平行线经典四大模型典型例题及练习
- 格式:doc
- 大小:203.50 KB
- 文档页数:10
平行线中的四大基本模型重难点题型专训(4大题型+20道拓展培优)【题型目录】题型一平行线基本模型之M模型题型二平行线四大模型之铅笔模型题型三平行线四大模型之“鸡翅”模型题型四平行线四大模型之“骨折”模型【经典例题一平行基本模型之M模型】【结论1】若AB∥CD,则∠B0C=∠B+∠C【结论2】若∠BOC=∠B+∠C,则AB∥CD.【结论3】如图所示,AB∥EF,则∠B+∠D=∠C十∠E朝向左边的角的和=朝向右边的角的和结论3的模型也称为锯齿模型;锯齿模型的变换解题思路拆分成猪蹄模型和内错角拆分成2个猪蹄模型【例1】(2023春·山东济宁·七年级统考阶段练习)如图所示,如果AB ∥ CD ,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=180°B.∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α-∠β-∠γ=180°[【答案】C【分析】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β-∠γ=180°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.【变式训练】 1.(2023上·黑龙江哈尔滨·七年级校考期中)已知:直线AB 与直线CD 内部有一个点P ,连接BP .(1)如图1,当点E 在直线CD 上,连接PE ,若B PEC P ∠+∠=∠,求证:AB CD ;(2)如图2,当点E 在直线AB 与直线CD 的内部,点H 在直线CD 上,连接EH ,若ABP PEH P EHD ∠+∠=∠+∠,求证:AB CD ;(3)如图3,在(2)的条件下,BG 、EF 分别是ABP ∠、PEH ∠的角平分线,BG 和EF 相交于点G ,EF 和直线AB 相交于点F ,当BP PE ⊥时,若10BFG EHD ∠=∠+︒,36BGE ∠=︒,求EHD ∠的度数.【答案】(1)证明见解析;(2)证明见解析;(3)18︒.【分析】(1)过点P 作PF AB ∥,推出PEC EPF ∠=∠,进而得PF CD ∥,根据平行公理的推论即可得证; (2)分别过点P 和点E 作PF AB ∥,EM CD ,推出PEM FPE ∠=∠,进而得PF EM ∥,根据平行公理的推论即可得证;(3)过点E 作EN AB ∥,同(1)(2)理证明FEH FEN NEH BFE EHD ∠=∠+∠=∠+∠,设EHD α∠=,PBG β∠=,PEG γ∠=,则10BFG α∠=+︒,结合角平分线得2290βγα+=︒+,用含α的式子代替β,γ,代入2290βγα+=︒+即可求解.【详解】(1)证明:如图,过点P 作PF AB ∥,∴B BPF Ð=Ð,∵B PEC BPE BPF EPF ∠+∠=∠=∠+∠,∴PEC EPF ∠=∠,∴PF CD ∥,∴AB CD ∥;(2)证明:如图,分别过点P 和点E 作PF AB ∥,EM CD ,∴ABP BPF ∠=∠,MEH EHD ∠=∠,∵ABP PEH P EHD ∠+∠=∠+∠, 即ABP PEM MEH BPF FPE EHD ∠+∠+∠=∠+∠+∠,∴PEM FPE ∠=∠,∴PF EM ∥,∴EM AB ∥,∴AB CD ∥;(3)如图,过点E 作EN AB ∥,由 (2) 得AB CD ∥,∴EN CD ∥,BFE FEN ∠=∠,NEH EHD ∠=∠,∴FEH FEN NEH BFE EHD ∠=∠+∠=∠+∠,设EHD α∠=,PBG β∠=,PEG γ∠=,则10BFG α∠=+︒,∵ BG 、EF 分别是ABP ∠、PEH ∠的角平分线,∴2ABP β∠=,2PEH γ∠=∵BP PE ⊥,∴90P ∠=︒,由 (2) 得ABP PEH P EHD ∠+∠=∠+∠,∴2290βγα+=︒+,∵FEH FEN NEH BFE EHD ∠=∠+∠=∠+∠,∴10210γααα=+︒+=+︒,∵36BGE ∠=︒,()180FGB BFG FBG ∠=︒−∠+∠,180FGB BGE ∠=︒−∠,∴36BFG FBG BGE ∠+∠=∠=︒,∴1036αβ+︒+=︒,∴26βα=︒−∴()()226221090ααα︒−++︒=︒+,∴18α=︒,即EHD ∠的度数为18︒.【点睛】本题考查平行线的判定与性质,角平分线的定义,三角形的内角和,平角定义等知识,添加辅助线,灵活运用平行公理的推论是解题的关键. 2.(2021下·广东河源·七年级河源市第二中学校考期中)已知直线12l l ∥, A 是l1上的一点,B 是l2上的一点,直线l3和直线l1,l2交于C 和D ,直线CD 上有一点P .(1)如果P 点在C ,D 之间运动时,问PAC ∠,APB ∠,PBD ∠有怎样的数量关系?请说明理由.(2)若点P 在C ,D 两点的外侧运动时(P 点与C ,D 不重合),试探索PAC ∠,APB ∠,PBD ∠之间的关系又是如何?(请直接写出答案,不需要证明)【答案】(1)PAC PBD APB ∠+∠=∠(2)当点P 在直线1l 上方时,∠−∠=∠PBD PAC APB ;当点P 在直线2l 下方时,∠−∠=∠PAC PBD APB .【分析】(1)过点P 作1PE l ∥,由“平行于同一条直线的两直线平行”可得出12PE l l ∥∥,再由“两直线平行,内错角相等”得出PAC APE ∠=∠、PBD BPE ∠=∠,再根据角与角的关系即可得出结论;(2)按点P 的两种情况分类讨论:①当点P 在直线1l 上方时;②当点P 在直线2l 下方时,同理(1)可得PAC APE ∠=∠、PBD BPE ∠=∠,再根据角与角的关系即可得出结论.【详解】(1)解:PAC PBD APB ∠+∠=∠.过点P 作1PE l ∥,如图1所示.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB APE BPE ∠=∠+∠,PAC PBD APB ∴∠+∠=∠.(2)解:结论:当点P 在直线1l 上方时,∠−∠=∠PBD PAC APB ;当点P 在直线2l 下方时,∠−∠=∠PAC PBD APB .①当点P 在直线1l 上方时,如图2所示.过点P 作1PE l ∥.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB BPE APE ∠=∠−∠,PBD PAC APB ∴∠−∠=∠.②当点P 在直线2l 下方时,如图3所示.过点P 作1PE l ∥.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB APE BPE ∠=∠−∠,PAC PBD APB ∴∠−∠=∠.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是根据“两直线平行,内错角相等”找到相等的角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.3.(2022下·广东东莞·七年级东莞市光明中学校考期中)阅读下面内容,并解答问题.已知:如图1, AB CD ∥,直线EF 分别交AB ,CD 于点E ,F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG ⊥;(2)填空,并从下列①、②两题中任选一题说明理由.我选择 题.①在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,则EMF ∠的度数为 . ②如图3,AB CD ∥,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,则EOF ∠与EPF ∠满足的数量关系为 .【答案】(1)见解析(2)①45︒;②结论:2EOF EPF ∠=∠【分析】(1)利用平行线的性质解决问题即可;(2)①利用基本结论EMF BEM MFD ∠=∠+∠求解即可;②利用基本结论EOF BEO DFO ∠=∠+∠,EPF BEP DFP ∠=∠+∠,求解即可.【详解】(1)证明:如图,过G 作GH AB ∥,∥AB CD ,AB GH CD ∴∥∥,BEG EGH DFG FGH ∠∠∠∠∴==,,//AB CD ,180BEF DFE ∴∠+∠=︒, EG 平分BEF ∠,FG 平分DFE ∠,12GEB BEF ∴∠=∠,12GFD DFE ∠=∠,111()90222GEB GFD BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+∠=︒, 90EGF GEB GFD ∴∠=∠+∠=︒,EG FG ∴⊥;(2)解:①如图2中,由题意,90BEG DFG ∠+∠=︒, EM 平分BEG ∠,MF 平分DFG ∠,1()452BEM MFD BEG DFG ∴∠+∠=∠+∠=︒,45EMF BEM MFD ∴∠=∠+∠=︒,故答案为:45︒;②结论:2EOF EPF ∠=∠.理由:如图3中,由题意,EOF BEO DFO ∠=∠+∠,EPF BEP DFP ∠=∠+∠, PE 平分BEO ∠,PF 平分DFO ∠,2BEO BEP ∴∠=∠,2DFO DFP ∠=∠,2EOF EPF ∴∠=∠,故答案为:2EOF EPF ∠=∠.【点睛】本题考查平行线的性质和判定,角平分线的定义,垂直的定义,解题的关键是熟练掌握相关的性质. 4.(2020下·北京西城·七年级北京师大附中校考阶段练习)请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型“猪蹄模型”.即已知:如图1,AB CD ∥,E 为AB 、CD 之间一点,连接AE ,CE 得到AEC ∠.求证:AEC A C ∠=∠+∠小明笔记上写出的证明过程如下:证明:过点E 作EF AB ∥∵1A ∠=∠∵AB CD ∥,EF AB ∥∴EF CD ∥∴2C ∠=∠∴12AEC ∠=∠+∠∴AEC A C ∠=∠+∠请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若AB CD ∥,60E ∠=o ,求B C F ∠+∠+∠;(2)如图,AB CD ∥, BE 平分ABG ∠, CF 平分DCG ∠,27G H ∠=∠+,求H ∠.【答案】(1)240(2)51【分析】(1)作EM AB ∥,FN CD ∥,如图,根据平行线的性质得EM AB FN CD ∥∥∥,所以1B ∠=∠,23∠∠=,4180C ∠+∠=,然后利用等量代换计算240B F C ∠+∠+∠=;(2)分别过G 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABG ∠和DCG ∠分别表示出H ∠和G ∠,从而可找到H ∠和G ∠的关系,结合条件可求得51H ∠=.【详解】(1)作EM AB ∥,FN CD ∥,如图,且AB CD ∥∴EM AB FN CD ∥∥∥∴1B ∠=∠,23∠∠=,4180C ∠+∠=∴1344180B CFE C C BEF C BEF ∠+∠+∠=∠+∠+∠+∠=∠+∠+∠=∠+,∵60BEF ∠=,∴60180240B CFE C ∠+∠+∠=+=;(2)如图,分别过G 、H 作AB 的平行线MN 和RS ,∵BE 平分ABG ∠,CF 平分DCG ∠,∴12ABE ABG ∠=∠,12SHC DCF DCG ∠=∠=∠,∵AB CD ∥∴AB CD RS MN ∥∥∥ ∴12RHB ABE ABG ∠=∠=∠,12SHC DCF DCG ∠=∠=∠,∴180NGB ABG MGC DCG ∠+∠=∠+∠=, ∴()11801802BHC RHB SHC ABG DCG ∠=−∠−∠=−∠+∠, ()()180180180180180BGC NGB MGC ABG DCG ABG DCG ∠=−∠−∠=−−∠−−∠=∠+∠−∴36021801802BGC BHC BHC ∠=−∠−=−∠,∵27BGC BHC ∠=∠+,∴180227BHC BHC −∠=∠+,∴51BHC ∠=.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.【经典例题二 平行基本模型之铅笔模型】【结论1】如图所示,AB ∥CD ,则∠B+∠BOC+∠C=360°【结论2】如图所示,∠B+∠BOC+∠C=360°,则AB ∥CD.变异的铅笔头:拐点数n,∠A+...+∠C=180°×(n+1)拐点数:1 拐点数:2 拐点数:n 【例2】(2023下·山东德州·七年级统考期中)如图,AB DE ∥,则下列说法中一定正确的是( )A .123∠=∠+∠B .123180∠+∠−∠=︒C .123270∠+∠+∠=︒D .12390∠−∠+∠=︒【答案】B 【分析】此题要作辅助线,过点C 作CM AB ∥,则根据平行线的传递性,得CM DE ∥.先利用AB CM ∥,可得1180BCM ∠+∠=︒,即1801BCM ∠=︒−∠,再利用CM DE ∥,可得3DCM ∠=∠,而23BCM ∠−∠=∠,整理可得:123180∠+∠−∠=︒.【详解】解:过点C 作CM AB ∥,AB DE ,CM DE ∴∥,1180BCM ∴∠+∠=︒,3MCD ∠=∠,又BCM BCD MCD ∠=∠−∠,180123∴︒−∠=∠−∠,123180∴∠+∠−∠=︒.故选:B .【点睛】注意此类题要作的辅助线:构造平行线.根据平行线的性质即可找到三个角之间的关系.【变式训练】 【变式1】(2023下·甘肃白银·七年级校考期中)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是手动变速箱托架工作时某一时刻的示意图,已知AB CD ,∥CG EF ,150BAG ∠=︒,80AGC ∠=︒,则DEF ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】C 【分析】过点F 作FM CD ∥,则AB CD FM ∥∥,再根据平行线的性质可以求出MFA ∠、EFA Ð,进而可求出EFM ∠,再根据平行线的性质即可求得DEF ∠.【详解】解:如图,过点F 作FM CD ∥,∥AB CD ,AB CD FM ∴∥∥,180DEF EFM ∴∠+∠=︒,180MFA BAG ∠+∠=︒,180********MFA BAG ∴∠=︒−∠=︒−︒=︒.CG EF ∥,80EFA AGC ∴∠=∠=︒.803050EFM EFA MFA ∴∠=∠−∠=︒−︒=︒.180********DEF EFM ∴∠=︒−∠=︒−︒=︒.故选:C .【点睛】本题考查平行线的性质,结合图形利用平行线的性质进行角的转化和计算是解题关键. 【变式2】(2023下·浙江杭州·七年级统考期末)如图,AB CD ∥,射线FE ,FG 分别与AB ,CD 交于点M ,N ,若3F FND EMB ∠=∠=∠,则F ∠的度数是 .【答案】108︒/108度【分析】过点F 作FH AB ∥,可得AB FH CD ∥∥,根据平行线的性质结合已知求出23HFN EFN ∠=∠,可得21803EFN EFN ∠+∠=︒,即可求出EFN ∠的度数.【详解】解:如图,过点F 作FH AB ∥,∵AB CD ∥,∴AB FH CD ∥∥,∴EMB EFH ∠=∠,180HFN FND ∠+∠=︒,∵3EFN FND EMB ∠=∠=∠,∴13EFH EFN ∠=∠,∴23HFN EFN ∠=∠, ∴21803EFN EFN ∠+∠=︒,∴108EFN ∠=︒,故答案为:108︒.【点睛】此题考查了平行线的判定与性质,熟记:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补是解题的关键. 【变式3】(2023下·内蒙古鄂尔多斯·七年级统考期中)探究题 (1)如下图,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒.求APC ∠度数;(2)如下图,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.①当点P 在A ,B 两点之间运动时,CPD ∠,α∠,∠β之间的数量关系为__________②当点P 在A ,B 两点外侧运动时(点P 与点A ,B ,O 三点不重合),请写出CPD ∠,α∠,∠β之间的数量关系,并说明理由.【答案】(1)110APC ∠=︒;(2)①CPD αβ∠=∠+∠;②CPD βα∠=∠−∠或CPD αβ∠=∠−∠.【分析】本题考查了平行线的性质和判定的应用,解决问题的关键是作辅助线构造内错角以及同旁内角.(1)过P 作PE AB ∥,构造同旁内角,利用平行线性质,可得110APC ∠=︒;(2)①过P 作PE AD ∥交CD 于E ,推出AD PE BC ∥∥,根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案;②画出图形(分两种情况:点P 在BA 的延长线上,点P 在AB 的延长线上),根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案.【详解】(1)解:过P 作PE AB ∥,∵AB CD ∥,∴PE AB CD ∥∥,∵130PAB ∠=︒,120PCD ∠=︒.∴18050APE PAB ∠=︒−∠=︒,18060CPE PCD ∠=︒−∠=︒,∴5060110APC ∠=︒+︒=︒;(2)解:①CPD αβ∠=∠+∠:如图3,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;故答案为:CPD αβ∠=∠+∠;②当P 在AB 延长线时,CPD βα∠=∠−∠;理由:如图4,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD CPE DPE βα∠=∠−∠=∠−∠;当P 在BO 之间时,CPD αβ∠=∠−∠.理由:如图5,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠−∠=∠−∠.CPD αβ∴∠=∠−∠综上所述,CPD ∠,α∠,∠β之间的数量关系为CPD βα∠=∠−∠或CPD αβ∠=∠−∠.【经典例题三 平行基本模型之“鸡翅”模型】【例3】(2023秋·全国·八年级专题练习)①如图1,AB ∥CD ,则360A E C ∠+∠+∠=︒;②如图2,AB ∥CD ,则P A C ∠=∠−∠;③如图3,AB ∥CD ,则1E A ∠=∠+∠;④如图4,直线AB ∥CD ∥ EF ,点O 在直线EF 上,则180αβγ∠−∠+∠=︒.以上结论正确的个数是( )A .1个B .2个C .3个D .4个【答案】B【分析】①过点E 作直线EF ∥AB ,由平行线的性质:两直线平行,同旁内角互补,即可得出结论; ②如图2,先根据三角形外角的性质得出∠1=∠C+∠P ,再根据两直线平行,内错角相等即可作出判断; ③如图3,过点E 作直线EF ∥AB ,由平行线的性质可得出∠A+∠AEC ﹣∠1=180°,即得∠AEC =180°+∠1﹣∠A ; ④如图4,根据平行线的性质得出∠α=∠BOF ,∠γ+∠COF =180°,再利用角的关系解答即可.【详解】解:①如图1,过点E 作直线EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠B+∠AEC=360°,故①错误;②如图2,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠P=∠A﹣∠C,故②正确;③如图3,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,即∠AEC=180°+∠1﹣∠A,故③错误;④如图4,∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠COF=∠α﹣∠β,∴∠γ+∠α﹣∠β=180°,故④正确;综上结论正确的个数为2,故选:B.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.【变式训练】 1、(2021下·广东东莞·七年级东莞市光明中学校考期中)(1)如图(1)ABCD ,猜想BPD ∠与B D ∠∠、的关系,说出理由.(2)观察图(2),已知AB CD ,猜想图中的BPD ∠与B D ∠∠、的关系,并说明理由.(3)观察图(3)和(4),已知ABCD ,猜想图中的BPD ∠与B D ∠∠、的关系,不需要说明理由.【答案】(1)360B BPD D ∠+∠+∠=︒,理由见解析;(2)BPD B D ∠=∠+∠,理由见解析;(3)图(3)BPD D B ∠=∠−∠,图(4)BPD B D ∠=∠−∠【分析】(1)过点P 作EF AB ∥,得到180B BPE ∠+∠=︒,由ABCD ,EF AB ∥,得到EF CD ,得到180EPD D ∠+∠=︒,由此得到360B BPD D ∠+∠+∠=︒; (2)过点P 作PE AB ,由PE AB CD ∥∥,得到12B D ∠=∠∠=∠,,从而得到结论12BPD B D ∠=∠+∠=∠+∠;(3)由ABCD ,根据两直线平行,内错角相等与三角形外角的性质,即可求得BPD ∠与B D ∠∠、的关系. 【详解】(1)解:猜想360B BPD D ∠+∠+∠=︒.理由:过点P 作EF AB ∥,∴180B BPE ∠+∠=︒,∵AB CD ,EF AB ∥,∴EF CD ,∴180EPD D ∠+∠=︒,∴360B BPE EPD D ∠+∠+∠+∠=︒,∴360B BPD D ∠+∠+∠=︒;(2)BPD B D ∠=∠+∠.理由:如图,过点P 作PEAB ,∵AB CD ,∴PE AB CD ∥∥,∴12B D ∠=∠∠=∠,,∴12BPD B D ∠=∠+∠=∠+∠;(3)如图(3):BPD D B ∠=∠−∠.理由:∵AB CD ,∴1D ∠=∠,∵1B P ∠=∠+∠,∴D B P ∠=∠+∠,即BPD D B ∠=∠−∠;如图(4):BPD B D ∠=∠−∠.理由:∵AB CD ,∴1B ∠=∠,∵1D P ∠=∠+∠,∴B D P ∠=∠+∠,即BPD B D ∠=∠−∠.【点睛】此题考查了平行线的性质,平行公理的推论,三角形的外角的性质定理,熟记平行线的性质是解题的关键. 2.(2020下·湖北武汉·七年级校考期中)如图,已知:点A 、C 、B 不在同一条直线,AD BE ∥(1)求证:180B C A ∠+∠−∠=︒:(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ∥,直线AQ BC 、交于点P ,QP PB ⊥,直接写出=DAC ACB CBE ∠∠∠:: .【答案】(1)见解析(2)2=180AQB C ∠+∠︒,理由见解析(3)122::【分析】(1)过点C 作CF AD ∥,则CF BE ∥,根据平行线的性质可得出ACF A ∠=∠、180BCF B ∠=︒−∠,据此可得;(2)过点Q 作QM AD ∥,则QM BE ∥,根据平行线的性质、角平分线的定义可得出1()2AQB CBE CAD ∠=∠−∠,结合(1)的结论可得出2180AQB C ∠+∠=︒;(3)由(2)的结论可得出12CAD CBE ∠=∠①,由QP PB ⊥可得出180CAD CBE ∠+∠=︒②,联立①②可求出CAD CBE ∠∠、的度数,再结合( 1)的结论可得出ACB ∠的度数,将其代入DAC ACB CBE ∠∠∠::中可求出结论.【详解】(1)在图①中,过点C 作CF AD ∥,则CF BE ∥.∵CF AD BE ∥∥,∴180ACF A BCF B ∠=∠∠+∠=︒,,∴180180ACB B A ACF BCF B A A A ∠+∠−∠=∠+∠+∠−∠=∠+︒−∠=︒.(2)在图2中,过点Q 作QM AD ∥,则QM BE ∥.∵QM AD QM BE ∥,∥,∴AQM NAD BQM EBQ ∠=∠∠=∠,.∵AQ 平分CAD ∠,BQ 平分CBE ∠, ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠, ∴1()2AQB BQM AQM CBE CAD ∠=∠−∠=∠−∠. ∵180()1802C CBE CAD AQB ︒︒∠=−∠−∠=−∠,∴2180AQB C ∠+∠=︒.(3)∵AC QB ∥, ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠, ∴11801802ACB ACP CBE ∠=︒−∠=︒−∠.∵2180AQB ACB ∠+∠=︒, ∴1.2CAD CBE ∠=∠.又∵QP PB ⊥,∴90CAP ACP ∠+∠=︒,即180CAD CBE ∠+∠=︒,∴60120CAD CBE ∠=︒∠=︒,,∴180120()ACB CBE CAD ∠=︒−∠−∠=︒,∴60120120122DAC ACB CBE ∠∠∠=︒︒︒=::::::, 故答案为:122::. 【点睛】本题主要考查平行线的的判定与性质,解题的关键是熟练掌握平行线的性质、添加辅助线构建平行线. 3.(2021上·八年级课时练习)(1)已知:如图(a ),直线DE AB ∥.求证:ABC CDE BCD ∠+∠=∠; (2)如图(b ),如果点C 在AB 与ED 之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想? 【答案】(1)见解析;(2)当点C 在AB 与ED 之外时,ABC CDE BCD ∠−∠=∠,见解析【分析】(1)由题意首先过点C 作CF ∥AB ,由直线AB ∥ED ,可得AB ∥CF ∥DE ,然后由两直线平行,内错角相等,即可证得∠ABC+∠CDE=∠BCD ;(2)根据题意首先由两直线平行,内错角相等,可得∠ABC=∠BFD ,然后根据三角形外角的性质即可证得∠ABC -∠CDE=∠BCD .【详解】解:(1)证明:过点C 作CF ∥AB ,∵AB ∥ED ,∴AB ∥ED ∥CF ,∴∠BCF=∠ABC ,∠DCF=∠EDC ,∴∠ABC+∠CDE=∠BCD ;(2)结论:∠ABC -∠CDE=∠BCD ,证明:如图:∵AB ∥ED ,∴∠ABC=∠BFD ,在△DFC 中,∠BFD=∠BCD+∠CDE ,∴∠ABC=∠BCD+∠CDE ,∴∠ABC -∠CDE=∠BCD .若点C 在直线AB 与DE 之间,猜想360ABC BCD CDE ︒∠+∠+∠=,∵AB ∥ED ∥CF ,∴180,180,ABC BCF CDE DCF ︒︒∠+∠=∠+∠=∴360ABC BCD CDE ABC BCF DCF CDE ︒∠+∠+∠=∠+∠+∠+∠=.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质是解答本题的关键,注意掌握辅助线的作法.4.(2021下·浙江·七年级期末)已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______;(2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D .①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.【答案】(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF=∠GBF ,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C=∠AOB ,∵AB ⊥BC ,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,//,BG CN∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.【经典例题四平行基本模型之“骨折”模型】【例4】(2023·全国·九年级专题练习)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为__________.【答案】57°【分析】根据三角形内角和180°以及平行线的性质:1、如果两直线平行,那么它们的同位角相等;2、如果两直线平行,那么它们的同旁内角互补;3、如果两直线平行,那么它们的内错角相等,据此计算即可.【详解】解:设AE、CD交于点F,∵∠E =37°,∠C = 20°,∴∠CFE=180°-37°-20°=123°,∴∠AFD=123°,∵AB ∥CD ,∴∠AFD+∠EAB=180°,∴∠EAB=180°-123°=57°,故答案为:57°.【点睛】本题主要考查三角形内角和定理以及平行线的性质,熟知平行的性质是解题的关键.【变式训练】【变式1】(2023春·湖北黄冈·七年级校考期中)如图,已知//AB DE ,∠ABC =80°,∠CDE =140°,则∠BCD =_____.【答案】40︒【分析】延长ED 交BC 于M ,根据两直线平行,内错角相等证明∠BMD=∠ABC ,再求解CMD ∠,再利用三角形的外角的性质可得答案.【详解】解:延长ED 交BC 于M ,∵//AB DE ,∴∠BMD=∠ABC=80°,∴180100CMD BMD ∠=︒−∠=︒;又∵∠CDE=∠CMD+∠C ,∴14010040BCD CDE CMD ∠=∠−∠=︒−︒=︒.故答案是:40°【点睛】本题考查了平行线的性质.三角形的外角的性质,邻补角的定义,掌握以上知识是解题的关键.【变式2】(2023春·江苏盐城·七年级景山中学校考阶段练习)如图,若//AB CD ,则∠1+∠3-∠2的度数为______【答案】180°【分析】延长EA 交CD 于点F ,则有∠2+∠EFC=∠3,然后根据//AB CD 可得∠1=∠EFD ,最后根据领补角及等量代换可求解.【详解】解:延长EA 交CD 于点F ,如图所示://AB CD ,∴∠1=∠EFD ,∠2+∠EFC=∠3,∴32EFC ∠=∠−∠,+180EFC EFD ∠∠=︒,∴132180∠+∠−∠=︒;故答案为180°.【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.【变式3】(2023春·全国·七年级专题练习)(1)如图,AB //CD ,CF 平分∠DCE ,若∠DCF =30°,∠E =20°,求∠ABE 的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.【答案】(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【分析】(1)过E作EM∥AB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EM∥AB,过F作FN∥AB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PL∥AB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过E作EM∥AB,∵AB∥CD,∴CD∥EM∥AB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EM∥AB,过F作FN∥AB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵AB∥CD,∴EM∥AB∥CD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°,∴x=10°,∴∠ABE=3x=30°;(3)过P作PL∥AB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQ∥GN,∴∠PGN=∠GPQ=x,∵AB∥CD,∴PL∥AB∥CD,∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.【拓展培优】1.(2023下·安徽·九年级专题练习)如图,已知:AB EF∥.在证明该结论∥,B E∠=∠,求证:BC DE时,需添加辅助线,则以下关于辅助线的作法不正确的是()A .延长BC 交FE 的延长线于点GB .连接BEC .分别作BCD ∠,CDE ∠的平分线CG ,DHD .过点C 作CG AB ∥(点G 在点C 左侧),过点D 作DH EF ∥(点H 在点D 左侧)【答案】C【分析】根据平行线的性质与判定逐一判断即可.【详解】解:A 、如图,∵AB EF ∥,∴B G ∠=∠,∵B DEF ∠=∠,∴G DEF =∠∠,∴BC DE ∥,故此选项不符合题意;B 、如图,∵AB EF ∥,∴ABE FEB ∠=∠,∵ABC FED ∠=∠,∴CBE DEB ∠=∠,∴BC DE ∥,故此选项不符合题意;C 、如图,由CG 平分BCD ∠,DH 平分CDE ∠,没有条件说明BCD ∠与CDE ∠相等,也没有条件说明CG 与DH 平行,∴此辅助线的作法不能说明BC 与DE 平行,故此选项符合题意;D 、如图,延长BC 交DH 于点M ,∵AB EF ∥,CG AB ∥,DH EF ∥,∴AB CG DH EF ∥∥∥,∴B BMD ∠=∠,MDE E ∠=∠,∵B E ∠=∠,∴BMD MDE ∠=∠,∴BC DE ∥,故此选项不符合题意.故选:C .【点睛】本题考查平行线的判定和性质,角平分线的定义,平行公理的推论.掌握平行线的判定和性质是解题的关键. 2.(2023下·山东菏泽·七年级统考期末)图1是男子竞技体操项目双杠的静止动作,图2是其俯视示意图,已知a b ∥,若AB 与BC 的夹角为100︒,150∠=︒,则2∠的度数为( )A .100︒B .120︒C .125︒D .130︒【答案】D 【分析】过点B 作BD a ∥,则BD b ∥,利用平行线的性质,进行求解即可.【详解】解:如图,过点B 作BD a ∥,∵a b ,∴BD b ∥,∴150ABD ∠=∠=︒,2180CBD ∠+∠=︒,∵100ABC ∠=︒,∴1005050CBD ∠=︒−︒=︒,∴218050130︒︒=∠=−︒.故选:D .【点睛】本题考查平行线的判定和性质.解题的关键是构造平行线.3.(2021下·湖北武汉·七年级武汉外国语学校(武汉实验外国语学校)校考期中)如图,直线AB CD EF ∥∥,且40B ∠=︒,125C ∠=︒,则(CGB ∠= )A .10︒B .15︒C .20︒D .25︒【答案】B【分析】根据平行线的性质得出40BGF B ∠=∠=︒,180C CGF ∠+∠=︒,求出55CGF ∠=︒,即可得出答案.【详解】解:∵AB CD EF ∥∥,40B ∠=︒,125C ∠=︒,40BGF B ∴∠=∠=︒,18055CGF C ∠=︒−∠=︒,15CGB CGF BGF ∴∠=∠−∠=︒.故选:B .【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力和计算能力. 4.(2023下·甘肃白银·八年级统考期末)如图,ABC 为等边三角形,AP CQ ∥.若20BAP ∠=︒,则1∠=()A .80︒B .40︒C .60︒D .70︒【答案】B【分析】过点B 作BE CQ ,可得AP CQ BE ,用平行线性质求解即可.【详解】解:过点B 作BE CQ ,如图,∵AP CQ ∥,∴AP CQ BE ,∴20BAP ABE ∠=∠=︒,∵ABC 为等边三角形,∴60ABC ∠=︒,∴40CBE ABC ABE ∠∠=−∠=︒,∵BE CQ ,∴140CBE ∠=∠=︒,故选:B .【点睛】本题考查平行线的判定与性质,正确作出辅助线是关键. 5.(2023下·浙江绍兴·七年级统考期末)如图,AB CD ∥,AE 平分BAN ∠,AE 的反向延长线交CDN ∠的平分线于点M ,则M ∠与N ∠的数量关系是( )A .2M N ∠=∠B .3M N ∠=∠C .180M N ∠+∠=︒D .2180M N ∠+∠=︒【答案】D 【分析】先利用角平分线的定义得到12BAE BAN ∠=∠,12CDM CDN ∠=∠,过M 作MF AB ∥,过N 作NH AB ∥,再利用平行线的判定与性质得到12FME BAE BAN ∠=∠=∠,BAN ANH ∠=∠,12FMD CDM CDN ∠=∠=∠,180CDN HND ∠+∠=︒,经过角度之间的运算得到180CDN BAN AND ∠−∠=︒−∠,()11802DMA AND ∠=︒−∠,即2180DMA AND ∠+∠=︒可求解.【详解】解:∵AE 平分BAN ∠,DM 平分CDN ∠,∴12BAE BAN ∠=∠,12CDM CDN ∠=∠,过M 作MF AB ∥,过N 作NH AB ∥,则12FME BAE BAN ∠=∠=∠,BAN ANH ∠=∠,∵AB CD ∥,∴MF CD ∥,NH CD ∥,∴12FMD CDM CDN ∠=∠=∠,180CDN HND ∠+∠=︒, ∴180AND ANH HND BAN CDN ∠=∠+∠=∠+︒−∠,即180CDN BAN AND ∠−∠=︒−∠,又∵DMA FMD FME ∠=∠−∠()12CDN BAN =∠−∠()11802AND =︒−∠,∴2180DMA AND ∠+∠=︒,即2180M N ∠+∠=︒,故选:D .【点睛】本题考查角平分线的定义、平行线的判定与性质、角的运算,添加平行线,利用平行线的性质探究角之间的关系是解答的关键. 6.(2023下·辽宁沈阳·七年级统考期中)如图,AD BC ∥,CAD ∠和CBD ∠的平分线相交于点P .请写出C ∠、D ∠、P ∠的数量关系 .【答案】2P C D ∠=∠+∠【分析】作PG AD ∥,则PG AD BC ∥∥,根据平行线的性质可得APB DAP CBP ∠=∠+∠,结合角平分线定义可得1122APB DAC CBD ∠=∠+,再根据AD BC ∥推出DAC C ∠=∠,D CBD ∠=∠,即可得出2P C D ∠=∠+∠.【详解】解:如图,作PG AD ∥,AD BC ∥,∴PG AD BC ∥∥,PG AD ∥,∴DAP APG ∠=∠,PG BC ∥,∴CBP BPG ∠=∠,∴APB APG BPG DAP CBP ∠=∠+∠=∠+∠,CAD ∠和CBD ∠的平分线相交于点P .∴12DAP DAC ∠=∠,12CBP CBD ∠=∠, ∴1122APB DAC CBD ∠=∠+,∴2APB DAC CBD ∠=∠+∠,AD BC ∥,∴DAC C ∠=∠,D CBD ∠=∠,∴2APB C D ∠=∠+∠,即2P C D ∠=∠+∠.故答案为:2P C D ∠=∠+∠.【点睛】本题考查平行线的判定与性质,角平分线的定义,角的和差关系等,解题的关键是熟练掌握平行线的性质. 7.(2023下·浙江·七年级校联考期中)如图,图1是一盏可折叠台灯,图2为其平面示意图,底座AO OE ⊥点O ,支架AB ,BC 为固定支撑杆,BAO ∠是CBA ∠的两倍,灯体CD 可绕点C 旋转调节,现把灯体CD 从水平位置旋转到CD '位置(如图 2中虚线所示),此时,灯体CD '所在的直线恰好垂直支架AB ,且120BCD DCD '∠−∠=︒,则DCD '∠= .【答案】40︒/40度【分析】延长OA 交CD 于点F ,延长D C '交AB 于G ,可得90AGC AFC ∠=∠=︒,可得DCD GAF '∠=∠,在四边形ABCF 中,利用四边形内角和为360︒列出等式计算即可.【详解】解:延长OA 交CD 于点F ,延长D C '交AB 于G ,如图.CD OE ∥,AO OE ⊥,OA CD ∴⊥,AO OE ⊥Q ,D C AB '⊥,90AGC AFC ∴∠=∠=︒,180GCF GAF ∴∠+∠=︒,180DCD GCF '∠+∠=︒Q ,DCD GAF '∴∠=∠,180180BAO GAF DCD '∴∠=︒−∠=︒−∠,∵BAO ∠是CBA ∠的两倍,()11802CBA DCD '∴∠=︒−∠∵120BCD DCD '∠−∠=︒,120BCD DCD '∴∠=∠+︒,在四边形ABCF 中,360GAF CBA BCD AFC ∠+∠+∠+∠=︒,()1180120903602DCD DCD DCD '∴∠'+︒−∠+∠'+︒+︒=︒,解得40DCD '∠=︒.故答案为:40︒.【点睛】此题考查平行线的性质,四边形的内角和定理,一元一次方程的应用,利用图形性质建立方程求解是解题关键.8.(2023下·湖北·七年级黄石市有色中学校联考期末)如图,直线AB CD ∥,直线EF 与AB ,CD 分别交于点E ,F ,AEF ∠与CFE ∠的角平分线交于点P ,延长FP 交AB 于点G ,过点G 作GQ FG ⊥交直线EF 于点Q ,连接PQ ,点M 是QG 延长线上的一点,且PQM QPM ∠=∠,若PN 平分FPM ∠交CD 于点N ,则NPQ ∠的度数为 .【答案】135︒/135度【分析】根据平行线的性质求出180AEF CFE ∠+∠=︒,根据角平分线定义求出90PEF PFE ∠+∠=︒,求出90EPF ∠=︒,求出GQ EP ∥,根据平行线的性质求出PQM QPE ∠=∠,再求出答案即可.【详解】设PQM QPM x ∠=∠=︒,∵PN 平分MPF ∠,∴MPN FPN ∠=∠,设MPN FPN y ∠=∠=︒,∵AEF ∠与CFE ∠的角平分线交于点P ,∴12PEF AEF ∠=∠,12EFP CFE ∠=∠,∵AB CD ∥,∴180AEF CFE ∠+∠=︒,∴1180902PEF PFE ∠+∠=⨯︒=︒,∴()1801809090EPF PEF PFE ∠=︒−∠+∠=︒−︒=︒,∵GQ PF ⊥,∴90QGP =︒∠,∴QGP EPF ∠=∠,∴GQ EP ∥,∴PQM QPE x ∠=∠=︒,∵360QPE QPM FPN NPM EPF ∠+∠+∠+∠+∠=︒,∴90360x x y y ++++=,∴135x y +=,即135QPM NPM ∠+∠=︒,∴135NPQ QPM NPM ∠=∠+∠=︒.故答案为:135︒.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理等知识点,能综合运用知识点进行推理是解此题的关键. 9.(2023下·四川成都·七年级统考期末)如图,直线AE CF ,ABC ∠ 的平分线BD 交直线CF 于点D ,若2260A BCF ∠=︒∠=︒,,则D ∠的度数为 . 【答案】19︒/19度【分析】过点B 作B G C F ∥,利用平行线的性质求得22,60ABG CBG ∠=︒∠=︒,从而得到82ABC ∠=︒,再运用角平分线的性质得到1412CBD ABC ∠=∠=︒,继而求出19DBG ∠=︒,最后利用平行线的性质得到19D DBG ∠=∠=︒.【详解】过点B 作B G C F ∥,∵B G C F ∥,AE CF ,∴BG CF AE ∥∥∴,A ABG CBG BCF ∠=∠∠=∠,又∵2260A BCF ∠=︒∠=︒,,∴22,60A ABG CBG BCF ∠=∠=︒∠=∠=︒,∴82ABC ABG CBG ∠=∠+∠=︒,又∵BD 是ABC ∠ 的平分线, ∴1412CBD ABC ∠=∠=︒, ∴19DBG CBG CBD ∠=∠−∠=︒,又∵B G C F ∥,∴19D DBG ∠=∠=︒.【点睛】本题考查角平分线的定义,平分线的性质等知识,掌握平行线的性质是解题的关键. 10.(2023下·湖北武汉·七年级统考期末)如图,80AEC ∠=︒,在AEC ∠的两边上分别过点A 和点C 向同方向作射线AB 和CD ,且ABCD ,若EAB ∠和ECD ∠的角平分线所在的直线交于点P (P 与C 不重合),则APC ∠的大小为 . 【答案】40︒【分析】根据题意作图,过点E 作EF AB ∥,过点P 作PQ AB ∥,利用平行线的性质可得80ECD EAB AEC ∠−∠=∠=︒,PCD PAB APC ∠−∠=∠,再结合角平分线即可求得答案.【详解】解:根据题意作图,过点E 作EF AB ∥,过点P 作PQ AB ∥,∵AB CD ,∴AB CD EF PQ ∥∥∥,∵EF AB ∥,EF CD ,∴180EAB AEC CEF ∠+∠+∠=︒,180CEF ECD ∠+∠=︒,∴EAB AEC ECD ∠+∠=∠,即80ECD EAB AEC ∠−∠=∠=︒,∵PQ AB ∥,PQ CD ∥,∴180PAB APC CPQ ∠+∠+∠=︒,180CPQ PCD ∠+∠=︒,∴PAB APC PCD ∠+∠=∠,即PCD PAB APC ∠−∠=∠,又∵点P 为EAB ∠和ECD ∠的角平分线所在的直线的交点, ∴12PAB EAB ∠=∠,12PCD ECD ∠=∠, ∴11140222APC PCD PAB ECD EAB AEC ∠=∠−∠=∠−∠=∠=︒,故答案案为:40︒.【点睛】本题考查平行线的性质,角平分线的定义,掌握平行线的性质是解决问题的关键. 11.(2023下·七年级课时练习)如图,AB ∥CD ,ME 平分∠AMF ,NF 平分∠CNE ,EN ,MF 交于点O . (1)若∠AMF =50°,∠CNE =40°,分别求∠MEN ,∠MFN 的度数;(2)若图中∠MEN +60°=2∠MFN ,求∠AMF 的度数;(3)探究∠MEN ,∠MFN 与∠MON 之间的数量关系.【答案】(1)∠MEN =65°,∠MFN =70°(2)∠AMF =40°(3)32MEN MFN MON ∠+∠=∠,理由见解析【详解】(1)分别过点E ,F 作AB 的平行线,则它们同时也与CD 平行,则有∠MEN =∠AME +∠CNE ,∠MFN =∠AMF +∠CNF .由∠AMF =50°,∠CNE =40°,ME 平分∠AMF ,NF 平分∠CNE ,得∠AME =25°,∠CNF =20°,∴∠MEN =65°,∠MFN =70°.(2)由(1)可知,∠MEN =∠AME +∠CNE ,∠MFN =∠AMF +∠CNF ,则有∠AME +∠CNE +60°=2∠AMF +2∠CNF .又2∠CNF =∠CNE ,2∠AME =∠AMF . ∴3602AMF ∠=︒,故∠AMF =40°.(3)过点O 作AB 的平行线,则它同时也与CD 平行,易证∠MON =∠AMF +∠CNE .∵∠MEN =∠AME +∠CNE ,∠MFN =∠AMF +∠CNF , ∴32MEN MFN ∠+∠=(∠AMF +∠CNE ). ∴32MEN MFN MON ∠+∠=∠. 12.(2023上·浙江·八年级专题练习)已知,如图,AB 与CD 交于点O (1)如图1,若A B ∠∠=,求证:A C B D ∠+∠∠+∠=(2)如图2,若A B ∠≠∠,(1)中的结论是否仍然成立?请判断并证明你的结论(注:不能用三角形内角和定理)(3)如图3,若65B ∠︒=,25C ∠︒=,AP 平分BAC ∠,DP 平分BDC ∠,请你(2)中结论求出P ∠的度数,请直接写出结果P ∠= .【答案】(1)见解析(2)仍然成立,证明见解析(3)45︒【分析】本题考查了平行线的性质、三角形内角和定理的综合运用,掌握三角形内角和180︒是解题的关键.(1)依据平行线的性质,即可得到C D ∠∠=,依据等式基本性质得到A C B D ∠+∠∠+∠=;。
专题01 平行线的四大模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式1-1】(2022秋•古县期末)如图:按虚线剪去长方形纸片的相邻两个角,并使∠1=1 50°,AB⊥BC,则∠2的度数为()A.100°B.110°C.120°D.130°【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100°B.105°C.115°D.125°【变式1-3】(2023秋•北碚区期末)如图,AB∥CD,点E是直线AB,CD之间一点.(1)如图1,求证:∠B+∠D+∠E=360°;(2)如图2,若∠B=120°,∠BED,∠CDE的平分线相交于点F.求∠DFE的度数;(3)如图3,若∠D=α,∠EBF=4∠ABF,∠BEF=4∠DEF.请直接写出∠BFE的度数(用含α的代数式表示).【变式1-4】(2023秋•重庆期末)已知,MN∥PQ,直线AB交MN于点A,交PQ于点B,点C在线段AB上,过C作射线CE、CF分别交直线MN、PQ于点E、F.(1)如图1,当CE⊥CF时,求∠AEC+∠BFC的度数;(2)如图2,若∠MEC和∠PFT的角平分线交于点G,求∠ECF和∠G的数量关系;(3)如图3,在(2)的基础上,当CE⊥CF,且∠ABP=60°,∠ACE=20°时,射线FT绕点F以5°每秒的速度顺时针旋转,设运动时间为t秒,当射线FG与△AEC的一边互相平行时,请直接写出t的值.模型二“猪蹄”模型(模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44°B.34°C.24°D.14°【变式2-2】(2023•大石桥市校级三模)如图,直线a∥b,等边△ABC的顶点C在直线b 上,∠1=28°,则∠2的度数为()A.36°B.24°C.28°D.32°【变式2-3】(2023春•浏阳市期末)(1)感知与探究:如图①,直线AB∥CD,过点E作E F∥AB.请直接写出∠B,∠D,∠BED之间的数量关系:;(2)应用与拓展:如图②,直线AB∥CD.若∠B=23°,∠G=35°,∠D=25°,借助第(1)问中的结论,求∠BEG+∠GFD的度数;(3)方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=85°,则∠D=度.【变式2-4】(2023春•霸州市期中)如图1,AB∥CD,∠P AB=135°,∠PCD=125°,求∠APC度数.小明的思路是:过P作PE∥AB,如图2,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;请说明理由;(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠A DP=∠α,∠BCP=∠β,则∠CPD、∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【变式2-5】(2023春•南漳县期中)如图1,点A是直线HD上一点,C是直线GE上一点,B是直线HD、GE之间的一点.∠HAB+∠BCG=∠ABC.(1)求证:AD∥CE;(2)如图2,作∠BCF=∠BCG,CF与∠BAH的角平分线交于点F,若α+β=50°,求∠B+∠F的度数;(3)如图3,CR平分∠BCG,BN平分∠ABC,BM∥CR,已知∠BAH=40°,试探究∠NBM的值,若不变求其值,若变化说明理由.结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD =80°,求∠CDE的度数.【变式3-1】(2023春•伊通县期末)如图1,线段CD是由线段AB平移得到的.分别连接B D,AC.直线BE⊥AC于点E,延长DC与BE相交于点F.点P是射线FD上的一个动点,点P不与点F、点C、点D重合.连接BP,EP.(1)线段AC,BD的关系是;(2)如图1,当点P在线段FC上运动时,∠DBP,∠CEP,∠BPE之间的数量关系是;(3)如图2,当点P在线段CD上运动时,∠DBP,∠CEP,∠BPE之间的数量关系是否发生变化?若发生变化请写出它们的关系,并证明;若没有发生变化,请说明理由;(4)如图3,当点P在点D上方运动时,请直接写出∠DBP,∠CEP,∠BPE之间的数量关系:.【变式3-2】(2023春•大足区期末)已知直线AB∥CD,E为平面内一点,连接EB、EC.(1)如图1,已知∠B=32°,∠C=120°,求∠BEC的度数;(2)如图2,判断∠ABE、∠BEC、∠DCE之间的数量关系为;(3)如图3,BE⊥CE,BF平分∠ABE,若,求∠BFC的度数.【变式3-3】(2023春•吴兴区期中)已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.1.(2023•五华区校级模拟)如图,点B在△CDE的边EC的延长线上,AB∥CD,若∠B =50°,∠E=30°,则∠D的度数为()A.15°B.20°C.30°D.50°2.(2023•西峡县三模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=30°,∠2=70°,则∠3的度数为()A.120°B.130°C.140°D.150°3.(2023春•西塞山区期中)如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是()A.①②③B.②④C.①②④D.①④4.(2023春•德城区期末)已知M,N分别是长方形纸条ABCD边AB,CD上两点(AM>DN),如图1所示,沿M,N所在直线进行第一次折叠,点A,D的对应点分别为点E,F,EM交CD于点P;如图2所示,继续沿PM进行第二次折叠,点B,C的对应点分别为点G,H,若∠1=∠2,则∠CPM的度数为()A.74°B.72°C.70°D.68°5.(2023•西城区二模)如图,直线AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF 的平分线交CD点G,若∠BEF=116°,则∠EGC的大小是()A.116°B.74°C.64°D.58°6.(2023•佛山二模)如图,把正方形ABCD沿EF折叠,点A的对应点为点A′,点B的对应点为点B′,若∠1=40°,则∠AEF的度数是()A.100°B.110°C.115°D.120°7.(2023秋•长春期末)如图,AB∥CD,点E、F分别在直线AB、CD上,点P是AB、C D之间的一个动点.【感知】如图①,当点P在线段EF左侧时,若∠AEP=50°,∠PFC=70°,求∠EPF 的度数.分析:从图形上看,由于没有一条直线截AB与CD,所以无法直接运用平行线的性质,这时需要构造出“两条直线被第三条直线所截”的基本图形,过点P作PG∥AB,根据两条直线都和第三条直线平行,那么这两条直线也互相平行,可知PG∥CD,进而求出∠EPF的度数.【探究】如图②,当点P在线段EF右侧时,∠AEP、∠EPF、∠PFC之间的数量关系为.8.(2023春•天元区校级期末)如图,AQ∥BP,AB⊥BP,E、C、D分别是线段AQ、AB、BP上的点,且满足EC⊥CD.EF是∠GEC的角平分线与BP交于点F,在EQ上截一点G,连接GF,令GF=FE.(1)如图1,若∠AEC=40°,求∠CDB的度数.(2)如图1,连接GP,若GP∥EF,H是线段FP上的一点(FH<HP),连接GH,使得2∠GHP=3∠AEC,求∠FGH和∠CDB的数量关系.(3)如图2,在(2)的条件下,过点Q作QM⊥GP,垂足为M.N是线段GP上的一点,且满足∠QNM=∠GEF.求∠GQN和∠CEF的数量关系.9.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.10.(2023春•海阳市期末)如图,AM∥BN,∠A=40°,点P是射线AM上一动点(不与点A重合),BC,BD分别平分∠ABP和∠PBN,交射线AM于C,D两点.(1)求∠CBD的度数;(2)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数;(3)当点P运动时,∠APB与∠ADB的度数之比是否随之发生变化?若不变,求出∠A PB与∠ADB的度数之比;若变化,请说明变化规律.11.(2023春•大同期末)综合与探究已知直线AB∥CD,直线EF分别与AB,CD交于点G,H(0°<∠EHD<90°).将一把含30°角的直角三角尺PMN按如图1所示的方式放置,使点N,M分别在直线AB,CD上,且在直线EF的右侧.(1)填空:∠PNB+∠PMD=∠MPN.(填“>”“<”或“=”)(2)若∠MNG的平分线NO交直线CD于点O.①如图2,当NO∥PM∥EF时,求∠EHD的度数;②如图3,若将三角尺PMN沿直线BA向左移动,保持PM∥EF(点N不与点G重合),点N,M分别在直线AB、CD上,请直接写出∠MON和∠EHD之间的数量关系.12.(2023春•安阳期末)【学习新知】射到平面镜上的光线(入射光线)和反射后的光线(反射光线)与平面镜所夹的角相等.如图1,AB是平面镜,若入射光线与水平镜面的夹角为∠1,反射光线与水平镜面的夹角为∠2,则∠1=∠2.(1)【初步应用】生活中我们可以运用“激光”和两块相交的平面镜进行测距.如图2当一束“激光”DO 1射到平面镜AB上,被平面镜AB反射到平面镜BC上,又被平面镜BC反射后得到反射光线O2E,回答下列问题:①当DO1∥EO2∠AO1D=30°(即∠1=30°)时,求∠O1O2E的度数;②当∠B=90°时,任何射到平面镜AB上的光线DO1经过平面镜AB和BC的两次反射后,入射光线与反射光线总是平行的.请你根据所学知识及新知说明理由.(提示:三角形的内角和等于180°)(2)【拓展探究】如图3,有三块平面镜AB,BC,CD,入射光线EO1经过三次反射,得到反射光线O3F 已知∠1=∠6=35°,若要使EO1∥O3F,请直接写出∠B的度数;13.(2023春•宜都市期中)已知,直线AB∥CD,点E、F分别在直线AB、CD上,点P 是直线AB与CD外一点,连接PE、PF.(1)如图1,若∠AEP=45°,∠DFP=105°,求∠EPF的度数;(2)如图2,过点E作∠AEP的角平分线EM交FP的延长线于点M,∠DFP的角平分线FN交EM的反向延长线交于点N,若∠M与3∠N互补,试探索直线EP与直线FN 的位置关系,并说明理由;(3)若点P在直线AB的上方且不在直线EF上,作∠DFP的角平分线FN交∠AEP的角平分线EM所在直线于点N,请直接写出∠EPF与∠ENF的数量关系.14.(2022秋•香坊区期末)已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.(1)如图1,求证:AB∥CD;(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠E DC=∠CDB,求∠GMH的度数.。
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线四大模型1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+∠4=180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补平移3.平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。
4.平移的性质经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
专题03 平行线四大模型(能力提升)1.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE =40°,那么∠BAF的大小为()A.25°B.20°C.15°D.10°【答案】D【解答】解:由题意知:∠CAB=60°,∠C=90°.∵∠CDE=40°,∴∠CED=50°.∵DE∥AF,∴∠F AE=∠CED=50°.∴∠BAF=∠CAB﹣F AE=60°﹣50°=10°.故选:D.2.如图,l1∥l2,将一副直角三角板作如下摆放,图中点A、B、C在同一直线上,∠1=80°,则∠2的度数为()A.100°B.120°C.130°D.150°【答案】C【解答】解:如图,过点A作AD∥l1,∵l1∥l2,∴AD∥l2,∴∠FNA+∠NAD=180°,∵AD∥l1,∴∠EMA+∠MAD=180°,∴∠EMA+∠MAD+∠DAN+∠ANF=180°+180°=360°,∵∠EMA=∠EMC+∠CMA=80°+60°=140°,∠MAD+∠DAN=90°,∴∠FNA=360°﹣140°﹣90°=130°,即∠2=130°,故选:C.3.如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是()A.①②③B.②④C.①②④D.①④【答案】D【解答】解:∵∠FMA=∠FGC∴AB∥CD∴①正确;过点F作FP∥AB,HQ∥AB,∵AB∥CD,∴FP∥AB∥HQ∥CD,设∠NEB=x,∠HGC=y,则∠FEN=2x,∠FGH=2y∴∠EHG=∠EHQ+∠GHQ=∠AEH+∠HGC=∠NEB+∠HGC=x+y,∠EFM=∠BEF﹣∠FME=∠BEF﹣∠AMG=∠BEF﹣(180°﹣∠FGC)=x+2x﹣(180°﹣y﹣y)=3x+3y﹣180°,∴2∠EFM=6x+6y﹣360°,∴∠EHG≠2∠EFM∴②错误;∴∠EHG+∠EFM=x+y+3x+3y﹣180°=4x+4y﹣180°≠90°,∴③错误;∴3∠EHG﹣∠EFM=3(x+y)﹣(3x+3y﹣180°)=180°,∴④正确.综上所述,正确答案为①④.故选:D.4.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β﹣γ=90°C.α+β+γ=180°D.β+γ﹣α=90°【答案】B【解答】解:延长DC交AB于G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:B.5.如图,AB∥EF,∠C=90°,则α、β、y的关系是()A.β+γ﹣α=90°B.α+β+γ=180°C.α+β﹣γ=90°D.β=α+γ【答案】C【解答】解:如图,过点C、D分别作AB的平行线CG、DH,∵AB∥EF,∴AB∥CG∥DH∥EF,∴∠1=∠α,∠2=∠3,∠4=∠γ,∵∠2=90°﹣∠1=90°﹣∠α,∠3=∠β﹣∠4=∠β﹣∠γ,∴90°﹣∠α=∠β﹣∠γ,∴α+β﹣γ=90°.故选:C.6.如图,AB∥CD,EMNF是直线AB、CD间的一条折线.若∠1=40°,∠2=60°,∠3=70°,则∠4的度数为()A.55°B.50°C.40°D.30°【答案】B【解答】解:如图2,过M作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠1=∠EMO,∠4=∠PNF,∠OMN=∠PNM,∴∠EMN﹣∠MNF=(∠1+∠MNP)﹣(∠MNP+∠4)=∠1﹣∠4,∴60°﹣70°=40°﹣∠4,∴∠4=50°.故选:B.7.为了落实“双减”政策,促进学生健康成长,各学校积极推行“5+2”模式,立足学生的认知成长规律,满足学生多样化的需求,打造特色突出、切实可行的体育锻炼内容.晋中市的某学校将“抖空竹”引入阳光体育一小时活动,如图1是一位同学抖空竹时的一个瞬间,小丽把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的度数是30°.【答案】30°【解答】解:延长DC交AE于点F,∵AB∥CD,∴∠EFC=∠A=80°,由外角的性质得,∠DCE=∠E+∠EFC,∴∠E=110°﹣80°=30°.故答案为:30°.8.如图,直线PQ∥MN,直角三角尺ABC的∠BAC=30°,∠ACB=90°.(1)若把三角尺按图甲方式放置,则∠MAC+∠PBC=90°;(2)若把三角尺按图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN =∠A,求∠BDF的值;(3)如图丙,三角尺的直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,适当转动三角尺,使得CE恰好平分∠MEG,求的值.【解答】解:(1)延长BC交MN于点D,∵PQ∥MN,∴∠PBC=∠ADC,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADC+∠MAC,∴∠ACB=∠PBC+∠MAC=90°,故答案为:90;(2)∵∠AEN=∠A,∠BAC=30°,∴∠AEN=∠A=30°,∴∠CEM=∠AEN=30°,利用(1)的结论可得:∠ACB=∠PDC+∠MEC,∴∠PDC=∠ACB﹣∠MEC=60°,∴∠BDF=∠PDC=60°,∴∠BDF的度数为60°;(3)∵CE平分∠MEG,∴∠CEM=∠CEG,设∠CEM=∠CEG=x,∴∠GEN=180°﹣∠CEM﹣∠CEG=180°﹣2x,利用(1)的结论可得:∠ACB=∠PDC+∠MEC,∴∠PDC=∠ACB﹣∠MEC=90°﹣x,∴∠BDF=∠PDC=90°﹣x,∴==2,∴的值为2.9.如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠F AE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.【解答】解:(1)55°如图所示,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF,∴∠BAE=∠1,∠ECD=∠2,∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,故答案为55°.(2)如图所示,过点E作EG∥AB,∵AB∥CD∴AB∥CD∥EG,∴∠A+∠1=180°,∠C+∠2=180°,∴∠A+∠1+∠2+∠C=360°,即∠BAE+∠AEC+∠ECD=360°.(3)①2∠AFC+∠AEC=360°,理由如下:由(1)可得,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠BAE+∠DCE=2∠AFC,由(2)可知,∠BAE+∠AEC+∠DCE=360°,∴2∠AFC+∠AEC=360°.②由①知∠F+∠F AE+∠E+∠FCE=360°,∵∠BAF=∠F AE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,∴∠F=(∠F AE+∠FCE),∴∠F AE+∠FCE=n∠F,∴∠F+∠E+n∠F=360°,∴(n+1)∠F=360°﹣∠E=360°﹣m,∴∠F=.10.已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为45°.【解答】解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵AB⊥BC,∴∠ABC=90°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵AB⊥BC,∴∠ABC=90°.∴∠ABE+∠CBE=90°.∴∠A+180°﹣∠C=90°.∴∠C﹣∠A=90°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB.∵CH平分∠NCB,∴∠BCF=∠BCN.∵∠B=90°,∴∠BFC=90°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.11.已知直线EF分别与直线AB,CD相交于点G,M,并且∠AGE+∠CHF=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,若射线GH恰好是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,则∠M、∠N、∠FGN的数量关系是(直接写答案).【解答】(1)证明:∵∠AGE=∠BGF,∠CHF=∠EHD,又∠AGE+∠CHF=180°,∴∠BGF+∠EHD=180°,∴AB∥CD;(2)证明:过点M作MK∥CD,则∠KMH=∠CHM,又AB∥CD;∴AB∥MK;∴∠AGM=∠GMK,∵∠GMH=∠AGM+∠KMH∴∠GMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GF是∠BGM的平分线,∴∠FGM=∠BGM=(180°−∠AGM)=90°−α,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵∠GMH=∠N+∠FGN,∴2α+β=2α+∠FGN,∴∠FGN=2β,∴∠M=2α+β=∠N+∠FGN,即:∠M=∠N+∠FGN.12.问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF 与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.【解答】解:(1)由题可得,∠CAF=∠BAF﹣∠BAC=90°﹣60°=30°,∠EMC=∠BCH=90°﹣30°=60°;故答案为:30°,60°;(2)∠EMC+∠CAF=90°,理由:证明:如图,过C作CH∥GF,则∠CAF=∠ACH,∵DE∥GF,CH∥GF,∴CH∥DE,∴∠EMC=∠HCM,∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°;(3)∠BAG﹣∠BMD=30°,理由:证明:如图,过B作BK∥GF,则∠BAG=∠KBA,∵BK∥GF,DE∥GF,∴BK∥DE,∴∠BMD=∠KBM,∴∠BAG﹣∠BMD=∠ABK﹣∠KBM=∠ABC=30°.13.已知AB∥CD,直线EF与AB、CD分别交于点E、F,点G为落在直线AB和直线CD 之间的一个动点.(1)如图1,点G恰为∠BEF和∠DFE的角平分线的交点,则∠EGF=;(2)若点G恰为∠BEF和∠DFE的三等分线的交点,有如下结论:①∠EGF一定为钝角;②∠EGF可能为60°;③若∠EGF为直角,则EF⊥CD.其中正确结论的序号为.(3)进一步探索,若EF⊥CD,且点G不在线段EF上,记∠AEG=α,∠CFG=β,EM 为∠AEG最接近EG的n等分线,FN是∠CFG最接近CF的n等分线(其中n≥2).直线EM、FN交于点P n,是否存在某一正整数n,使得∠EP n F=90°?说明理由.【解答】解:(1)∵AB∥CD,∴∠BEF+∠DFE=180°,∵点G恰为∠BEF和∠DFE的角平分线的交点,∴∠FEG+∠EFG=×180°=90°,∴∠EGF=180°﹣90°=90°.故答案为:90°.(2)若点G恰为∠BEF和∠DFE的三等分线的交点,∴∠FEG+∠EFG=×180°或者∠FEG+∠EFG=×180°,∠FEG+∠EFG=60°或∠FEG+∠EFG=120°,∴∠EGF=180°﹣60°=120°或∠EGF=180°﹣120°=60°,∴①错误,②正确,当∠EGF为直角,只有∠BEF+∠DFE=90°或∠BEF+∠DFE=90°,不妨假设∠BEF+∠DFE=90°,∴∠BEF+∠DFE=90°,∴(∠BEF﹣∠DFE)+(∠DFE﹣∠BEF)=0,∴∠BEF=∠DFE,∵∠BEF+∠DFE=180°,∴∠BEF=∠DFE=90°,∴EF⊥CD,故③正确.故答案为:②③.(3)不存在某一整数n,使得∠EP n F=90°,理由如下:∵EM为∠AEG最接近EG的n等分线,FN是∠CFG最接近CF的n等分线(其中n≥2),∴∠AEM=α,∠CFM=β.①当点G在EF的左侧,此时α<90°,β<90°,P n必在EF的左侧,如图2所示,过点P n作P n Q∥AB,∵AB∥CD,∴P n Q∥CD,∴∠EP n F=∠EPnQ+∠FP n Q=∠AEM+∠CFN=α+β<×90°+×90°<90°,②当点G在右侧,此时α>90°,β>90°.若α<90°,则P n在EF的左侧,如图3中,同理可得∠EP n F=α+β>90°.若α=90°,则P n与F重合,不存在∠EP n F,舍弃.若α>90°,则P n在EF的右侧,如图4中,过点P n作P n Q∥AB,∵AB∥CD,∴P n Q∥CD,∴∠EP n F=∠EP n Q﹣∠FP n Q=∠BEM+∠CFN=(180°﹣α)﹣β,∵α>90°,β>0,∴(180°﹣α)﹣β<90°,即∠EP n F<90°,综上所述,不存在某一整数n,使得∠EP n F=90°.。
平行线四大模型(完整版+培优)平行线四大模型模型一:铅笔模型当点P在EF右侧,在AB、CD内部时,有以下结论:1.若AB∥CD,则∠P+∠AEP+∠PFC=360°;2.若∠P+∠AEP+∠PFC=360°,则AB∥CD.模型二:猪蹄模型当点P在EF左侧,在AB、CD内部时,有以下结论:1.若AB∥CD,则∠P=∠AEP+∠CFP;2.若∠P=∠AEP+∠CFP,则AB∥CD.模型三:臭脚模型当点P在AB、CD之间时,有以下结论:1.若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;2.若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四:骨折模型当点P在EF右侧,在AB、CD外部时,有以下结论:1.若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;2.若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.当点P在EF左侧,在AB、CD外部时,有以下结论:1.若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;2.若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.应用:例1:1.∠l+∠2+∠3=180°;2.∠E=110°;3.∠BCD=40°;4.∠P=70°.练:1.∠EAB的度数为17°;2.∠C=30°;3.∠P=30°+n×20°.例2:BF、DF分别平分∠ABC、∠XXX,则∠C、∠F的关系为∠ABF=∠XXX∠XXX.练:1.∠XXX∠BDE;2.当n=2时,∠C=∠F;3.∠C=n×∠F.1.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,要证明∠E=2(∠A+∠C)。
2.如图,已知AB∥DE,BF、DF分别平分∠ABC、∠XXX,要求出∠C、∠F的关系。
专题01平行线(四种模型)专项训练题型一:M 模型(锯齿形) 题型二:笔尖型题型三:“鸡翅”型 题型四:“骨折”型模型一:M 模型如图,若 AB // CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?解:∠B +∠D =∠DEB .理由如下:过点E 作 EF // AB又 ∵ AB//CD .∴ EF//CD .∴ ∠D =∠DEF .∠B=∠BEF .∴∠B +∠D =∠BEF +∠DEF =∠DEB即∠B +∠D =∠DEB .一.选择题(共3小题)1.(2023春•临淄区期末)如图,//AB EF ,90C Ð=°,则a 、b 和g 的关系是( )A .b a g =+B .180a b g ++=°C .90a b g +-=°D .180b g a +-=°【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC 交AB 与G ,延长CD 交EF 于H .在直角BGC D 中,190a Ð=°-;EHD D 中,2b g Ð=-,//AB EF Q ,12\Ð=Ð,90a b g \°-=-,即90a b g +-=°.故选:C .【点评】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.2.(2023春•天宁区校级期中)如图,//AB CD ,EMNF 是直线AB 、CD 间的一条折线.若140Ð=°,260Ð=°,370Ð=°,则4Ð的度数为( )A .55°B .50°C .40°D .30°【分析】过M 作//OM AB ,//PN AB ,根据平行线的性质得到1EMO Ð=Ð,4PNF Ð=Ð,OMN PNM Ð=Ð,由角的和差得到(1)(4)14EMN MNF MNP MNP Ð-Ð=Ð+Ð-Ð+Ð=Ð-Ð,代入数据即可得到结论.【解答】解:如图2,过M 作//OM AB ,//PN AB ,//AB CD Q ,//////AB OM PN CD \,1EMO \Ð=Ð,4PNF Ð=Ð,OMN PNM Ð=Ð,(1)(4)14EMN MNF MNP MNP \Ð-Ð=Ð+Ð-Ð+Ð=Ð-Ð,6070404\°-°=°-Ð,450\Ð=°.故选:B .【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.3.(2022春•海安市校级月考)如图,//AB EF ,90C Ð=°,则a 、b 、g 的关系为( )A .b a g =+B .90a b g +-=°C .180a b g ++=°D .90b g a +-=°【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC D 中,190a Ð=°-;EHD D 中,2b g Ð=-,//AB EF Q ,12\Ð=Ð,90a b g \°-=-,即90a b g +-=°.故选:B .【点评】此题主要考查了三角形的外角的性质以及平行线的性质,解题的关键是通过作辅助线,构造了三角形以及由平行线构成的内错角.二.解答题(共6小题)4.(2023春•仪征市期末)如图1,已知线段AB 、线段CD 被直线l 所截于点A 、点C ,150Ð=°,2Ð的度数是1Ð的3倍少20°.(1)求证://AB CD ;(2)如图2,连接BD ,AB 沿BD 方向平移得到EF ,点F 在BD 上,点G 是BD 上的一点,连接AG 、EG ,30BAG Ð=°,20FEG Ð=°,求AGE Ð的度数;(3)如图3,点M 是线段BD 上一点,点N 是射线CD 上一点,CAM Ð度数为k ,AMN Ð度数为m ,MND Ð度数为n ,请直接写出k 、m 、n 之间的数量关系.(本题的角均小于180)°【分析】(1)根据已知先求得1Ð的邻补角BAC Ð的度数,得到2BAC Ð=Ð即可得结论;(2)过G 作//GQ AB ,利用平行线的性质定理和平行公理的推论即可;(3)利用平行线的性质定理和平行公理的推论即可.【解答】证明:(1)150Ð=°Q ,2Ð的度数是1Ð的3倍少20°,23120130\Ð=Ð-°=°,180250ACD \Ð=°-Ð=°,12\Ð=Ð,//AB CD \;(2)过G 作//GQ AB ,30AGQ BAG \Ð=Ð=°,//AB EF Q ,//GQ EF \,20GEF EGQ \Ð=Ð=°,50AGE AGQ EGQ \Ð=Ð+Ð=°;(3)//AB CD Q ,与(2)同理可得:AMN MAB MND Ð=Ð+Ð,AMN m Ð=Q ,MND n Ð=,m n MAB \=+Ð,150Ð=°Q ,CAM k Ð=,180118050BAM CAM k \Ð=°-Ð-Ð=°-°-,130m n k \=+°-,即130m n k -+=°.【点评】本题考查了平行线的性质定理及平行公理的推论,理解题意是解决问题的关键.5.(2022春•赣榆区期末)已知:如图,//AB CD ,BFE FEC Ð=Ð.求证:ABF DCE Ð=Ð.(1)下面是小明同学的推理过程,请按先后顺序填写空格:解:连接BC .BFE FEC Ð=ÐQ (已知),\ BF // (内错角相等,两直线平行).\Ð=Ð ),FBC ECB(AB CDQ(已知),//\Ð=Ð(两直线平行,内错角相等)ABC DCB\Ð-Ð=Ð- ( ),ABC FBC DCB即ABF DCEÐ=Ð.(2)试用其他方法进行推理,并书写证明过程.【分析】(1)连接BC,根据已知,得出//AB CDÐ=Ð,再根据//BF CE,根据平行线的性质得到FBC ECB得出ABC DCBÐ-Ð=Ð-Ð即可得出答案;Ð=Ð,进而得出ABC FBC DCB ECBÐ=Ð,再利用等量代换可得H DCE (2)延长BF交DC的延长线于H,根据平行线的性质可得ABF HÐ=Ð,进而可判定//Ð=Ð.BH CE,然后可得BFE FEC【解答】(1)解:连接BC.BFE FECQ(已知),Ð=ÐBF CE\(内错角相等,两直线平行).//FBC ECB\Ð=Ð两直线平行,内错角相等),(Q(已知),//AB CD\Ð=Ð(两直线平行,内错角相等)ABC DCBABC FBC DCB ECB\Ð-Ð=Ð-Ð等式的基本性质),(即ABF DCEÐ=Ð.故答案为:BF,CE;两直线平行,内错角相等;ECBÐ;等式的基本性质.(2)证明:延长BF交DC的延长线于H,Q,AB CD//\Ð=Ð,ABF HABF DCE Ð=ÐQ .H DCE \Ð=Ð,//BH CE \,BFE FEC \Ð=Ð.【点评】本题考查了平行线的判定和性质,熟练应用判定定理和性质定理是解题的关键,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.6.(2023春•天宁区校级期中)已知:如图,180ABE CEB Ð+Ð=°,12Ð=Ð,求证:M N Ð=Ð.【分析】首先证明//AB CD ,再根据平行线的性质得出ABE DEB Ð=Ð,然后结合已知条件可得到MBE NEB Ð=Ð,进而可判定//BM EN ,据此可得出结论.【解答】证明:180ABE CEB Ð+Ð=°Q ,//AB CD \,ABE DEB \Ð=Ð,即:12MBE NEB Ð+Ð=Ð+Ð,又12Ð=ÐQ ,MBE NEB \Ð=Ð,//BM EN \,M N \Ð=Ð.【点评】此题主要考查了平行线的判定和性质,解答此题的关键是准确识图,熟练掌握平行线的判定及性质:两直线平行Û同位角相等,两直线平行Û内错角相等,两直线平行Û同旁内角互补.7.(2023春•崇川区期中)如图1,已知直线EF 与直线AB 交于点E ,与直线CD 交于点F ,EM 平分AEF Ð交直线CD 于点M ,且FEM FME Ð=Ð.(1)试判断直线AB 与CD 的位置关系,并说明理由;(2)点G 是射线MD 上的一个动点(不与点M ,F 重合),EH 平分FEG Ð交直线CD 于点H ,过点H 作//HN EM 交直线AB 于点N .设EHN a Ð=,EGF b Ð=.①如图2,当点G 在点F 的右侧,且50a =°时,求b 的值;②当点G 在运动过程中,a 和b 之间有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)由EM 平分AEF Ð,得到AEM FEM Ð=Ð,又FEM FME Ð=Ð,所以AEM FME Ð=Ð,证得//AB CD .(2)①由EH 平分FEG Ð,EM 平分AFE Ð,得到12HEM HEF FEM AEG Ð=Ð+Ð=Ð,由//HN EM ,//AB CD 可得,HEM EHN a Ð=Ð=,GEB EGF b =Ð=,即可得到结果.②当点G 在点F 的左侧时,由EM 平分AEF Ð,EH 平分FEH Ð,得到12HEM HEF FEM AEG Ð=Ð+Ð=Ð,由//AB CD ,//HN EM ,得到AEG b Ð=,HEM a Ð=,从而得到结果.【解答】解(1)如图1,//AB CD ,理由如下:EM Q 平分AEF Ð,AEM FEM \Ð=Ð,FEM FME Ð=ÐQ ,AEM FME \Ð=Ð,//AB CD \.(2)①如图2,EH Q 平分FEG Ð,12HEF FEG \Ð=Ð,EM Q 平分AFE Ð,12FEM AEF \Ð=Ð,12HEM HEF FEM AEG \Ð=Ð+Ð=Ð,//HN EM Q ,HEM EHN a \Ð=Ð=,//AB CD Q ,GEB EGF b \Ð=Ð=,1(180)2a b \=°-,180218025080b a \=°-=°-´°=°.②a 和b 之间的数量关系为2b a =或1802b a =°-.理由如下:当点G 在点F 的右侧时,由①得1802b a =°-,当点G 在点F 的左侧时,如图3,EM Q 平分AEF Ð,2AEF FEM \Ð=Ð,EH Q 平分FEH Ð,2GEF HEF \Ð=Ð,222AEG AEF GEF FEM HEF HEM \Ð=Ð-Ð=Ð-Ð=Ð,//AB CD Q ,AEG b \Ð=,//HN EM Q ,HEM a \Ð=,2b a \=,综上得,a 和b 之间的数量关系为2b a =或1802b a =°-.【点评】本题主要考查了平行线的判定与性质,角平分线的定义,熟练运用平行线的判定与性质是解题关键.8.(2023春•海安市期末)如图,在ABC D 中,ACB BAC Ð=Ð.过点A 作//MN BC .(1)判断AC 是否平分BAN Ð,并说明理由;(2)如图2,点D 是射线CB 上一动点(不与点B ,C 重合),AE 平分BAD Ð交射线BC 于E ,过点E 作EF AC ^于F .①当点D 在点B 左侧时,若20AEF Ð=°,求ADB Ð的度数;②点D 在运动过程中,AEF Ð和ADB Ð之间有怎样的数量关系?请写出你的猜想,并说明理由.【分析】(1)根据//MN BC 得ACB CAN Ð=Ð,结合已知条件得证;(2)①在直角三角形AFE 中,20AEF Ð=°,则9070EAF EAF Ð=°-Ð=°,根据19020702EAF BAC BAE DAE CAN DAN Ð=Ð+Ð=°-°=°=Ð+Ð=Ð,从而求出140DAN Ð=°,即可求出ADB Ð;②分两种情况进行讨论,当点D 在点B 左侧时和点D 在点B 右侧时,数形结合即可解答.【解答】解:(1)AC 平分BAN Ð,//MN BC Q ,ACB CAN \Ð=Ð,ACB BAC Ð=ÐQ .BAC CAN \Ð=Ð,AC \平分BAN Ð,(2)EF AC ^Q ,9070EAF EAF \Ð=°-Ð=°,AC Q 、AE 是角平分线,DAE BAE \Ð=Ð,BAC CAN Ð=Ð,19020702EAF BAC BAE DAE CAN DAN \Ð=Ð+Ð=°-°=°=Ð+Ð=Ð,140DAN \Ð=°,40ADB \Ð=°.②设AEF a Ð=,EF AC ^Q ,90EAF a \Ð=°-,如图2,当点D 在点B 左侧时,由(1)知12NAC BAC BAN Ð=Ð=Ð,AE Q 平分BAD Ð交射线BC 于E ,12DAE BAE BAD \Ð=Ð=Ð,又1111()902222EAF BAE BAC BAD BAN BAD BAN DAN a Ð=Ð+Ð=Ð+Ð=Ð+Ð=Ð=°-Q ,1802DAN a \Ð=°-,//MN BC Q ,180ADB DAN \Ð+Ð=°,180180(1802)2ADB DAN a a \Ð=°-Ð=°-°-=,2ADB AEF \Ð=Ð;当点D 在点B 右侧时,如图:AC Q 、AE 是角平分线,12DAE BAE BAD \Ð=Ð=Ð,12BAC CAN BAN Ð=Ð=Ð,1111()902222EAF BAC BAE BAN BAD BAN BAD DAN a Ð=Ð-Ð=Ð-Ð=Ð-Ð=Ð=°-Q ,1802DAN a \Ð=°-,//MN BC Q ,1802ADB DAN a \Ð=Ð=°-,1802ADB AEF \Ð=°-Ð.综上,2ADB AEF Ð=Ð或1802AEF °-Ð.【点评】本题主要考查了平行线的性质与判定,角平分线的定义的运用,解决问题的关键是掌握两直线平行内错角相等,两直线平行同旁内角,利用角的和差关系进行推理论证.9.(2023春•姜堰区期末)已知12//l l ,李想同学将ABC D 放置在这两条平行线上展开探究,其中ABC D 三边与两条平行线分别交于点D 、E 、F 、G .(1)【特例探究】如图1,90C Ð=°.①CED CGF Ð+Ð= 270 度;②若CED Ð与CGF Ð的角平分线相交于点P ,则EPG Ð= 度;(2)【一般探索】如图2,C a Ð=,EPG b Ð=.①若13DEP CED Ð=Ð,13FGP CGF Ð=Ð,求a 与b 的关系;②若1DEP CED n Ð=Ð,1(2FGP CGF n nÐ=Ð…且n 为整数),直接写出a 与b 的关系 ;(3)【拓展应用】如图3,CED Ð与CGF Ð的角平分线相交于点1P ,1PED Ð与1PGF Ð的角平分线相交于点2P ,2P ED Ð与2P GF Ð的角平分线相交于点3P ;¼,以此类推,则2023360C EP G°-ÐÐ的值是多少?(直接写出结果)【分析】(1)①作1//CM l 根据平行线的性质可得180CED ECM Ð+Ð=°,_180CGF GCM Ð+Ð=°两式相加即可得360CED CGF C Ð+Ð=°-Ð;②由①知:360CED CGF C Ð+Ð=°-Ð,再根据平行线的性质以及角平分线的定义即可得:1()2EPG CED CGF Ð=Ð+Ð化简整理即可;(2)①13DEP CED Ð=Ð,13FGP CGF Ð=Ð时,结合(1)中的结论和平行线的性质,可得a 与b 之间的关系;②类似于前面的证明,结合平行线的性质和角平分线的定义即可得结论;(3)根据角平分线的定义和平行线的性质找到规律即可得结论.【解答】解:(1)①作1//CM l,180CED ECM \Ð+Ð=°,2l Q //1l ,2//CM l \,_180CGF GCM \Ð+Ð=°,360CED ECM CGF GCM \Ð+Ð+Ð+Ð=°,90ECG ECM CGF Ð=Ð+Ð=°Q ,_90360CED CGF \Ð+Ð+°=°,270CED CGF \Ð+Ð=°,故答案为270°;②CED ÐQ 与CGF Ð的角平分线相交于点P ,2CED CEP \Ð=Ð,2CGF CGP Ð=Ð,由①知:270CED CGF Ð+Ð=°,22270CEP CGP \Ð+Ð=°,135CEP CGP \Ð+Ð=°,360CEP CGP EPG ECG Ð+Ð+Ð+Ð=°Q ,135EPF \Ð=°;(2)21//l l Q ,ECG a Ð=,由(1)①知360CED CGF ECF Ð+Ð+Ð=°,360360CED CGF ECG a \Ð+Ð=°-Ð=°-,由(1)②知若13DEP CED Ð=Ð,13FGP CGF Ð=Ð,\23CED CEP Ð=Ð,23CGF CGP Ð=Ð,2222()(360)3333CEP CGP CED CGF CED CGF a \Ð+Ð=Ð+Ð=Ð+Ð=°-,360CEP CGP EPG ECG Ð+Ð+Ð+Ð=°Q ,\2(360)3603a b a °-++=°,整理得:3360a b +=°;②若1DEP CED n Ð=Ð,1(2FGP CGF n nÐ=Ð…且n 为整数)时,由①同理可得a 与b 的关系:360n a b +=°;(3)通过前面的证明易得360360CED CGF C a Ð+Ð=°-Ð=°-,当CED Ð与CGF Ð的角平分线相交于点1P ,1PED Ð与1PGF Ð的角平分线相交于点2P ,2P ED Ð与2P GF Ð的角平分线相交于点3P ;¼,以此类推,则111111()()(360)222EPG CED CGF CED CGF a Ð=Ð+ÐÐ+Ð=°-,222111()())(360)422EP G CED CGF CED CGF a Ð=Ð+Ð=Ð+Ð==°-,333111()())(360)822EP G CED CGF CED CGF a Ð=Ð+Ð=Ð+Ð=°-,444111()())(360)1622EP G CED CGF CED CGF a Ð=Ð+Ð=Ð+Ð=°-,551(360)2EP G a Ð=°-,......1(360)2n nEP G a Ð=°-,当2023n =时,202320231(360)2EP G a Ð=°-,\20232023202336036021(360)2C EP G a a °-а-==а-,【点评】本题考查了平行线的性质,以及角平分线的定理,灵活运用所学知识找到规律是解决问题的关键.模型二、笔尖型如图,AB // CD ,探索∠B 、∠D 与∠DEB 的大小关系 ?解:∠B +∠D +∠DEB =360°.理由如下:过点E 作 EF // AB.又∵AB//CD.∴EF//CD.∴∠B+∠BEF=180°.∠D+∠DEF=180°.∴∠B+∠D+∠DEB=∠B+∠D+∠BEF+∠DEF =360°.即∠B+∠D+∠DEB=360°.一.选择题(共3小题)1.(2022春•海陵区期末)如图//a b,M、N分别在a、b上,P为两平行线间一点,那么Ð+Ð+Ð= )123(A.180°B.270°C.360°D.540°【分析】首先过点P作//PA a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【解答】解:过点P作//a b PA,PA a,则////Ð+Ð=°,1180NPA\Ð+Ð=°,3180MPA\Ð+Ð+Ð=°.123360故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.2.(2023春•沭阳县期末)如图,把一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果137Ð=°,那么2Ð的度数是( )A.30°B.25°C.23°D.37°【分析】根据平行线的性质,两直线平行,内错角相等,进而可以得出答案.【解答】解:如图,Q直尺的两条边平行,137Ð=°,\Ð=Ð=°,1337Q直角三角板的一个角为30°,\Ð+Ð=°,2360\Ð=°-°=°,2603723故选:C.【点评】本题主要考查了平行线的性质,注意隐含条件,直尺的两条对边平行和直角三角板的一个锐角是30°是解题的关键.3.(2023春•东台市月考)某小区车库门口的“曲臂直杆道闸”(如图)可抽象为如图所示模型.已知AB 垂直于水平地面AE.当车牌被自动识别后,曲臂直杆道闸的BC段将绕点B缓慢向上抬高,CD段则一直保持水平状态上升(即CD与AE始终平行),在该运动过程中ABC BCDÐ+Ð的度数始终等于( )度A.360B.180C.250D.270【分析】过点B作//Ð+Ð=°,从而可C CBGBG AE,利用平行线的性质可得180BAE ABGÐ+Ð=°,180得360BAEÐ=°,最后进行计算即可解答.Ð+Ð+Ð=°,然后根据垂直定义可得90BAE ABC BCD【解答】解:过点B作//BG AE,BAE ABG\Ð+Ð=°,180AE CDQ,//\,BG CD//\Ð+Ð=°,180C CBG\Ð+Ð+Ð+Ð=°,BAE ABG CBG C360BAE ABC BCD\Ð+Ð+Ð=°,360^Q,BA AE\Ð=°,90BAE\Ð+Ð=°-Ð=°,ABC BCD BAE360270故选:D.【点评】本题考查了平行线的性质,熟练掌握铅笔模型是解题的关键.二.填空题(共3小题)4.(2022春•崇川区校级月考)如图,直线//Ð=°,则3Ð= 78 度,Ð=°,250a b,128Ð+Ð+Ð= 度.345【分析】过3Ð的顶点作已知直线的平行线,充分运用平行线的性质,不难发现:312Ð=Ð+Ð,Ð+Ð+Ð=°345360【解答】解:如图所示:过3Ð的顶点作//c a,a bQ,//\,a b c////Ð=Ð,16\Ð=Ð,72又367Ð=Ð+Ð,\Ð=Ð+Ð=°;31278又4675180Ð+Ð=Ð+Ð=°\Ð+Ð+Ð=°.345360【点评】注意此类题中常见的辅助线:构造已知直线的平行线.根据平行线的性质发现并证明:312Ð=Ð+Ð;345360Ð+Ð+Ð=°.5.(2022春•淮安期末)如图,//Ð和AB CD,E、F分别是AB、CD上的点,EH、FH分别是AEGÐ= 125 °.GÐ=°,则HCFGÐ的角平分线.若110【分析】过点G作//CD GM,Ð+Ð=°,再结合已知可得// GM AB,根据平行线的性质可得180AEG EGM然后利用平行线的性质可得180Ð+Ð=°,再利用角平分线的定AEG CFGÐ+Ð=°,从而可得250CFG MGF义可得125Ð+Ð=°,最后利用四边形的内角和定理进行计算即可解答.HEG GFH【解答】解:过点G作//GM AB,\Ð+Ð=°,AEG EGM180Q,//AB CD//CD GM \,180CFG MGF \Ð+Ð=°,360AEG EGM CFG MGF \Ð+Ð+Ð+Ð=°,110EGF EGM MGF Ð=Ð+Ð=°Q ,360250AEG CFG EGF \Ð+Ð=°-Ð=°,EH Q 、FH 分别是AEG Ð和CFG Ð的角平分线,12HEG AEG \Ð=Ð,12GFH CFG Ð=Ð,1112522HEG GFH AEG CFG \Ð+Ð=Ð+Ð=°,360125H HEG HFG EGF \Ð=°-Ð-Ð-Ð=°,故答案为:125.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.6.(2023春•邗江区期中)将一副三角板如图1所示摆放,30BAC Ð=°,45E Ð=°,直线//GH MN ,现将三角板ABC 绕点A 以每秒1°的速度顺时针旋转,同时三角板DEF 绕点D 以每秒3°的速度顺时针旋转,如图2,设时间为t 秒,当0120t ……时,若边BC 与三角板DEF 的一条直角边(边DE ,)DF 平行,则所有满足条件的t 的值为 15或105或60 .【分析】先根据题意画出旋转后的图形,由已知条件,利用平行线的旋转,求出旋转角之间的关系,列出方程解答即可.【解答】解:由题意得:30HAC BAH BAC t Ð=Ð+Ð=°+°,3FDM t Ð=°,(1)当//BC DE 时,如图所示:延长AC 交MN 于点P ,①DE 在MN 上方,//DE BC Q ,DE DF ^,AC BC ^,//AP DF \,FDM MPA \Ð=Ð,//MN GH Q ,MPA HAC \Ð=Ð,FDM HAC \Ð=Ð,即330t t =+,15t =;②1DE 在MN 下方时,1(3180)F DP t Ð=-°,1//DE BC Q ,11DE DF ^,AC BC ^,1//AP DF \,1F DM MPA \Ð=Ð,//MN GH Q ,MPA HAC \Ð=Ð,1F DM HAC \Ð=Ð,即318030t t -=+,解之得:105t =;如图:当//BC DF 时,延长AC 交MN 于点I ,①DF 在MN 上方,(1803)FDN t Ð=-度,//DF BC Q ,AC BC ^,//AI DE \,90FDN MIA \Ð+Ð=°,//MN GH Q ,MIA HAC \Ð=Ð,90FDN HAC \Ð+Ð=°,即18033090t t -++=,解之得:60t =;②DF 在MN 下方,2(1803)F DN t Ð=-度,2//DF BC Q ,AC BC ^,22ED DF ^,2//AC DE \,2AIM MDE \Ð=Ð,//MN GH Q ,MIA HAC \Ð=Ð,2E DM HAC \Ð=Ð,即318030t t -=+,解之得:105t =,综上可知:所有满足条件的t 的值为:15或105或60,故答案为:15或105或60.【点评】本题主要考查了平行线的性质,解题关键是根据题意,画出旋转后的图形.三.解答题(共3小题)7.(2022春•海州区校级期中)如图,在ABC D 中,点D 、E 分别在AB 、BC 上,且//DE AC ,12Ð=Ð.求证://AF BC .【分析】根据平行线的性质得出1C Ð=Ð,求出2C Ð=Ð,根据平行线的判定得出即可.【解答】证明://DE AC Q ,1C \Ð=Ð,12Ð=ÐQ ,2C \Ð=Ð,//AF BC \.【点评】本题考查了平行线的判定和性质,熟练应用判定定理和性质定理是解题的关键,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.8.(2023春•盐都区期中)如图,在ABC D 中,点D 、E 分别在AB 、BC 上,//AF BC ,12Ð=Ð,求证://DE AC .【分析】由两直线平行内错角相等得到1C Ð=Ð,再根据同位角相等两直线平行可解题.【解答】证明://AF BC Q ,1C \Ð=Ð,12Ð=ÐQ ,2C \Ð=Ð,//DE AC \.【点评】本题考查平行线的判定与性质,是重要考点,掌握相关知识是解题关键.9.(2022春•亭湖区校级月考)如图,已知1BDC Ð=Ð,23180Ð+Ð=°.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC Ð,DA FA ^于点A ,182Ð=°,试求FAB Ð的度数.【分析】(1)直接利用平行线的判定与性质得出//AB CD ,进而得出3180ADC Ð+Ð=°,即可得出答案;(2)利用角平分线的定义结合平行线的性质得出2Ð,即可得出答案.【解答】(1)解:AD 与EC 平行,理由如下:1BDC Ð=ÐQ ,//AB CD \(同位角相等,两直线平行),2ADC \Ð=Ð(两直线平行,内错角相等),23180Ð+Ð=°Q ,3180ADC \Ð+Ð=°(等量代换),//AD CE \(同旁内角互补,两直线平行);(2)解:1BDC Ð=ÐQ ,182Ð=°,82BDC \Ð=°,DA Q 平分BDC Ð,1412ADC BDC \Ð=Ð=°(角平分线定义),241ADC \Ð=Ð=°(已证),又DA FA ^Q ,90FAD \Ð=°(垂直定义),2904149FAB FAD \Ð=Ð-Ð=°-°=°.【点评】此题主要考查了平行线的判定与性质,正确得出90AEC FAD Ð=Ð=°是解题关键.模型三、“鸡翅”型如图,已知AB//CD ,试猜想∠A 、∠E 、∠C 的关系,并说明理由.解:∠AEC=∠A-∠C,理由如下:过点E 作 EF // AB又 ∵AB//CD .∴EF//CD .∴∠A+∠FEA=180°,∠C+∠FEC=180°∴ ∠AEC = ∠FEC- ∠FEA= 180°- ∠C –(180°-∠A)=∠A-∠C即:∠AEC=∠A-∠C一、单选题1.(2021下·湖南株洲·七年级统考期末)①如图1,AB ∥CD ,则360A E C Ð+Ð+Ð=°;②如图2,AB ∥CD ,则P A C Ð=Ð-Ð;③如图3,AB ∥CD ,则1E A Ð=Ð+Ð;④如图4,直线AB ∥CD ∥ EF ,点O 在直线EF 上,则180a b g Ð-Ð+Ð=°.以上结论正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】①过点E作直线EF∥AB,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出∠1=∠C+∠P,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E作直线EF∥AB,由平行线的性质可得出∠A+∠AEC﹣∠1=180°,即得∠AEC=180°+∠1﹣∠A;④如图4,根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,再利用角的关系解答即可.【详解】解:①如图1,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°,故①正确;②如图2,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠P=∠A﹣∠C,故②正确;③如图3,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A +∠3=180°,∠1=∠2,∴∠A +∠AEC ﹣∠1=180°,即∠AEC =180°+∠1﹣∠A ,故③错误;④如图4,∵AB ∥EF ,∴∠α=∠BOF ,∵CD ∥EF ,∴∠γ+∠COF =180°,∵∠BOF =∠COF +∠β,∴∠COF =∠α﹣∠β,∴∠γ+∠α﹣∠β=180°,故④正确;综上结论正确的个数为3,故选:C .【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.二、解答题2.(2021下·浙江台州·七年级统考期末)如图,已知AD AB ^于点A ,AE ∥CD 交BC 于点E ,且EF AB ^于点F .求证:12C Ð=Ð+Ð.证明:∵AD AB ^于点A ,EF AB ^于点F ,(已知)∴90DAB EFB Ð=Ð=°.(垂直的定义)∴AD ∥EF ,( )∴__________1=Ð( )∵AE ∥CD ,(已知)∴C Ð=________.(两直线平行,同位角相等)∵2AEB AEF Ð=Ð+Ð,∴12C Ð=Ð+Ð.(等量代换)【答案】见解析Q 1PE l ∥,12l l ∥,\12PE l l ∥∥,PAC APE \Ð=Ð,PBD BPE Ð=Ð,APB APE BPE Ð=Ð+ÐQ ,PAC PBD APB \Ð+Ð=Ð.(2)解:结论:当点P 在直线1l 上方时,Ð-Ð=ÐPBD PAC APB ;当点P 在直线2l 下方时,Ð-Ð=ÐPAC PBD APB .①当点P 在直线1l 上方时,如图2所示.过点P 作1PE l ∥.Q 1PE l ∥,12l l ∥,\12PE l l ∥∥,PAC APE \Ð=Ð,PBD BPE Ð=Ð,APB BPE APE Ð=Ð-ÐQ ,PBD PAC APB \Ð-Ð=Ð.②当点P 在直线2l 下方时,如图3所示.过点P 作1PE l ∥.Q 1PE l ∥,12l l ∥,\12PE l l ∥∥,PAC APE \Ð=Ð,PBD BPE Ð=Ð,APB APE BPE Ð=Ð-ÐQ ,PAC PBD APB \Ð-Ð=Ð.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是根据“两直线平行,内错角相等”找到相等的角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.4.(2021下·广东东莞·七年级东莞市光明中学校考期中)(1)如图(1)AB CD P ,猜想BPD Ð与B D ÐÐ、的关系,说出理由.(2)观察图(2),已知AB CD P ,猜想图中的BPD Ð与B D ÐÐ、的关系,并说明理由.(3)观察图(3)和(4),已知AB CD P ,猜想图中的BPD Ð与B D ÐÐ、的关系,不需要说明理由.【答案】(1)360B BPD D Ð+Ð+Ð=°,理由见解析;(2)BPD B D Ð=Ð+Ð,理由见解析;(3)图(3)BPD D B Ð=Ð-Ð,图(4)BPD B DÐ=Ð-Ð【分析】(1)过点P 作EF AB ∥,得到180B BPE Ð+Ð=°,由AB CD P ,EF AB ∥,得到EF CD P ,得到180EPD D Ð+Ð=°,由此得到360B BPD D Ð+Ð+Ð=°;(2)过点P 作PE AB P ,由PE AB CD ∥∥,得到12B D Ð=ÐÐ=Ð,,从而得到结论12BPD B D Ð=Ð+Ð=Ð+Ð;(3)由AB CD P ,根据两直线平行,内错角相等与三角形外角的性质,即可求得BPD Ð与B D ÐÐ、的关系.【详解】(1)解:猜想360B BPD D Ð+Ð+Ð=°.理由:过点P 作EF AB ∥,∴180B BPE Ð+Ð=°,∵AB CD P ,EF AB ∥,∴EF CD P ,∴180EPD D Ð+Ð=°,∴360B BPE EPD D Ð+Ð+Ð+Ð=°,∴360B BPD D Ð+Ð+Ð=°;(2)BPD B D Ð=Ð+Ð.理由:如图,过点P 作PE AB P ,∵AB CD P ,∴PE AB CD ∥∥,∴12B D Ð=ÐÐ=Ð,,∴12BPD B D Ð=Ð+Ð=Ð+Ð;(3)如图(3):BPD D B Ð=Ð-Ð.理由:∵AB CD P ,∴1D Ð=Ð,∵1B P Ð=Ð+Ð,∴D B P Ð=Ð+Ð,即BPD D B Ð=Ð-Ð;如图(4):BPD B D Ð=Ð-Ð.理由:∵AB CD P ,∴1B Ð=Ð,∵1D P Ð=Ð+Ð,∴B D P Ð=Ð+Ð,即BPD B D Ð=Ð-Ð.【点睛】此题考查了平行线的性质,平行公理的推论,三角形的外角的性质定理,熟记平行线的性质是解题的关键.5.(2021下·浙江·七年级期末)已知//AM CN ,点B 为平面内一点,AB BC ^于B .(1)如图1,点B 在两条平行线外,则A Ð与C Ð之间的数量关系为______;(2)点B 在两条平行线之间,过点B 作BD AM ^于点D .①如图2,说明ABD C Ð=Ð成立的理由;②如图3,BF 平分DBC Ð交DM 于点,F BE 平分ABD Ð交DM 于点E .若180,3FCB NCF BFC DBE ÐÐÐÐ+=°=,求EBC Ð的度数.【答案】(1)∠A +∠C =90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =α,∠ABF =β,根据∠CBF +∠BFC +∠BCF =180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE =15°,进而得出∠EBC =∠ABE +∠ABC =15°+90°=105°.【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠A +∠AOB =90°,∴∠A +∠C =90°;(2)①如图2,过点B 作BG ∥DM ,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN\//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC =3α+β,∵∠AFC +∠NCF =180°,∠FCB +∠NCF =180°,∴∠FCB =∠AFC =3α+β,△BCF 中,由∠CBF +∠BFC +∠BCF =180°得:2α+β+3α+3α+β=180°,∵AB ⊥BC ,∴β+β+2α=90°,∴α=15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.6.(2021下·福建厦门·七年级厦门市第十一中学校考期中)已知,//AE BD ,A D Ð=Ð.(1)如图1,求证://AB CD ;(2)如图2,作BAE Ð的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG Ð的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM Ð=Ð+Ð,过点H 作HM FH ^交FG 的延长线于点M ,且3518E AFH Ð-Ð=°,求EAF GMH Ð+Ð的度数.【答案】(1)见解析;(2)72°【分析】(1)根据平行线的性质得出180A B Ð+Ð=°,再根据等量代换可得180B D Ð+Ð=°,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG Ð=Ð=Ð,再根据平角的含义得出ECF CFG Ð=Ð,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB Ð=ÐÐ=Ð;设,FAB CFH a b Ð=Ð=,根据角的和差可得出2AEC AFH Ð=Ð,结合已知条件35180AEC AFH Ð-Ð=°可求得18AFH Ð=°,最后根据垂线的含义及平行线的性质,即可得出答案.AFH CFH CFA CFH FABÐ=Ð-Ð=Ð-ÐQ AFH b a \Ð=-,BHF CFH bÐ=Ð=222ECF AFH AEC EAB AFH AEC b\Ð+Ð=Ð+Ð+Ð=Ð+22ECF AFH E BHF\Ð+Ð=Ð+Ð2AEC AFH\Ð=Ð35180AEC AFH Ð-Ð=°Q 18AFH \Ð=°FH HM^Q 90FHM \Ð=°90GHM b\Ð=°-180CFM NMF Ð+Ð=°Q 90HMB HMN b\Ð=Ð=°-EAF FABÐ=ÐQ 18EAF CFA CFH AFH b \Ð=Ð=Ð-Ð=-°189072EAF GMH b b \Ð+Ð=-°+°-=°72EAF GMH \Ð+Ð=°.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.模型四、“骨折模型”如图,已知BC//DE ,试猜想∠A 、∠B 、∠D 的关系,并说明理由.解:∠BAD=∠D-∠B ,理由如下:过点A 作 AG // BC又 ∵CB//DE .∴AG//DE∴∠GAB+∠B=180°,∠GAD+∠D=180°∴ ∠BAD = ∠GAB- ∠GAD=180°-∠B–(180°-∠D)=∠D-∠B即:∠BAD=∠D-∠B注:平行线四大模型大题不可直接使用,必须证明后再用,选择填空满足条件即可直接用!【答案】60°【分析】过点B作BD∥2CBDÐ=Ð,进而可得Ð【详解】解:如图,过点Q Rt ABC△中,30AÐ=°,\9060ABC AÐ=°-Ð=°.Q BD EF∥,\1ABDÐ=Ð.【答案】40°/40度∥【分析】过C作CF ABÐ=°即可得到答案;CDE140【点睛】本题考查平行线的判定与性质,解题的关键是作出辅助线,根据平行线性质得到角度关系.二、解答题4.(2021·全国·九年级专题练习)已知AB //CD ,求证:∠B =∠E +∠D【答案】见解析【分析】过点E 作EF ∥CD ,根据平行线的性质即可得出∠B =∠BOD ,根据平行线的性质即可得出∠BOD =∠BEF 、∠D =∠DEF ,结合角之间的关系即可得出结论.【详解】证明:过点E 作EF ∥CD ,如图∵AB ∥CD ,∴∠B =∠BOD ,∵EF ∥CD (辅助线),∴∠BOD =∠BEF (两直线平行,同位角相等);∠D =∠DEF (两直线平行,内错角相等);∴∠BEF =∠BED +∠DEF =∠BED +∠D (等量代换),∴∠BOD=∠E +∠D (等量代换), 即∠B =∠E +∠D .【点睛】本题考查了平行线的性质以及角的计算,解题的关键是根据平行线的性质找出相等或互补的角.5.(2021下·山西晋中·七年级统考期中)综合与探究【问题情境】王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF Ð、PBN Ð和APB Ð之间的数量关系;【问题迁移】(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP a Ð=Ð,BCP b Ð=Ð.则CPD Ð,a Ð,Ðb 之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD Ð,a Ð,Ðb 之间的数量关系.【答案】(1)360PAF PBN APB Ð+Ð+Ð=°;(2)①CPD a b Ð=Ð+Ð,理由见解析;②图见解析,CPD b a Ð=Ð-Ð或CPD a bÐ=Ð-Ð【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE a Ð=Ð,CPE b Ð=Ð,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ Ð+Ð=°,180PBN BPQ Ð+Ð=°,∵APB APQ BPQÐ=Ð+Ð∴360PAF PBN APB Ð+Ð+Ð=°;(2)①CPD a b Ð=Ð+Ð;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE a Ð=Ð,CPE b Ð=Ð,∴CPD DPE CPE a b Ð=Ð+Ð=Ð+Ð;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=b ,∠EPD =a ,∴CPD b a Ð=Ð-Ð;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =a ,∠CPE =b ,∴CPD a b Ð=Ð-Ð.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角。
初中平行线模型整理——全面完整版(模型总结+精选例题+优化练习)第一部分 模型总结一、平行线模型:1)a//b,AC.BC 分别为∠BAD. ∠ABE 的角平分线, 则∠ACB=90 总结:两直线平行,一对同旁内角的角平分线互相垂直2)直线CF//BG ,OE 平分∠AOF ,PH 平分∠APG ,则OE//PH ,总结:两直线平行,一对同位角的角平分线互相平行3)直线CF//BG ,OE 平分∠COP ,PH 平分∠APG,则OE//PH总结:两直线平行,一对内错角的角平分线互相平行二、平行线拐点模型1)如图,线段AB//ED ,则∠B=∠C+∠D2) 如图,线段AB//EF 则∠F=∠C+∠B3)如图,线段AB//EF 则∠C=∠F+∠B总结:以上(1)(2)(3)可总结为,图中最大的角等于零两个角之和bF JF J E D E F B E F4)已知:如图,AA1∥BA3,则有∠B1+∠B2=∠A1+∠A2+∠A3(即向左凸出的角的和等于向右凸出的角的和)5)如图1,线段AB//EF则∠F+∠C+∠B=360图1如图2,线段AB//CD,则∠F+∠E+∠B+∠FD=540图2总结:综合图1和图2,则每增加一个拐点,就增加了180度,即当有n个顶点时,内角和为(n-1)180第二部分精选例题例1已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.例2 .如图,直线AB.CD被EF所截,∠1 =∠2,∠CNF =∠BME。
求证:AB∥CD,MP∥NQ.例3.如图3,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.ABECFA BEFA A1A2A3B1B2B(练习1)F2A BC DQE1PMN1A CBFG例4.如图4,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.第三部分 优化练习1.如图,已知AD ∥BC ,BD 平分ABC ∠,A ∠:ABC ∠=2:1,则ADB ∠的度数是多少? 分析:对象:ADB ∠的度数 角度:(1)AD ∥BC (2)BD 平分ABC ∠ (3)A ∠:ABC ∠=2:1 2.如图,EF ∥BC ,DF ∥AB ,图中与A ∠相等的角有那些? 3.已知一个角的余角为︒40,那么这个角的补角是 ; 4、A ∠与B ∠互为补角,如果︒=∠37A ,则B ∠的度数为 度;5、如图21∠=∠,︒∠=∠1253,则2∠= ;6、如图,︒=∠701,︒=∠502,则C ∠= 时,AB ∥CD ;7、若FDE A ∠=∠,则互相平行的直线是 ;8、如图,若a MN =,b NP =,则MP = ,MP MN 22+= ;1 2 3 第3题第1题A B C DM N P第8题A B CD E FG第2题 A E C B D F 第4题1 2A E BC DC图4 12 3AB DF9、下列选项中正确的是()。
专题03 平行线四大模型(知识解读)【专题说明】历年中考考试中,有不少题目都考查了平行线的性质及应用,现汲取四大模型,供同学们赏析,希望能到达指导学习之目的。
【方法技巧】模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD模型四“骨折”模型点P在EF左侧,在AB、CD外部·“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.【典例分析】【模型1 “铅笔”模型】【典例1】如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【答案】A【解答】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【变式1-1】把一块等腰直角三角尺和直尺按如图所示的方式放置,若∠1=32°,则∠2的度数为( )A.20°B.18°C.15°D.13°【答案】D【解答】解:如图,过点O作OP∥AB,则OP∥AB∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=45°,∴∠1+∠2=45°,∴∠2=45°﹣∠1=45°﹣32°=13°.故选:D.【典例2】问题情境:(1)如图1,AB∥CD,∠BAP=120°,∠PCD=130°,求∠APC的度数.(提示:如图2,过P作PE∥AB)问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP =α,∠PCB=β,α、β、∠DPC之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出α、β、∠DPC之间的数量关系.(提示:三角形内角和为180°)【解答】解:(1)∵AB∥CD,∠PAB=120°,∠PCD=130°,∴∠PAB+∠APE=180°,∠EPC+∠C=180°,∴∠APE=180°﹣120°=60°,∠EPC=180°﹣130°=50°,∴∠APC=∠APE+∠EPC=60°+50°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)①当P在OA延长线时,∠CPD=∠β﹣∠α;②当P在AB延长线时,∠CPD=∠α﹣∠β,①当P在OA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;②当P在AB延长线时,∠CPD=∠α﹣∠β,理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.【变式2-1】已知,AB∥CD,试解决下列问题:(1)如图1,∠1+∠2= ;(2)如图2,∠1+∠2+∠3= ;(3)如图3,∠1+∠2+∠3+∠4= ;(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n= .【解答】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF∥AB,∵AB∥CD,∴CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).【变式2-2】如图,已知BQ∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【解答】解:(1)∵BQ∥GE,∠1=50°,∴∠E=∠1=50°,∵AF∥DE,∴∠AFG=∠E=50°;(2)过点A作AM∥BQ,由(1)得∠AFG=∠E=50°,∵BQ∥GE,∴AM∥BQ∥GE,∴∠FAM=∠AFG=50°,∠MAQ=∠Q=15°,∴∠FAQ=∠FAM+∠MAQ=65°,∵AQ平分∠FAC,∴∠QAC=∠FAQ=65°,∴∠MAC=∠QAC+∠MAQ=80°,∵AM∥BQ,∴∠ACB=∠MAC=80°.【模型2 “猪蹄”模型(M模型)】【典例3】【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC= .【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C=54°,EF平分∠BED,求∠BEF的度数.【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.【解答】解:(1)延长CE交AB于点F,∵AB∥CD,∴∠AFC=∠C=28°,∵∠AEC是△AEF的一个外角,∴∠AEC=∠A+∠AFC=∠A+∠C=70°,故答案为:70°;(2)利用(1)的结论可得:∠AEC=∠A+∠C=36°+54°=90°,∴∠AEC=∠BED=90°,∵EF平分∠BED,∴∠BEF=∠BED=45°,∴∠BEF的度数为45°;(3)∵BC∥DF,∴∠CDF=180°﹣∠BCD=124°,∵DG平分∠CDF,∴∠CDG=∠CDF=62°,∵AB∥CD,∴∠BAG=∠CDG=62°,∵AE平分∠BAD,∴∠BAE=∠BAD=31°,∵∠GDE=20°,∴∠EDH=180°﹣∠CDG﹣∠GDE=98°,利用(1)的结论可得:∠AED=∠BAE+∠EDH=31°+98°=129°,∴∠AED的度数为129°.。
专题03 平行线四大模型(专项训练)1.将一副三角板按图中方式叠放,则角α等于()A.30°B.45°C.60°D.75°【答案】D【解答】解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选:D.2.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=55°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】B【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵a∥b,∠1=55°,∴∠BAD=∠CAD=55°,∴∠2=180°﹣55°﹣55°=70°.故选:B.3.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.360°C.270°D.540°【答案】B【解答】解:过点P作P A∥a,∵a∥b,P A∥a,∴a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠APN=180°,∴∠1+∠MP A+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故选:B.4.把一块直尺与一块直角三角板如图放置,若∠1=38°,则∠2的度数为.【答案】128°【解答】解:如图,∵∠1=∠3=38°,∴∠2=90°+∠3=90°+38°=128°.故答案为:128°.5.如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为度.【答案】100【解答】解:如图所示:过点C作CF∥AB.∵AB∥DE,∴DE∥CF;∴∠BCF=180°﹣∠B=40°,∠DCF=180°﹣∠D=60°;∴∠C=∠BCF+∠DCF=100°.故答案为:100.6.问题情境(1)如图①,已知∠B+∠E+∠D=360°,试探究直线AB与CD有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB与CD的位置关系是AB∥CD.理由如下:过点E作EF∥AB(如图②所示),所以∠B+∠BEF=180°(依据1),因为∠B+∠BED+∠D=360°(已知),所以∠B+∠BEF+∠FED+∠D=360°,所以∠FED+∠D=180°,所以EF∥CD(依据2),因为EF∥AB,所以AB∥CD(依据3).交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:,“依据2”:,“依据3”:,类比探究(2)如图,当∠B、∠E、∠F、∠D满足条件时,有AB ∥CD.拓展延伸(3)如图,当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.【解答】解:(1)“依据1”:两直线平行,同旁内角互补,“依据2”:同旁内角互补,两直线平行,“依据3”:平行于同一条直线的两直线平行,故答案为:两直线平行,同旁内角互补;同旁内角互补,两直线平行;平行于同一条直线的两直线平行,(2)如图,当∠B、∠BEF、∠EFD、∠D满足条件∠B+∠BEF+∠EFD+∠D=540°时,有AB∥CD.理由:过点E、F分别作GE∥HF∥CD.则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,∴∠GEF+∠EFD+∠FDC=360°;又∵∠B+∠BEF+∠EFD+∠D=540°,∴∠B+∠BEG=180°,∴AB∥GE,∴AB∥CD;故答案为:∠B+∠BEF+∠EFD+∠D=540°;(3)如图,当∠B、∠BEF、∠EFD、∠D满足条件∠B+∠BEF+∠D=180°+∠EFD时,有AB∥CD.理由:过点E、F分别作GE∥FH∥CD.则∠GEF=∠EFH,∠D=∠HFD,∵∠B+∠BEF+∠D=180°+∠EFD,即∠B+∠BEG+∠GEF+∠D=180°+∠EFH+∠HFD,∴∠B+∠BEG=180°,∴AB∥GE,∴AB∥CD,故答案为:∠B+∠BEF+∠D=180°+∠EFD.7.如图,a∥b,将一个等腰直角三角板放置到如图所示位置.若∠1=15°,则∠2的大小是()A.20°B.25°C.30°D.45°【答案】C【解答】解:如图:过点B作BC∥b,∴∠1=∠CBD=15°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABC=∠ABD﹣∠CBD=30°,∵a∥b,∴a∥BC,∴∠2=∠ABC=30°,故选:C.8.将长方形纸条按如图方式折叠,折痕为DE,点A,B的对应点分别为A′,B′,若∠α=∠β﹣20°,则∠β的度数为()A.50°B.60°C.70°D.80【答案】C【解答】解:如图:延长EB′交AF于点G,∵四边形ABHF是矩形,∴∠B=90°,AF∥BH,由折叠得:∠B=∠A′B′E=90°,∠BEB′=2∠BED=2∠β,∴∠CB′G=180°﹣∠A′B′E=90°,∵AF∥BH,∴∠FGB′=∠BEB′=2∠β,∵∠FGB′是△CGB′的一个外角,∴∠FGB′=∠GCB′+∠CB′G,∴2∠β=∠α+90°,∵∠α=∠β﹣20°,∴2∠β=∠β﹣20°+90°,∴∠β=70°,故选:C.9.如图,AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD的度数为()A.30°B.40°C.60°D.80°【答案】B【解答】解:反向延长DE交BC于M,如图:∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°﹣∠BMD=100°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=140°﹣100°=40°.故选:B.10.如图,将直尺与30角的三角尺叠放在一起,若∠2=50°,则∠1的大小是()A.40°B.50°C.70°D.80°【答案】C【解答】解:如图:由题意得,∠3=60°,∵∠2=50°,AB∥CD,∴∠4=∠2=50°,∴∠1=180°﹣60°﹣50°=70°,故选:C.11.如图,一副三角板叠放在一起,使直角顶点重合于点O,AB∥OC,DC与OA交于点E,则∠DEO的度数为()A.85°B.75°C.70°D.60°【答案】B【解答】解:过点E作EF∥CO,∴∠AEF=∠A=30°,∵AB∥CO,∴EF∥CO,∴∠FEC=∠C=45°,∴∠AEC=∠AEF+∠FEC=75°,∴∠DEO=∠AEC=75°,故选:B.12.如图,船C在观测站A的北偏东35°方向上,在观测站B的北偏西20°方向上,那么∠ACB=()度.A.20°B.35°C.55°D.60°【答案】C【解答】解:如图:过点C作CF∥AD,由题意得:∠DAC=35°,∠CBE=20°,AD∥EB,∴CF∥EB,∴∠FCB=∠CBE=20°,∵CF∥AD,∴∠ACF=∠DAC=35°,∴∠ACB=∠ACF+∠FCB=55°,故选:C.13.如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1B.2C.3D.4【答案】B【解答】解:①由题意得:∠G=∠MPN=90°,∴GE∥MP,故①正确;②由题意得∠EFG=30°,∴∠EFN=180°﹣∠EFG=150°,故②正确;③过点F作FH∥AB,如图,∵AB∥CD,∴∠BEF+∠EFH=180°,FH∥CD,∴∠HFN=∠MNP=45°,∴∠EFH=∠EFN﹣∠HFN=105°,∴∠BEF=180°﹣∠EFH=75°,故③错误;④∵∠GEF=60°,∠BEF=75°,∴∠AEG=180°﹣∠GEF﹣∠BEF=45°,故④错误.综上所述,正确的有2个.故选:B.14.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=度.【答案】25【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°,∵∠1=65°,∴∠2=25°.故答案为:25.15.如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM=;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为.(用含n的式子表示)【答案】270°n°.【解答】解:(1)过点M作MP∥AB,∵AB∥CD,∴AB∥CD∥MP,∴∠1=∠MEB,∠2=∠MFD,∵∠M=∠1+∠2=90°,∴∠MEB+∠MFD=90°,∵∠AEM+∠MEB+∠CFM+∠MFD=180°+180°=360°,∴∠AEM+∠CFM=360°﹣90°=270°.故答案为:270°;(2)过点N作NQ∥AB,∵AB∥CD,∴AB∥CD∥NQ,∴∠3=∠NEB,∠4=∠NFD,∴∠NEB+∠NFD=∠3+∠4=∠ENF,∵∠BEM与∠DFM的角平分找交于点N,∵∠NEB=∠MEB,∠DFN=MFD,∴∠3+∠4=∠BEN+∠DFN=(∠MEB+∠MFD),由(1)得,∠MEB+∠MFD=∠EMF,∴∠ENF=∠EMF=n°.故答案为:n°.16.小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠P AC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接P A、PB(BD<AC),直接写出∠P AC、∠APB、∠PBD之间的数量关系.【解答】解:猜想:如图1,过点P作PH∥AC,则∠P AC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH+∠BPH=∠P AC+∠PBD,∵∠P AC=15°,∠PBD=40°,∴∠APB=15°+40°=55°.拓展:①如图1,当点P在线段CD上时,由猜想可知,∠APB=∠P AC+∠PBD;②如图2,当点P在射线DP上时,过点P作PH∥AC,则∠P AC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH﹣∠BPH=∠P AC﹣∠PBD;③如图3,当点P在射线CE上时,过点P作PH∥AC,则∠P AC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠BPH﹣∠APH=∠PBD﹣∠P AC;综上所述,∠P AC、∠APB、∠PBD之间的数量关系为∠APB=∠P AC+∠PBD或∠APB =∠P AC﹣∠PBD或∠APB=∠PBD﹣∠P AC.17.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.18.如图,AB∥CD,点E为AB上方一点,FB、CG分别为∠EFG、∠ECD的角平分线,若∠E+2∠G=210°,则∠EFG的度数为()A.140°B.150°C.130°D.160°【答案】A【解答】解:过G作GM∥AB,∴∠2=∠5,∵AB∥CD,∴MG∥CD,∴∠6=∠4,∴∠G=∠5+∠6=∠2+∠4,∵FB、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,∴∠E+∠EFG+∠ECD=210°,∵AB∥CD,∴∠ENB=∠ECD,∴∠E+∠EFG+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠EFG=∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.19.如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°【答案】C【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.20.某小区车库门口的“曲臂直杆道闸”(如图)可抽象为如右图所示模型.已知AB垂直于水平地面AE.当车牌被自动识别后,曲臂直杆道闸的BC段将绕点B缓慢向上抬高,CD段则一直保持水平状态上升(即CD与AE始终平行),在该运动过程中∠ABC+∠BCD的度数始终等于()度A.360B.180C.250D.270【答案】D【解答】解:过点B作BG∥AE,∴∠BAE+∠ABG=180°,∵AE∥CD,∴BG∥CD,∴∠C+∠CBG=180°,∴∠BAE+∠ABG+∠CBG+∠C=360°,∴∠BAE+∠ABC+∠BCD=360°,∵BA⊥AE,∴∠BAE=90°,∴∠ABC+∠BCD=360°﹣∠BAE=270°,故选:D.。
七年级数学下册《平行线的经典模型》平行线的经典模型题型一、平行加拐点——“M”模型例1:如图,AB∥CD,求∠BAP、∠APC、∠PCD的关系式,并加以证明。
解:根据平行线的性质,得到PE∥AB,因此∠1=∠BAP。
又因为AB∥CD,PE∥AB,所以PE∥CD,因此∠2=∠PCD。
所以∠1+∠2=∠BAP+∠PCD,即∠APC=∠BAP+∠PCD。
练一练】1、如图,BA∥DE,∠B=30°,∠D=40°,则∠C的度数是()。
A、10°B、35°C、70°D、80°2、如图,AB∥DE,则∠1、∠2、∠3关系是()。
A、∠3>∠1+∠2B、∠2=∠3-∠1C、∠3=∠1+∠2D、无法确定3、如图,AB∥CD,∠BED=90°,则∠1与∠2之间的数量关系是()。
A、∠2=2∠1B、∠2-∠1=90°C、∠1+∠2=180°D、无法确定4、如图,已知AB∥CD∥EF,GC⊥CF,∠B=60°,∠EFC=45°,求∠BCG的度数。
5、如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是()。
A、130°B、105°C、115°D、125°6、将一个直角三角板和一把直尺按如图所示放置,若∠α=43°,则∠β=?例2:已知如图,AB∥CD∥EF,点M、N、P分别在AB、CD、EF上,NQ平分∠___。
1)若∠AMN=50°,∠EPN=70°,求∠MNP,∠DNQ的度数;2)若∠AMN=x度,∠EPN=y度,请直接写出∠DNQ的度数(用含x,y的代数式表示);3)试探究:∠___与∠___,∠___之间的数量关系,并说明理由。
练一练】如图,已知AB∥MP∥CD,MN平分∠AMD,∠A=40°,∠D=50°,求∠NMP的度数。
七下专题:平行线四大模型知识导航一、平行线的定义1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.2、在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.这里,我们把重合的两直线看成一条直线.【注】初中不涉及到重合.二、平行公理及推论平行公理:经过直线外一点,有且只有一条直这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.三、行线的判定判定1:同位角相等,两直线平行.判定2:内错角相等,两直线平行.判定3:同旁内角互补,两直线平行.四、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.五、两条平行线间的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度叫做这两条平行线的距离,平行线间的距离处处相等.如图2,EF的长度就是AB和CD这两条平行线的距离题型一基础巩固例1(1)(二中广雅)如图,已知AB∥CD,CB平分∠ACD,且∠A:∠ACD=3:1,则∠B的度数为.(2)(武昌七校七下期中)如图,已知AB平行CD,能判断BE平行CF的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠1=∠2(3)如图AF∥CD,BC平分∠ACD,交AF于点B,点E在CD上,BD平分∠EBF,交CE的延长线于点D,且BD⊥BC,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠CDB=90°;④∠DBF=2=S△ABD.∠ABC;⑤S△BCEA.2个B.3个C.4个D.5个练1(1)两条直线被第三条直线所截,那么内错角之间的大小关系是()A.相等B.互补C.不相等D.无法确定(2)(二中广雅七下期中)如图,∠1=∠2,且∠3=105°,则∠4的度数为()A.75°B.62°C.82°D.108°(3)(武昌七校七下期中)完成下面的推理填空:如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,求证:∠GDC=∠B.证明:∵AD⊥BC,EF⊥BC(已知),∴∠ADB==90°(垂直的定义),∴AD∥EF()∴(),又∠2+∠3=180°(已知),∵∠1=∠3(同角的补角相等),∴∥(),∴∠GDC=∠B().模块二四大模型之“铅笔”“猪蹄”模型知识导航四大模型之模型一:“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC=360°,则AB∥CD.四大模型之模型二:“猪蹄”模型点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠PFC;结论2:若∠P=∠AEP+∠PFC,则AB∥CD.题型一“铅笔”与“猪蹄”的证明例2(1)若AE∥CF,求证:∠P+∠AEP+∠PFC=360°.(2)若AE∥CF,求证:∠P=∠AEP+∠PFC.(2)若∠P=∠AEP+∠PFC,求证:AE∥CF.题型二“铅笔”“猪蹄”基础应用例3(1)(七一月考)已知EF∥MN,一直角三角板如图放置,∠ACB=90°.①如图1,若∠1=60°,则∠2=度;②如图2,若∠1=∠B-20°,则∠2=度.练2(1)若∠P+∠AEP+∠PFC=360°,求证:AE∥CF;.练3(1)如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于()A.100°B.60°C.40°D.20°(2)如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=.巅峰突破已知:如图,AF∥CD,求证:∠A+∠C+∠E=∠B+∠D+∠F.(2)(武昌区七下期中)如图,已知a∥b,∠1=100°,∠2=140°,则∠3=模块三四大模型之“臭脚”“骨折”模型知识导航四大模型之模型三:“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.四大模型之模型三:“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.题型一“臭脚”与“骨折”的证明例4(1)若AE∥CF,求证:∠P=∠AEP-∠CFP.(2)若AE∥CF,求证:∠P=∠CFP-∠AEP.练4(1)若∠P=∠AEP-∠CFP,则AE∥CF.(2)若∠P=∠CFP-∠AEP,求证:AE∥CF.题型二“臭脚”“骨折”基础应用例5(梅苑中学七下期中)已知直线AB∥CD,E是直线AB的上方一点,连接AE、EC ①如图1,求证:∠AEC+∠EAB=∠ECD;②如图2,AF平分∠BAE,CF平分∠DCE,且∠AFC比∠AEC的32倍少40°,直接写出∠AEC的度数.练5(1)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°(2)如图,已知a∥b,∠3=50°,则∠1+∠2=.例6★★如图,AC∥DE,∠EFG=∠A+∠E,试判断AB和FG的位置关系,井说明你的理由.练6如图,AB∥EF,∠B=50°,∠C=20°,∠E=130°,求证:BC∥DE.总结归纳所有的四大模型解决方法都是:转折角处画平行线(拐点+平行)“铅笔”模型“猪蹄”模型“骨折”模型“臭脚”模型典题示例已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF.【考点】“铅笔”“猪蹄”模型结合配套作业平行线四大模型(一)1.如图,∠1=∠2,且∠3=108°,则∠4的度数为()A.72°B.62°C.82°D.80°2.下列说法中,正确的有()①两点之间,线段最短;②在同一平面内,过一点有且只有一条直线与已知直线平行;③平行于同一直线的两条直线互相平行A.0个B.1个C.2个D.3个3.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=.4.如图,射线AC∥BD,∠A=70°,∠B=40°,则∠P=.第4题图第5题图5.(武珞路七下期中)如图,直线AB、CD、EF被直线GF所截,∠1=70°,∠2=110°,∠3=70°,求证:AB∥CD证明:∵∠1=70°,∠3=70°(已知)∴∠1=∠3()∴∥()∵∠2=110°,∠3=70°(已知)∴+=180°(等式性质)∴∥()∴AB∥CD.;请证明.②在图2中,∠BMF 、∠F 、∠FND 的数量关系为;请证明.7.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.6.(武昌区七下期末)如图,直线AB ∥CD ,①在图1中,∠BME 、∠E 、∠END 的数量关系为9.如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知//AB CD ,请问B Ð,D ∠,E ∠有何关系并说明理由;(2)如图(3)所示,已知//AB CD ,请问B Ð,E ∠,D ∠又有何关系并说明理由;(3)如图(4)所示,已知//AB CD ,请问E G +∠∠与B F D ++∠∠∠有何关系并说明理由8.如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质来求∠APC .(1)按小明的思路,求∠APC 的度数;(2)如图2,AB ∥CD ,点P 在射线OM 上运动,记∠PAB =α,∠PCD =β当点P 在B 、D 两点之间运动时,问∠APC 与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出∠APC 与α、β之间的数量关系.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=,求证:90︒∠-∠=BEG DFG;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K ,FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明.(不可以直接用三角形内角和180°)10、已知AB //CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出∠AEG 、∠CFG 与∠G 之间的数量关系__________.。
专题2.3 平行线四大模型专项训练(40道)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,涵盖了平行线四大模型的综合问题的所有类型!【模型1 “铅笔”模型】1.(2022·湖南·永州市剑桥学校七年级阶段练习)如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为( )A.55°B.60°C.65°D.70°2.(2022·贵州六盘水·七年级期中)如图所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γB.β+γ−αC.180°−α−γ+βD.180°+α+β−γ3.(2022·甘肃·北京师范大学庆阳实验学校七年级期中)如图,如果AB∥CD,那么∠B+∠F+∠E+∠D=___°.4.(2022·全国·七年级专题练习)如图所示,AB//CD,∠ABE与∠CDE的角平分线相较于点F,∠E=80°,求∠BFD的度数.5.(2022·全国·七年级专题练习)已知如图所示,AB//CD,∠ABE=3∠DCE,∠DCE=28°,求∠E的度数.6.(2022·全国·七年级)(1)问题情景:如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE//AB,∴∠APE+∠PAB=180°,∴∠APE=180°-∠PAB=180°-130°=50°∵AB//CD,∴PE//CD.……请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的解题思路,解答下面的问题:如图3,AD//BC,当点P在A、B两点之间时,∠ADP=∠α,∠BCP=∠β,则∠CPD,∠α,∠β之间有何数量关系?请说明理由.7.(2022·全国·七年级专题练习)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD= __________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是____________°.8.(2022·安徽合肥·七年级期末)问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.()所以∠A+∠APE=180°,∠C+∠CPE=180°.()因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.【模型2 “猪蹄”模型】9.(2022·全国·七年级)如图所示,直角三角板的60°角压在一组平行线上,AB∥CD,∠ABE=40°,则∠EDC=______度.10.(2022·河南平顶山·八年级期末)如图:(1)如图1,AB∥CD,∠ABE=45°,∠CDE=21°,直接写出∠BED的度数.(2)如图2,AB∥CD,点E为直线AB,CD间的一点,BF平分∠ABE,DF平分∠CDE,写出∠BED与∠F之间的关系并说明理由.(3)如图3,AB与CD相交于点G,点E为∠BGD内一点,BF平分∠ABE,DF平分∠CDE,若∠BGD=60°,∠BFD=95°,直接写出∠BED的度数.11.(2022·江苏常州·七年级期中)问题情境:如图①,直线AB∥CD,点E,F分别在直线AB,CD上.(1)猜想:若∠1=130°,∠2=150°,试猜想∠P=______°;(2)探究:在图①中探究∠1,∠2,∠P之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若∠1+∠2=325°,∠EPG=75°,求∠PGF的度数.12.(2022·山东聊城·七年级阶段练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.13.(2022·广东韶关·七年级期中)如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH//MN;(提示:可延长AC交MN于点P进行证明)(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;∠GAC,若∠AKB=∠ACD,(3)在(2)的条件下,如图3,BF平分∠DBM,点K在射线BF上,∠KAG=13直接写出∠GAC的度数.14.(2022·全国·九年级专题练习)如图所示,已知AB//CD,BE平分∠ABC,DE平分∠ADC,求证:∠E=12(∠A+∠C)15.(2022·浙江工业大学附属实验学校七年级期中)已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)16.(2022·全国·七年级)如图1,AB//CD,E是AB,CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.17.(2022·广东·高州市第一中学附属实验中学七年级阶段练习)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.18.(2022·河南·商丘市第十六中学七年级期中)已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是 ;因为AB∥CD,PH∥AB,所以PH∥CD,依据是 ;所以∠C=( ),所以∠APC=( )+( )=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.19.(2022·湖北武汉·七年级期末)如图1,点A在直线MN上,点B在直线ST上,点C在MN,ST之间,且满足∠MAC+∠ACB+∠SBC=360°.(1)证明:MN//ST;(2)如图2,若∠ACB=60°,AD//CB,点E在线段BC上,连接AE,且∠DAE=2∠CBT,试判断∠CAE与∠CAN的数量关系,并说明理由;(n为大于等于2的整数),点E在线段BC上,连接AE,若∠MAE=n∠CBT,则(3)如图3,若∠ACB=180°n∠CAE:∠CAN=______.20.(2022·重庆江北·七年级期末)如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF=100°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN−∠FNM的值;(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN分别交EG、FH 分别于点M、N,且∠FMN−∠ENM=50°,直接写出m的值.21.(2022·黑龙江哈尔滨·七年级期末)已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.22.(2022·广西柳州·七年级期中)已知直线a∥b,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB =∠2,∠PBF=∠3.(1)如图1,当点P在线段EF上运动时,试说明∠1+∠3=∠2;(2)当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).【模型3 “臭脚”模型】23.(2022·全国·八年级课时练习)(1)已知:如图(a),直线DE∥AB.求证:∠ABC+∠CDE=∠BCD;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?24.(2022·全国·七年级)已知,AE//BD,∠A=∠D.(1)如图1,求证:AB//CD;(2)如图2,作∠BAE的平分线交CD于点F,点G为AB上一点,连接FG,若∠CFG的平分线交线段AG于点H,连接AC,若∠ACE=∠BAC+∠BGM,过点H作HM⊥FH交FG的延长线于点M,且3∠E−5∠AFH=18°,求∠EAF+∠GMH的度数.25.(2022·广东·东莞市光明中学七年级期中)(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.26.(2022·浙江台州·七年级期末)如图,已知AD⊥AB于点A,AE∥CD交BC于点E,且EF⊥AB于点F.求证:∠C=∠1+∠2.证明:∵AD⊥AB于点A,EF⊥AB于点F,(已知)∴∠DAB=∠EFB=90°.(垂直的定义)∴AD∥EF,()∴__________=∠1()∵AE∥CD,(已知)∴∠C=________.(两直线平行,同位角相等)∵∠AEB=∠AEF+∠2,∴∠C=∠1+∠2.(等量代换)27.(2022·广东珠海·七年级期中)已知AM//CN,点B为平面内一点,AB⊥BC于B.(1)如图1,点B在两条平行线外,则∠A与∠C之间的数量关系为______;(2)点B在两条平行线之间,过点B作BD⊥AM于点D.①如图2,说明∠ABD=∠C成立的理由;②如图3,BF平分∠DBC交DM于点F,BE平分∠ABD交DM于点E.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.28.(2022·湖南·新田县云梯学校七年级阶段练习)①如图1,AB∥CD,则∠A+∠E+∠C=360°;②如图2,AB∥CD,则∠P=∠A−∠C;③如图3,AB∥CD,则∠E=∠A+∠1;④如图4,直线AB∥CD∥EF,点O在直线EF上,则∠α−∠β+∠γ=180°.以上结论正确的个数是()A.1个B.2个C.3个D.4个【模型4 “铅笔”模型】29.(2022·福建·浦城县教师进修学校八年级期中)如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=___________度.30.(2022·江苏·景山中学七年级阶段练习)如图,若AB//CD,则∠1+∠3-∠2的度数为______31.(2022·湖北·浠水县兰溪镇兰溪初级中学七年级期中)如图,已知AB//DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.32.(2022·全国·九年级专题练习)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为__________.33.(2022·全国·七年级)如图,如果AB∥EF,EF∥CD,则∠1,∠2,∠3的关系式__________.34.(2022·全国·九年级专题练习)已知AB//CD,求证:∠B=∠E+∠D35.(2022·浙江·七年级期中)为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC,CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=50°,∠C=75°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB//CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB//DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.36.(2022·山西晋中·七年级期中)综合与探究【问题情境】王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,EF//MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;【问题迁移】(2)如图2,射线OM与射线ON交于点O,直线m//n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动,①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由.②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.37.(2022·湖北武汉·七年级阶段练习)如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.38.(2022·全国·七年级专题练习)(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE 的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.39.(2022·江苏·扬州中学教育集团树人学校七年级阶段练习)已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为 .∠PAB=∠APD,求∠AND的度数.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+1240.(2022·浙江杭州·七年级期中)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.。
平行线相关模型模型一、拐角模型:图 1 图 2 图3已知:如图1,AB∥CD,则有∠BED=∠B+∠D证法一:如图2,过点E作EF∥AB,∴∠B=∠BEF,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D证法二:如图3,延长BE交CD于点G(或延长DE交AB于点G),∵AB∥CD,∴∠B=∠EGD,由三角形外角定理,可得∠BED=∠EGD+∠D,∴∠BED=∠B+∠D【注意】证法一中不要忽略对EF∥CD的证明.例题1:如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°例题2:如图,已知HD//GE,∠DAB=120°如图1.若∠BCG=20°,求∠B的度数如图2,∠BCG=∠BCF,AF平分∠BAH,∠BCG=20°,则∠F的度数是.如图3,P是AB上一点,Q是GE上一点,PN平分∠APQ,QN平分∠PQE,探究∠HAP与∠N的数量关系,并说明理由巩固练习:1、如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4为()A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°2.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC 与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.模型二、铅笔模型图 1 图 2 图3已知:如图1,AB∥CD,则∠B+∠BED+∠D=360°.证法一:如图2,过点E作EF∥AB,∴∠B+∠BEF=180°,∵AB∥CD,∴EF∥CD,∴∠D+∠FED=180°,∴∠B+∠BEF+∠FED+∠D=360°,即∠B+∠BED+∠D=360°.证法二:如图3,延长AB和DE交于点G,(或延长BE和CD),∴∠ABE+∠EBG=180°,∵AB∥CD,∴∠G+∠D=180°.由三角形的外角定理,得∠BED=∠G+∠EBG,∴∠ABE+∠BED+∠D=∠ABE+∠EBG+∠G+∠D=360°.例题1:如图,已知AE // CF ,∠P +∠AEP +∠PFC = _____________.例题2:已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.2、如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A.120°B.135°C.145°D.150度模型三、臭脚模型图1 图2已知:如图1,AB∥CD,则∠ABE=∠D+∠E.证明:如图2,延长EB交CD于点F(或延长AB与DE相交),∵AB∥CD,∴∠ABE=∠CFE,∵∠CFE=∠D+∠E,∴∠ABE=∠D+∠E.例题1:如图,已知AE∥CF,试求出∠P,∠AEP和∠CFP的数量关系.例题2:如图,AB∥CD,∠B=30°,∠O=∠C.则∠C=__________ .巩固练习:1、如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD=___________.模型四:骨折模型已知:如图,AB∥CD,则有∠B=∠D+∠E.证明:∵AB∥CD,∴∠B=∠BFD,∵∠BFD=∠D+∠E,∴∠B=∠D+∠E.例题1:已知直线AB∥CD,直线EF与AB、CD分别交于点M、N,点P在直线CD上,点Q是直线EF上一动点。
平行线四大模型
平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.
判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角相等,两直线平行.
判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角相等,两直线平行,
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);
若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).
另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
2、平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同
旁内角也有相应的数量关系,这就是平行线的性质.
性质1:
两条平行线被第三条直线所截,同位角相等.
简称:两直线平行,同位角相等
性质2:
两条平行线被第三条直线所截,内错角相等.
简称:两直线平行,内错角相等
性质3:
两条平行线被第三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角互补
本讲进阶平行线四大模型
模型一“铅笔”模型
点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
模型三“臭脚”模型
点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若∥,则∠=∠-∠或∠=∠-∠;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
模型四“骨折”模型
点P在EF左侧,在AB、CD外部“骨折”模型结论1:若∥,则∠=∠-∠或∠=∠-∠;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
巩固练习平行线四大模型证明
(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°
.
(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .
模块一平行线四大模型应用
例1
(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .
(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.
(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .
(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .
练
(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.
(2) (七一中学2015-2016七下3月月考)
如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .
例2
如图,已知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.
如图,已知AB ∥DE ,∠FBC =
n 1∠ABF ,∠FDC =n
1
∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;
(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).
例3
如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .
练
如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.
例4
如图,∠3==∠1+∠2,求证:∠A +∠B +∠C +∠D = 180°.
(武昌七校 2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().
A. 120°
B. 135°
C. 145°
D. 150°
模块二平行线四大模型构造
例5
如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则
∠GHM= .
练
如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .
已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.
练
已知AB∥EF,求∠l-∠2+∠3+∠4的度数.
(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的
关系.
(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.
(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.
如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.
挑战压轴题
(粮道街2015—2016 七下期中)
如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;
(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPB
Q
∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;
(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPB
Q
∠∠的值足否定值,请在图2中将图形补充完整并说明理由.
第一讲 平行线四大模型(课后作业)
1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).
A . 180°
B . 270°
C . 360°
D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =
32∠CDE ,∠ABF =3
2
∠ABE ,则∠E :∠F =( ).
A .2:1
B .3:1
C .4:3
D .3:2
3.如图3,己知AE∥BD,∠1=130°,∠2=30°,则∠C= .
4.如图,已知直线AB∥CD,∠C =115°,∠A= 25°,则∠E= .
5.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .
6.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .
7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .
8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.
9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.
10.已知,直线AB∥CD.
(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;
(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;
(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是 .。