第12章轴对称(八年级上双休练习)[1]
- 格式:doc
- 大小:147.50 KB
- 文档页数:4
第12章轴对称知识网络:轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.轴对称变换:由一个平面图形得到它的轴对称图形叫做轴对称变换.线段的垂直平分线的画法:线段的垂直平分线性质及判定:定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
性质:线段垂直平分线上的点与这条线段两个端点的距离相等.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.例1.如图,在△ABC中,AB=BC,M,N为BC边上的两点,并且∠BAM=∠CAN,MN=AN,求∠MAC的度数.例2.在△ABC中∠BAC是锐角,AB=AC,AD和BE是高,它们交于点H,且AE=BE;(1)求证:AH=2BD;(2)若将∠BAC改为钝角,其余条件不变,上述的结论还成立?若成立,请证明;若不成立,请说明理由;例3.如图,在ABC ∆中,AB=AC,P 为BC 上任一点,PM AB ⊥于M,PN AC ⊥于N,BD AC ⊥于D.求证:BD=PM+PN.例4.如图所示,在△ABC 中,AB=AC ,∠A=120°,AB•的垂直平分线MN•分别交BC 、AB 于点M 、N ,求证:CM=2BM .例5.在ABC ∆中,由A 点向BC 边引高线,垂足D 落在BC 上,如果2C B ∠=∠,求证:AC CD BD +=.例6.如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF .求证:∠BAF=∠ACF .例7.如图,△ABC 中,点D 、E 、F 分别在BC 、AB 、AC 上 ,BD=CF ,BE=CD ,AB=AC ,DG ⊥EF 于点G.求证:EG=FG课堂练习:1.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形;B.两个等边三角形;C.有一个角是100°,底相等的两个等腰三角形;D.有一条边相等,有一个内角相等的两个等腰三角形。
图130,请你求出其余两角30和120”;王华同学说:75和75”.还有一些同学也提出了不同的看法.)假如你也在课堂中,你的意见如何?为什么?75和75或30和120.30+α+α=180,75.75和75.++β=,3030180120.30和120.“分类讨论”,“考虑问题要全面”等能体现分类讨论思想的给.为顶点将平角五等份,并沿五等份的折线折叠,再等于().如图,一平面镜与水平面成45°角固定在水平桌面上,一小球以桌面向平面镜匀速滚去,则小球在平面镜里所成的像(的速度,做竖直向上运动 B. 以1m/s的速度,做竖直向下运动的速度,做竖直向上运动 D. 以2m/s的速度,做竖直向下运动如图,在Rt△ABC中,∠C=90°,直线BD交AC于上;然后再沿虚线上的半圆,再展开,则展开后二、填空题(每小题3分,共24分)1.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△的形状是___________.2. 如图6,DE是AB的垂直平分线,D是垂足,DE交BC于AC=18cm,则△AEC的周长为_______cm.3. 已知点A,B,C,D的坐标分别为A(-2,1),B(1,2),C(-2,-1),D(1,-2),则线段AB与CD关于______.4.在如图7的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠的顶点A,B,C,D按顺时针方向排列,若在平面直角坐标系内,、D两点对应的坐标,0),且A、C两点关于x中,∠B=∠C,FD⊥BC,________.__________.成轴对称且也以格点为顶点的三角A AB CC.3 D.4 6,则此等腰三角形的周长为()=90°,AB的垂直平分线交.的对称轴,如果AD∥BC(用直尺、圆规作图,保留作图痕迹,不写作法,不要求证明)2008年北京2004年雅典1988年汉城1980年莫斯科ABCD.如图1,在平面直角坐标系中,下列各中是点E关于x轴的对称点的是(加拿大澳大利亚瑞士乌拉圭A.加拿大、乌拉圭B.加拿大、瑞士、澳大利亚,请你找出格纸中所有与。
课标人教版八年级(上)数学检测试卷轴对称 A 卷(考试时间为60分钟,满分100分)姓名:______________一、填空题(每小题3分,共30分) 1.长方形的对称轴有___________条. 2.等腰直角三角形的底角为_____________.3.等边三角形的边长为a ,则它的周长为_____________. 4.(-2,1)点关于x 轴对称的点坐标为__________.5.如图,∠A =36°,∠DBC =36°,∠C =72°,则图中等腰三角形有_______个. 6.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为____________.7.△ABC 中,AB 边上的中线CD 将△ABC 分成两个等腰三角形,则∠ACB =_______度. 8.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.9.在“线段,角,半圆,长方形,梯形,三角形,等边三角形”这七个图形中,是轴对称的图形有_______个.10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC ,有下列结论:①AB ∥CD ;②AB =CD ;③AB ⊥BC ;④AO =OC 其中正确的结论是_______________. (把你认为正确的结论的序号都填上)二、选择题(每小题3分,共30分)11.下列平面图形中,不是轴对称图形的是( )12.下列英文字母属于轴对称图形的是( )(A )(B )(C )(D )ABC D第5题第6题ABDCE第10题ABCDl O(A ) N (B ) S (C ) H (D ) K13.下列图形中对称轴最多的是( )(A )圆 (B )正方形 (C )等腰三角形 (D )线段14.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )(A )∠B =∠C (B )AD ⊥BC (C )AD 平分∠BAC (D )AB =2BD15.△ABC 中,AB =AC .外角∠CAD =100°,则∠B 的度数( )(A )80° (B )50° (C )40° (D )30°16.等腰三角形的一个角是80°,则它的底角是( )(A )50° (B ) 80° (C ) 50°或80° (D ) 20°或80°17.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.18.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB =8m ,∠A =30°,则DE 等于( )(A )1m (B ) 2m (C )3m (D ) 4m19.以下叙述中不正确的是( )A 、等边三角形的每条高线都是角平分线和中线B 、有一内角为 60的等腰三角形是等边三角形C 、等腰三角形一定是锐角三角形D 、在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等。
八年级数学轴对称同步练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学轴对称同步练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学轴对称同步练习题(word版可编辑修改)的全部内容。
人教新课标八年级数学(上)自主学习达标检测(二)(轴对称)(时间90分钟满分100分)班级学号姓名得分一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..不..与其他三个同?请指出这个图形,并说明理由.答:这个图形是: (写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在 Rt △ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形。
7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何?请用一句话表示: .10.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形。
【关键字】试题第12章《轴对称图形》一、选择题1.下列标志中,可以看作是轴对称图形的是()2.正方形对称轴的条数是()A.1B.1C.1D.13.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD是线段AB的笔直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()6.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°7.在等腰△ABC中,AB=AC,其周长为,则AB边的取值范围是()A.<AB<B.<AB<C.<AB<D.<AB<10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于()A.72°B.C.144°D.72°,或9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA 的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()cmB.5.5C.6.5D.710.如图所示,已知△ABC和△ADE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AG与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论个数()A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=___cm.12.如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B=___.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为___.14.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是___.15.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=___.16.如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于BC的长为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为___.17.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距___m.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是___.三、解答题19.在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.如图,△ABC与△DEF关于直线l对称,请用无刻度的直尺,在下面两个图中分别作出直线l.21.如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,求当BP的长等于多少时,点P与点Q重合?22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC 的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)若CD=2,求DF的长.26.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点.(2)将如图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形.(3)将如图1中△BCE绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC ) (1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度. (2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立? (3)深入探究: Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案: 一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,β=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D . F D C B A 图① F D C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B D A DC B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 图1 C B A E F 图2 C B A E 图3C B A9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°. 13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m.18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形. 20.如图1和2所示中的直线l 21.设BP =x ,在Rt △PBE 中,∠BPE Rt △G F O D C B AE M NEFC中,∠FEC=30°,所以FC=12EC=1-14x,所以AF=2-FC=2-(1-14x)=1+14x,同理,AQ=12AF=12+18x,当点P与点Q重合时,有BP+AQ=2,即x+(12+18x)=2,解得x=43,故当BP=43时,点P与点Q重合.22.(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM =CD.又∵CD=CB,∴AM+DM=BC.23.(1)∠ABC=90°时,PR=7.证明:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=312,RB=OB=312,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×312=7.(2)PR的长度是小于7.理由:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×312=7,∴PR<7.24.(1)①②、①③.(2)选①②证明如下:在△BOE和△COD中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,∴△BOE≌△COD(AAS),∴BO=CO,∠OBC=∠OCB,∴∠EOB+∠OBC =∠DOC+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.25.(1)∵三角形ABC为等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.26.(1)∵点M为DE的中点,∴DM=ME.∵AD∥EN,∴∠ADM=∠NEM,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点.(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠CAN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45+∠MEN+∠BED=∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE,△BCE,△BEF,△CEF.(3)如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
专题训练全等三角形的基本模型▶模型一从教材数学活动(P53)中的筝形,探究全等基本轴对称模型1.定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.(1)在同一平面内,△ABC与△ADE按图②所示的方式放置,其中∠B=∠D=90°,AB=AD,BC与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由;(2)请你结合图①,写出筝形的一个判定方法(定义除外):在四边形ABCD中,若,则四边形ABCD是筝形.2.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,P是对角线AC上除A,C外的任意一点.求证:∠ABP=∠ADP.常见的轴对称模型还有(如图):▶模型二全等基本旋转模型之一——中点加倍型基本模型:如图①,D是BC的中点,DE=AD.模型变形1:如图②,D是BC的中点,CF⊥AD,BE⊥AD.模型变形2:如图③,D是BC的中点,MD=DN.3.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,则AD的取值范围是.4.如图,在△ABC中,AD是中线,CE⊥AD于点E,BF⊥AD交AD的延长线于点F.求证:BF=CE.5.如图所示,∠BAC=∠BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:∠CAD=∠CAE.6.如图,已知AD是△ABC的中线,AM⊥AB,AM=AB,AN⊥AC,AN=AC.求证:MN=2AD.常见的旋转模型还有(如图):▶模型三一线三等角模型常见的一线三等角模型:7.探究:如图①,点B,C分别在∠MAN的边AM,AN上,点E,F在∠MAN内部的射线AD 上,∠1,∠2分别是△ABE,△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.拓展:如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD 上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.8.(1)如图①,在△ABC中,∠BAC=90°,AB=CA,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=CA,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角,则结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.答案1.解:(1)四边形ABFD 是筝形. 理由:连接AF .在Rt △AFB 和Rt △AFD 中,{AF =AF ,AB =AD ,∴Rt △AFB ≌Rt △AFD (HL).∴BF=DF . 又∵AB=AD ,∴四边形ABFD 是筝形.(2)答案不唯一,如图AD=CD ,∠ADB=∠CDB 2.证明:在△ABC 和△ADC 中,{AB =AD ,AC =AC ,CB =CD ,∴△ABC ≌△ADC (SSS). ∴∠BAC=∠DAC.在△BAP 和△DAP 中,{AB =AD ,∠BAP =∠DAP ,AP =AP ,∴△BAP ≌△DAP (SAS). ∴∠ABP=∠ADP .3.1.5<AD<6.5 如图,延长AD 到点E ,使DE=AD ,连接BE.∵AD 是△ABC 的中线, ∴BD=CD.在△ADC 和△EDB 中,{CD =BD ,∠ADC =∠EDB ,AD =ED ,∴△ADC ≌△EDB (SAS).∴AC=EB. ∵AB-EB<AE<AB+EB , ∴AB-AC<2AD<AB+AC. ∵AB=8,AC=5,∴1.5<AD<6.5.4.证明:∵CE⊥AD,BF⊥AD,∴∠CED=∠BFD=90°.∵AD是△ABC的中线,∴BD=CD.在△BFD和△CED中,{∠BFD=∠CED,∠BDF=∠CDE, BD=CD,∴△BFD≌△CED(AAS).∴BF=CE.5.证明:如图,延长AD到点F,使得DF=AD,连接CF.∵AD为△ABC中BC边上的中线,∴BD=CD.在△ADB和△FDC中,{AD=FD,∠ADB=∠FDC, BD=CD,∴△ADB≌△FDC(SAS).∴AB=CF,∠B=∠DCF.∵CE=AB,∴CE=CF.∵∠ACE=∠B+∠BAC,∠ACF=∠DCF+∠BCA,∠BAC=∠BCA,∴∠ACE=∠ACF.在△ACF和△ACE中,{AC=AC,∠ACF=∠ACE, CF=CE,∴△ACF≌△ACE(SAS).∴∠CAD=∠CAE.6.证明:如图,延长AD至点E,使DE=AD,连接BE.∵AD是△ABC的中线,∴BD=CD.在△BDE 和△CDA 中,{BD =CD ,∠BDE =∠CDA ,DE =DA ,∴△BDE ≌△CDA (SAS). ∴BE=AC=AN ,∠DBE=∠DCA. ∴AC ∥BE.∴∠ABE+∠BAC=180°. ∵∠BAM=∠CAN=90°, ∴∠MAN+∠BAC=180°. ∴∠ABE=∠MAN.在△ABE 和△MAN 中,{AB =MA ,∠ABE =∠MAN ,BE =AN ,∴△ABE ≌△MAN (SAS).∴AE=MN. ∵AE=2AD ,∴MN=2AD. 7.解:探究:证明:∵∠1=∠2=∠BAC ,且∠1=∠BAE+∠ABE ,∠2=∠CAF+∠ACF ,∠BAC=∠BAE+∠CAF ,∴∠BAE=∠ACF ,∠ABE=∠CAF . 在△ABE 和△CAF 中,{∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF (ASA). 拓展:∵∠1=∠2=∠BAC ,且∠1=∠BAE+∠ABE ,∠2=∠CAF+∠ACF ,∠BAC=∠BAE+∠CAF , ∴∠BAE=∠ACF ,∠ABE=∠CAF . 在△ABE 和△CAF 中,{∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF (ASA).∴S △ABE =S △CAF . ∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD=2BD ,△ABC 的面积为15, ∴S △ACD =10. ∴S △ABE +S △CDF =10.8.解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA=∠AEC=90°.∴∠BAD+∠ABD=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∴∠CAE=∠ABD.在△ADB和△CEA中,{∠ABD=∠CAE,∠BDA=∠AEC, AB=CA,∴△ADB≌△CEA(AAS).∴BD=AE,AD=CE.∴DE=AE+AD=BD+CE.(2)成立.证明:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠EAC=180°-α.∴∠DBA=∠EAC.在△ADB和△CEA中,{∠DBA=∠EAC,∠BDA=∠AEC, AB=CA,∴△ADB≌△CEA(AAS).∴BD=AE,AD=CE.∴DE=AE+AD=BD+CE.。
1.2轴对称的性质
1•如图,下列图案是我国几家银行的标志,其中是轴对称图形的有
® © O ©
A B 、2 个 C 、3 个D 、4 个
2.在厶ABC中,AB=AC BC=5cm作AB的中垂线交另一腰AC于D, 连结BD 如果△ BCD的周长是17cm则腰长为
A、12cm
B、6 cm
C、7 cm 5 cm
3•下列说法中,正确说法的个数有
①角是轴对称图形,对称轴是角的平分线; ②等腰三角形至少有1条对称轴,至多有3
条对称轴;③关于某直线对称的两个三角形, ,定是全等三角形;④两图形关于某直线对称,
对称点一定在直线的两旁
4. _________________________________________________ 圆的对称轴是 _ ,它有条对称轴.
5. ________________________ 观察下图形,你觉得比较特别,简述理由是
⑴
6. __________ 在锐角/ AOB内有一点P,点P关于OA OB的对称点分别为E、F, 则厶EOF —定是___________ 三角形.
7•如图,△ ABC 中,/ BAC=110°, E、G 分别为AB、AC 中点,DE 丄AB , FG 丄AC,求/ DAF .
8•在课外活动中,小明发明了一个在直角三角形中画锐角的平分线的方法,他的方法是:如图所示,在斜边AB上取一点E,使BE=BC,过点E作ED丄AB,交AC于D,那么BD就
是/ ABC的平分线,你认为对吗?为什么?
E
D
S发出的经平面镜反射后的反射光线,请通过画9•如图,DA、CB是平面镜前同一发光点图
确定发光点S的位置,并将光路图补充完整。
第十二章 轴对称一、填空题(每小题2分,共20分)1、 等腰三角形是 对称图形,它至少有 条对称轴.2、等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为 _______________ .3、已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 ___________.4、直线y=kx+4与坐标轴围成的三角形是等腰三角形,则k=5、已知点P(一3,2),点P 关于X 轴的对称点坐标为 ____6、Rt △ABC 中,∠ACB=90°,CD 是高,∠A=30°,BD=5cm ,则AB=7、观察上图中的图片,请说出图中小亮衣服上的数字是:8、如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为 9、已知点A(一2,4),B(2,4),C(1,2),D(-1,2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 ____________组对称三角形.10、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是 二、选择题(每小题3分,共18分)第6B ADC12、下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等.(B)两个大小一样的圆形纸片随意平放在水平桌面上构成轴对称图形. (C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线. (D)等腰三角形一边上的高、中线及这边对角平分线重台.13、将长方形ABCD 沿折痕EF 折叠,使CD 落在GH 的位置,若∠BGH=55°,则∠HEF=( ) (A)55° (B) 65°(C)72.5 (D)75° 12、等腰三角形的一个内角是50。
第十二章 《轴对称》测试题一、选择题(每小题4分,共40分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D : 2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、下列图形中对称轴最多的是( )A :等腰三角形B :正方形C :圆D :线段 4、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )A :2 ㎝B :4 ㎝C :6 ㎝D :8㎝ 5、下列说法正确的是( )A :等腰三角形的高、中线、角平分线互相重合B :顶角相等的两个等腰三角形全等C :等腰三角形的两个底角相等D :等腰三角形一边不可以是另一边的二倍 6、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对7、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则∆EBC 的周长为( )厘米A :16B :18C :26D :28 8、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ) A :90° B : 75° C :70° D : 60° 9、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ) A :75°或15° B :75° C :15° D :75°和30° 10、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ) A :1个 B :2个 C :3个 D :4个 二、填空题(每小题4分,共40分)CEBDAl OCBDACAFE11、在数字0、2、4、6、8中是轴对称图形的是 ; 12、等腰三角形一个底角是30°,则它的顶角是__________度;13、等腰三角形的一边长是6,另一边长是3,则周长为________________;14、等腰三角形的一内角等于50°,则其它两个内角各为 ;15、如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= ㎝;16、如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________; 17、如图:点P 为∠AOB 内一点,分别作出P 点关于OA连接P 1P 2交OA 于M ,交OB于N ,P 1P 2=15,则△PMN18、点E (a,-5)与点F (-2,b )关于y 轴对称,则b= ;19、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 ; 20、如图:是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC,AB=8m,∠A=30°,则DE 等于 ; 三、解答题(共70分)21、(5分)如图:A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送 到A 、B 两地,问该站建在河边什么地方,•可使所修的渠 道最短,试在图中确定该点(保留作图痕迹) 22、(5分)如图:某地有两所大学和两条相交叉的公路, (点M ,N 表示大学,AO ,BO 表示公路).现计划修建 一座物资仓库,希望仓库到两所大学的距离相等,到 两条公路的距离也相等。
(第5题图)(第6题图)(第9题图)(第10题图)八年级数学基础测试题(第十二章《轴对称》测试题 练习时间60分钟)班别 姓名 学号 成绩(一)、精心选一选(每题4分,共24分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )A :2 ㎝B :4 ㎝C :6 ㎝D :8㎝ 4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 5、如图,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :286、如图,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出 下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个(二)、细心填一填(每小题4分,共24分) 7、等腰三角形的一边长是6,另一边长是3,则 周长为 ________________;8、等腰三角形的一内角等于50°,则其它两个内角各为 ;9、如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= ㎝;10、如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________;CEBDAl OCBDAC BA1(第12题图)11、点E (a,-5)与点F (-2,b )关于y 轴对称,则a= ,b= ; 12、如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=8m,∠A=30°,则DE 等于 ; (三)、用心做一做(共52分)13、(6分)如图,某地有两所大学和两条相交叉的公路,(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
第12章轴对称测试题(八年级上)
一、选择题
1. (2008年省青岛市)下列图形中,轴对称图形的个数是()
A.1 B.2 C.3 D.4
2.下列说法中错误的是()
A成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴
B关于某条直线对称的两个图形全等
C全等的三角形一定关于某条直线对称
D若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称
3.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()
A.17cm B.22cm C.17cm或22cm D.18cm
4.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()
A.40°B.50°C.60°D.30°
5.等腰三角形的一个外角是80°,则其底角是()
A.100°B.100°或40°C.40°D.80°
6.已知:在△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC 的关系为()
A.平行 B.AO垂直且平分BC
C.斜交
D.AO垂直但不平分BC
7.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数是()
A.35°
B.40°
C.70 °
D.110°
8.下列叙述正确的语句是( )
A.等腰三角形两腰上的高相等
B.等腰三角形的高、中线、角平分线互相重合
C.顶角相等的两个等腰三角形全等
D.两腰相等的两个等腰三角形全等
9.如图2,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().
①点P在∠A的平分线上; ②AS=AR;③QP∥AR;
④△BRP≌△QSP.
A.全部正确; B.仅①和②正确;
C.仅②③正确; D.仅①和③正确
10.△ABC为等腰直角三角形,∠C=90°,D为BC上一点,且AD=2CD,则∠DAB=(). A.30° B.45° C.60° D.15°
二、填空题
11. 如图,OE是∠AOB的平分线, AC⊥OB于点C, BD⊥OA于点D,则关于
直线OE对称的三角形有对.
12 .从商场试衣镜中看到某件名牌服装标签上的后5
位编码是:
则该编码实际上是.
13.在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,CD=6cm,
则点D
到
AC
的距离为______cm
14.如图3,在△ABC中BC=5cm,BP、CP分别是∠ABC和∠ACB
的角的平分线,且PD∥AB,PE∥AC,则△PDE的周长是_______cm
15.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=
∠DAE=∠EAC,则图中等腰三角形有______个
16.如图4,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC
或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有____个17.观察规律并填空:
18.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______.
三、解答题
19.(6分)如图5,设点P是∠AOB内一个定点,分别画点P关于OA、OB的对称点P1、P2,连结P1P2交于点M,交OB于点N,若P1P2=5cm,则△PMN的周长为多少?
20.(6分)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,•求这个等腰三角形的底边长.
B
A
P
C
D E
图 3
A
B C
图4
21.(6分)已知:如图6,D、E是△ABC中BC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明
22.(6分)如图7,已知:△ABC的∠B、∠C的外角平分线交于点D。
求证:AD是∠BAC的平分线。
23.(8分)如图,五边形ABCDE中AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.•求证:AF⊥CD.
24.(10分)如图9,△ABC是边长为1的等边三角形,BD=CD,
∠BDC=120°,E、F分别在AB、AC上,且∠EDF=60°
,求△AEF的周长.21、(10分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线。
求证:BE=BD。
22、(10分)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE。
求证:△ABC是等腰三角形。
(过D作DG∥AC交BC于G)
B
A
D C E
D
C
B
A
F
E
参考答案: 一、选择题
1.B 2、C , 3.B , 4.A , 5.C , 6、B , 7、B , 8、A , 9.A 提示:连结AP .综合运用全等三角形、平行线、角的平分线的性质、•等腰三角形的性质证△PRA ≌△PSA ,AR=AS 来解决问题. 10.D 解析:如答图所示.
∵△ACB 是等腰直角三角形, ∴∠CAB=∠B=45°.
在Rt △CAD 中,∵CD=1
2
AD ,
∴∠CAD=30°,
∴∠DAB=45°-30°=15°.
提示:在直角三角形中,若一条直角边等于斜边的一半,则这条直角边所对的角为30°. 二、填空题
11.4 12.BA629 13.4 14.5 15.6 16. 6 17.解析:观察可
知本题图案是由相同的偶数数字构成的轴对称图形,故此题答案为6组成的轴对称图形. 18.1cm 。
三、解答题
19. 解:△PMN 的周长为P 1P 2的长,即为5cm 20. 解:如答图所示. 设AD=DC=x ,BC=y ,
由题意得212,21,x x y x +=⎧⎨
+=⎩ 或221,
12,
x x y x +=⎧⎨+=⎩
解得4,17x y =⎧⎨
=⎩ 或7,5.x y =⎧⎨=⎩
当时4,
17
x y =⎧⎨
=⎩,等腰三角形的三边为8,8,17,显然不符合三角
形
的三边关系. 当时7,
5.x y =⎧⎨
=⎩
,等腰三角形的三边为14,14,5, ∴这个等腰三角形的底边长是5.
答案:5
提示:①分情况讨论;①考虑三角形的三边关系.
21. 解:本题答案不唯一,增加一个条件可以是:EC=BD ,或AB=AC ,或BE=CD ,或∠B=∠C 或∠BAD=∠CAE 或∠BAE=∠CAD 等。
证明过程略
20. 解:分别过D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分
别为E 、F 、G ,
∵BD 平分∠CBE ∴DE=DF
同理DG=DF
∴DE=DG
∴点D 在∠EAG 平分线上 ∴AD 是∠BAC 的平分线
22. 证明:连接AC 、AD 在△ABC 和△AED 中
()()()AB AE ABC AED BC ED =⎧⎪
∠=∠⎨⎪=⎩
已知已知已知 ∴△ABC ≌△AED (SAD ) ∴AC=AD (全等三角形的对
应边相等)
又∵△ACD 中AF 是CD 边的中线(已知)
∴AF ⊥CD (等腰三角形底边上的高和底边上的中线互相重合) 23. 解:延长AC 至点P ,使CP=BE ,连接PD .
∵△ABC 是等边三角形
·P A O B P 2 P 1
M N
A
B
C D
E F
G
E
D
A
B F
∴∠ABC=∠ACB=60°
∵BD=CD,∠BDC=120°
∴∠DBC=∠DCB=30°∴∠EBD=∠DCF=90°∴∠DCP=∠DBE=90°
在△BDE和△CDP中
BD CD
DBE DCP BE CP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△BDE≌△CDP(SAS)
∴DE=DP,∠BDE=∠CDP
∵∠BDC=120°,∠EDF=60°
∴∠BDE+∠CDF=60°∴∠CDP+∠CDF=60°∴∠EDF=∠PDF=60°
在△DEF≌△DPF中
DE DP
EDF PDF DF DF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△DEF≌△DPF(SAS)∴EF=FP ∴EF=FC+BE ∴△AEF的周长=AE+EF+AF=AB+AC=2. E
D
C
B
A
P
F。