮助我们更深入地理解方程的性质和求解方法。