八年级数学轴对称单元测试题及答案
- 格式:doc
- 大小:105.00 KB
- 文档页数:2
人教版八年级数学上册 《第十三章 轴对称》单元测试卷一、选择题(共8小题,4*8=32)1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 43.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的两个底角相等D .等腰三角形一边不可以是另一边的2倍4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 的长为( )A .2B .3C .4D .以上都不对5.如图,在△ABC 中,AB =AC ,∠A =36°,BD ,CE 分别为∠ABC 与∠ACB 的角平分线,BD ,CE 相交于点F ,则图中的等腰三角形有( )A .6个B .7个C .8个D .9个6.如图,在已知的△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12 BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A.90° B.95° C.100° D.105°7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10 B.8 C.6 D.48.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,4*6=24)9.如图,△ABC沿着直线MN折叠后,与△DEF完全重合,AC,DF交于点P.△ABC与△DEF 关于直线_______对称,直线MN是_________;10.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为点D,则∠EBC的度数为_____.11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C 落在C′处,连接BC′,则BC′的长为________.12.已知a>0,b<0,则点P(a+1,b-1)关于y轴的对称点一定在第__ __象限.13.如图,在三角形纸片ABC中,∠C=90°,∠A=30°,AC=6,折叠该纸片,使点C落在AB边上的点D处,折痕BE与AC交于点E,则折痕BE的长为__ __.14.如图,在四边形ABCD中,AB=BC=CD=AD,点D到AB的距离为3,∠BAD=60°,点F为AB的中点,点E为AC上的任意一点,则EF+EB的最小值为________.三、解答题(共5小题,44分)15.(6分) 如图,在△AOB中,点C在OA上,点E,D在OB上,且CD∥AB,CE∥AD,AB=AD,求证:△CDE是等腰三角形.16.(8分) 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC +∠BCF=150°,求∠AFE+∠BCD的大小.17.(8分) 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.18.(10分) 如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.19.(12分) (1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC 得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.因此,AB,AD,DC之间的等量关系是__ __;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1-4DCCA 5-8CDCD9.MN,对称轴10.100°11.312.三13.414.315.解:∵CD∥AB,∴∠CDE=∠B.又∵CE∥AD,∴∠CED=∠ADB,又AB=AD,∴∠B=∠ADB,∴∠CDE=∠CED,∴△CDE是等腰三角形16.解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∠AFC+∠BCF =150°,∴∠AFC=∠EFC,∠BCF=∠DCF,∴∠AFE+∠BCD=2(∠AFC+∠BCF)=300°17.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD=120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB18.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD =60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB -∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF=CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.19.解:(1)AD=AB+DC(2)AB=AF+CF.证明如下:如图,延长AE交DF的延长线于点G,∵AB∥DC,∴∠BAE =∠G,又∵BE=CE,∠AEB=∠GEC,∴△AEB≌△GEC(AAS),∴AB=GC.∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵∠BAG=∠G,∴∠FAG=∠G,∴AF=FG.∵CG=FG+CF,∴AB=AF+CF。
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
人教版数学八年级上学期《轴对称》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图案中,不是轴对称图形的是()A.B.C.D.2.(2018·河北初二期中)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.53.(2018·河北初二期中)如图,AB的垂直平分线分别交AB、AC于点D、E,AC=9,AE:EC=2:1,则点E到点B的距离为()A.5 B.6 C.7 D.8关于直线MN的轴对称图形,其中正确的是( ) 4.(2019·江苏初二期中)下面是四位同学作ABCA.B.C.D.5.(2019·江苏初二期中)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC 为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个6.(2019·江苏省盐城市初级中学初二期中)如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC。
一定成立的是()A.②④B.②③C.①③D.①②7.(2019·山东初二期中)等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ).A.12cm B.15cm C.12cm或15cm D.18cm或36cm8.(2019·山东初二期中)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC 的周长为()A.14cm B.13cm C.11cm D.9cm9.(2017·广东初二月考)下列各点中,到三角形各顶点的距离相等的是()A.三个内角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高线的交点10.(2019·湖北初二期中)上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为()A .45n mileB .30n mileC .20n mileD .15n mile二、填空题(每小题4分,共24分)11.(2019·南京市浦口外国语学校初二期中)如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =5 cm ,CD =3.5 cm ,则四边形ABCD 的周长为_____cm .12.(2019·如东县新店镇初级中学初二期中)如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠BAD =34°,则∠C =_________°.13.(2019·安徽初二期中)如图,ABC △与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.(2019·广西初二期中)如图,在ABC ∆中,DE 垂直平分AC ,若BCD ∆的周长是12,4BC =,则AB 的长______.15.(2019·北京市三帆中学初二期中)如图,在Rt △ABC 中,90B =∠ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知40C ∠=,则BAE ∠的度数为_________。
第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。
人教版八年级上册《轴对称》单元测试卷考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是( )A .B .C .D .2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形3.(2018·河北初二期中)点P(2,﹣3)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( ) A .(2,﹣3) B .(﹣2,3) C .(﹣2,﹣3) D .(﹣3,﹣2)4.(2018·河北初二期中)如图,在△A B C 中,D E 是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是( )A .4B .6C .8D .107.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .1008.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠C B .AD ⊥B C C .A D 平分∠B A C D .A B =2B D9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .1010.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m . 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长. 18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.19.(2019·江苏初二期中)如右图,已知点P 是线段MN 外一点,请利用直尺和圆规画一点Q ,使得点Q 到M 、N 两点的距离相等,且点Q 与点M 、P 在同一条直线上.(保留作图痕迹)四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F =60°,且∠ED F 两边分别交边A B ,A C 于点E ,F ,求证:B E =A F .21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E ⊥A B 于点E ,D F ⊥A C 于点F ,连接EF 交A D 于点O .求证:A D 垂直平分EF .22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF 垂直平分A C ,交A C 于点F,交B C 于点E,且B D=D E .(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l 成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为 ;(3)在直线l 上找一点P ,使P A +PB 的长最短.24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.25.(2019·江苏初二期中)如图所示,点O是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△AB C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.参考答案一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是()A .B .C .D .[答案]A[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]A .不是轴对称图形,故本选项符合题意;B .是轴对称图形,故本选项不符合题意;C .是轴对称图形,故本选项不符合题意;D .是轴对称图形,故本选项不符合题意.故选A .[点睛]本题考查了轴对称图形的概念,掌握轴对称图形的概念是解答本题的关键.2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是() A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形[答案]B[解析]本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.[详解]如图,∵D E⊥A B ,D F⊥A C ,∴∠B ED =∠D FC =90°,∵在△B D E和△C D F,B D =CD ,D E=D F,∴△D B E≌△D FC (HL),∴∠B =∠C ,∴A B =A C ,∴这个三角形一定是等腰三角形.故选B .[点睛]本题考查等腰三角形的判定;解题中两次运用了全等三角形的判定与性质及等量加等量和相等是比较关健的.3.(2018·河北初二期中)点P(2,﹣3)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,﹣2)[答案]B[解析]根据平面直角坐标系中对称点的规律解答即可.[详解]解:点P(2,﹣3)关于x轴的对称点是P1(2,3),P1关于y轴的对称点坐标P2的坐标为(﹣2,3).故选:B .[点睛]本题考查了坐标系中对称点的相关知识,难度不大,属于基本题型,熟知对称点的规律是解题的关键. 4.(2018·河北初二期中)如图,在△A B C 中,D E是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m[答案]C[解析]先根据线段垂直平分线的性质得到D A =D C ,再根据三角形的周长公式计算即可.[详解]解:∵D E是A C 的垂直平分线,∴D A =D C ,∵△A B D 的周长为14C m,∴A B +B D +A D =14C m,∴A B +B D +C D =14C m,即A B +B C =14C m,∴△A B C 的周长=A B +B C +A C =22C m,故选:C .[点睛]本题主要考查了线段垂直平分线的性质和三角形周长的计算,属于常考题型,熟练掌握线段垂直平分线的性质是关键.5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形[答案]B[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]解:A 、两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B 、两个轴对称的三角形,一定全等,正确,故本选项正确;C 、三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误,故本选项错误;D 、三角形的一条高把三角形分成以高线为轴对称的两个图形,错误,故本选项错误.故选:B .[点睛]本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是()A .4B .6C .8D .10[答案]C[解析]分A B 是腰长时,根据网格结构,找出一个小正方形与A 、B 顶点相对的顶点,连接即可得到等腰三角形,A B 是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,A B 垂直平分线上的格点都可以作为点C ,然后相加即可得解.[详解]解:如图,分情况讨论:①A B 为等腰△A B C 的底边时,符合条件的C 点有4个;②A B 为等腰△A B C 其中的一条腰时,符合条件的C 点有4个.故选:C .[点睛]本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.7.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .100[答案]A [解析]过B 作B N ⊥A C 于N ,B M ⊥A D 于M ,根据折叠得出∠C 'A B =∠C A B ,根据角平分线性质得出B N =B M ,根据三角形的面积求出B N ,即可得出点B 到A D 的最短距离是4,得出选项即可.[详解]如图:过B 作B N ⊥A C 于N ,B M ⊥A D 于M .∵将△A B C 沿A B 所在直线翻折,使点C 落在直线A D 上的C '处,∴∠C 'A B =∠C A B ,∴B N =B M . ∵△A B C 的面积等于6,边A C =3,∴12×A C ×B N =6,∴B N =4,∴B M =4,即点B 到A D 的最短距离是4,∴B P 的长不小于4,即只有选项A 的3.8不正确.故选A .[点睛]本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解答此题的关键是求出B 到A D 的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠CB .A D ⊥BC C .AD 平分∠B A C D .A B =2B D[答案]D [解析]在△A B C 中,A B =A C ,则△A B C 为等腰三角形,B D =C D ,则A D 为中线,根据等腰三角形的三线合一判断即可.[详解]∵在△A B C 中,A B =A C ,∴△A B C 为等腰三角形,∴∠B =∠C ,∵B D =C D ,∴A D ⊥B C ,A D 平分∠B A C ,不能得到A B =B C ,则无法证明A B =2B D ,故选D .[点睛]本题是对等腰三角形三线合一的考查,熟练掌握等腰三角形的三线合一性质是解决本题的关键. 9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .10[答案]D [解析]根据等腰三角形的性质和三角形的面积公式解答即可.[详解]连接A O .∵在△A B C 中,A B =A C =13,该三角形的面积为65,∴三角形A B C 的面积=△A B O 的面积+△A C O 的面积=12A B •ON +12A C •OM =12A B •(ON +OM ) ∴12×13×(ON +OM )=65 解得:OM +ON =10.故选D .[点睛]本题考查了等腰三角形的性质,关键是根据等腰三角形的性质和三角形的面积公式解答.10.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒[答案]C [解析]根据直角三角形两锐角互余可得∠B A C 的度数,根据题意可知MN 是线段A C 的垂直平分线,根据线段垂直平分线的性质得出A E =C E ,由等边对等角得出∠C A E =∠C =20°,即可得出结论. [详解]∵在Rt △A B C 中,∠B =90°,∠C =20°,∴∠B A C =70°.∵D E 垂直平分A C ,∴A E =C E ,∴∠C A E =∠C =20°,∴∠B A E =50°.故选C .[点睛]本题考查了作图﹣基本作图、线段垂直平分线的性质、等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m .[答案]37.[解析]由于等腰三角形的两边长分别是7C m,15C m,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.[详解]①当腰为15C m 时,三角形的周长为:15+15+7=37C m ;②当腰为7C m 时,7+7=14<15,三角形不成立;∴此等腰三角形的周长是37C m .故答案为:37.[点睛]本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键. 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.[答案]20°[解析]根据等腰三角形的性质得到∠A D C =48°,再根据三角形外角的性质和等腰三角形的性质可求∠B 的度数.[详解]解:∵A D =B D , ∠B =40°, ∴∠B A D =∠B =40°, ∴∠A D C =∠B +∠B A D =80°,∵A C =A D ,∴∠A D C =∠C =80°,∴∠D A C =180°-∠A D C -∠C = 20°,故答案为:20°.[点睛]本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.[答案]10.[解析]先根据角平分线的性质求出∠1=∠2,∠4=∠5,再根据平行线的性质求出∠1=∠3,∠4=∠6,通过等量代换可得,∠2=∠3,∠5=∠6,根据等腰三角形的判定定理及性质可得B E=OE,OF=FC ,即可解答.[详解]解:如图∵,BO CO 分别是ABC ACB ∠∠,的平分线,∴∠1=∠2,∠4=∠5,∵OE ∥A B ,OF ∥A C ,∴∠1=∠3,∠4=∠6,∴∠2=∠3,∠5=∠6,∴B E =OE ,OF =FC ,∴B C =B E +EF +FC =OE +EF +OF ,∵B C =10,∴OF +OE +EF =10∴△OEF 的周长=OF +OE +EF =10.[点睛]本题考查平行线的性质, 角平分线的定义, 等腰三角形的判定与性质.能结合角平分线的性质和平行线的性质判断△OEB 和△OFC 为等腰三角形是解决此题的关键.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.[答案]70°或40°.[解析]已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.[详解]此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为:70°或40°. [点睛]本题考查等腰三角形的性质, 三角形内角和定理.掌握分类讨论思想是解决此题的关键.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.[答案]52[解析]先求出C ∠的度数,然后利用对称性求出B[详解]解:∵A D ∥B C ,∴180D C ∠+∠=︒,∴180********C D ∠=︒-∠=-=又∵直线l 是四边形A B C D 的对称轴,∴52C B ∠=∠=故答案为:52.[点睛]主要考查了轴对称的性质及平行线的性质,正确理解相关性质是解答本题的关键.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.[答案]8C m[解析]根据A B =A C ,∠C =30°可得∠B =∠C =30°,∠B A C =120°,所以得出∠D A C =30°,所以A D =C D =4C m,然后在直角三角形A B D 中,30°角对应的直角边等于斜边的一半,所以B D =2A D ,进一步计算即可得出答案.[详解]∵A B =A C ,∠C =30°,∴∠B =∠C =30°,∠B A C =120°,∵DA BA ⊥,∴∠D A C =30°,又∵30C ∠=,∴A D =C D =4C m,在直角三角形A B D 中,∵∠B =30°,∴B D =2A D =8C m.[点睛]本题主要考查了直角三角形以及等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长.[答案]2或3或4[解析]根据等腰三角形的腰的情况分类即可.[详解]解:①若A B =A C =4∵ABC ∆周长是10∴B C =10-A B -A C =2,满足三角形的三边关系;②若A C =B C则A C =B C =12(10-A B )=3,满足三角形的三边关系; ③若B C =A B∴此时B C =A B =4∴A C =10-A B -B C =2,满足三角形的三边关系;综上所述:B C 的长是2或3或4[点睛]此题考查的是已知等腰三角形周长求边长,解决此题的关键是根据等腰三角形的腰的情况分类讨论及根据构成三角形的条件判断是否舍取.18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.[答案]A C 是线段B D 的垂直平分线.具体见解析.[解析]由A B =A D ,B C =C D ,根据线段垂直平分线的判定,可得:点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,又由两点确定一条直线,即可证得结论.[详解]A C 是线段B D 的垂直平分线.理由:∵A B =A D ,B C =C D ,∴点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,∴A C 是线段B D 的垂直平分线.[点睛]本题考查线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的性质.19.(2019·江苏初二期中)如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)[答案]作图见解析[解析]先作出MN的垂直平分线,然后连接P,M两点,并延长交MN的垂直平分线于一点,则交点为所求.[详解]解:先作MN垂直平分l,连接P,M两点,延长PM交l于点Q ,则Q点为所求.[点睛]此题主要考查线段的垂直平分线的作法,熟知线段垂直平分线上到线段两个端点的距离相等是解题关键.四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F=60°,且∠ED F两边分别交边A B ,A C 于点E,F,求证:B E=A F.[答案]见解析[解析]由等腰三角形三线合一的性质可得∠B A D =∠C A D =60°,由∠B A D =60°,A B =A D 证明△A B D 是等边三角形,得到B D =A D ,再由角的关系得∠A B D =∠D A C ,∠ED B =∠A D F,最后由角边角证明△B D E≌△A D F,由全等三角形的性质即可得出结论.[详解]连接B D ,如图所示:∵A B =A C ,A D ⊥B C ,∴∠B A D =∠C A D =12∠B A C .∵∠B A C =120°,∴∠B A D =∠C A D =60°.∵∠B A D =60°,A B =A D ,∴△A B D 是等边三角形,∴B D =A D ,∠A B D =∠A D B =60°.∵∠D A C =60°,∴∠A B D =∠D A C .∵∠ED B +∠ED A =∠ED A +∠A D F=60°,∴∠ED B =∠FD A .在△B D E与△A D F中,∵EBD DAFAD BDEDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△B D E≌△A D F(A SA ),∴B E=A F.[点睛]本题考查了等边三角形的判定与性质,全等三角的判定与性质和角的和差以及等腰三角形的性质,重点掌握全等三角形的判定与性质,难点是作辅助线构建全等三角形.21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E⊥A B 于点E,D F⊥A C 于点F,连接EF交A D 于点O.求证:A D 垂直平分EF.[答案]见解析[解析]由A D 为△A B C 的角平分线,得到D E=D F,推出∠A EF=∠A FE,得到A E=A F,根据等腰三角形三线合一的性质即可推出结论.[详解]∵A D 为△A B C 的角平分线,D E⊥A B ,D F⊥A C ,∴D E=D F,∠A ED =∠A FD =90°,∴∠D EF=∠D FE,∴∠A EF=∠A FE,∴A E=A F.∵A D 为△A B C 的角平分线,∴A D 垂直平分EF.[点睛]本题考查了角平分线的性质,等腰三角形的判定与性质,解答此题的关键是证A E=A F.22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF垂直平分A C ,交A C 于点F,交B C 于点E,且BD =D E.(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.[答案](1)35°(2)4C m[解析](1)根据线段垂直平分线和等腰三角形性质得出A B =A E=C E,求出∠A EB 和∠C =∠EA C ,即可得出答案;(2)根据已知能推出2D E+2EC =8C m,即可得出答案.[详解](1)∵A D 垂直平分B E,EF垂直平分A C ,∴A B =A E=EC ,∴∠C =∠C A E,∵∠B A E=40°,∴∠A ED =70°,∴∠C =12∠A ED =35°;(2)∵△A B C 周长14C m,A C =6C m,∴A B +B E+EC =8C m,即2D E+2EC =8C m,∴D E+EC =D C =4C m.[点睛]本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为;(3)在直线l上找一点P,使PA +PB 的长最短.[答案](1)见解析;(2)12.5;(3)见解析[解析](1)根据网格结构找出点A 、B 、C 关于直线l成轴对称的点A '、B '、C '的位置,然后顺次连接即可;(2)利用△A B C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(3)连接B 与点A 关于直线l的对称点A ',根据轴对称确定最短路线,A 'B 与直线l的交点即为所求的点P的位置.[详解](1)△A 'B 'C '如图所示;(2)S △A B C =6×5﹣12×6×1﹣12×5×5﹣12×4×1=30﹣3﹣12.5﹣2=30﹣17.5=12.5. 故答案为:12.5;(3)如图,点P 即为所求的使P A +PB 的长最短的点.[点睛]本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解答本题的关键. 24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.[答案](1)证明见解析;(2)证明见解析;(3)12.[解析](1)根据等腰直角三角形的性质等到A F =C F ,∠A =∠FC E ,根据SA S 即可得出结论;(2)由(1)可得:D F =EF ,∠A FD =∠C FE ,进而得出∠D FE =90°,即可得出结论;(3)由(1)可得:A D =C E ,则有A C =B C =C E +B E =A D +B E ,即可得出结论.[详解](1)在等腰直角ABC ∆中,90ACB ∠=︒,AC BC =,∴45A B ∠=∠=︒.又∵F 是AB 中点,∴45ACF FCB ∠=∠=︒,即45A FCE ACF ∠=∠=∠=︒,且AF CF =.在ADF ∆与CEF ∆中,∵AD CE A FCE AF CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CEF SAS ∆≅∆;(2)由(1)可知ADF CEF ∆≅∆,∴DF FE =,∴DFE ∆是等腰三角形.又∵AFD CFE ∠=∠,∴AFD DFC CFE DFC ∠+∠=∠+∠,∴AFC DFE ∠=∠.∵90AFC ∠=︒,∴90DFE ∠=︒,∴DFE ∆是等腰直角三角形.(3)由(1)可知ADF CEF ∆≅∆,∴A D =C E .∵A C =B C ,∴A C =B C =C E +B E =A D +B E =5+7=12.[点睛]本题考查了学生对全等三角形的判定与性质和等腰直角三角形的理解和掌握,稍微有点难度,属于中档题.25.(2019·江苏初二期中)如图所示,点O 是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△A B C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.[答案](1)见解析 (2)直角三角形,见解析 (3)100或130或160[解析](1)根据全等三角形的性质得到∠OC B =∠D C A ,C O =C D ,证明∠D C A +∠A C O =60°,根据等边三角形的判定定理证明;(2)根据全等三角形的性质得到∠A D C =∠B OC =150°,结合图形计算即可;(3)分A D =A O 、D A =D O 、OD =A O 三种情况,根据等腰三角形的性质,三角形内角和定理计算.[详解](1)证明:∵△A D C ≌△B OC ,∴∠OC B =∠D C A ,C O=C D ,∵△A B C 是等边三角形,∴∠A C B =60°,即∠OC B +∠A C O=60°,∴∠D C A +∠A C O=60°,又C O=C D ,∴△C OD 是等边三角形;(2)解:∵△A D C ≌△B OC ,∴∠A D C =∠B OC =150°,∵△C OD 是等边三角形,∴∠OD C =60°,∴∠A D O=∠A D C −∠OD C =90°,∠A OD =360°−100°−150°−60°=50°,∴∠OA D =40°,△A OD 是直角三角形;(3)解:当A D =A O时,设∠A OD =∠A D O=x, 则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+x+60°=360°,解得,x=70°,则α=60°+70°=130°,当D A =D O时,设∠A OD =∠D A O=x,则∠A D O=180°−2x,∴∠A D C =∠A D O+∠OD C =180°−2x+60°, ∴∠B OC =240°−2x,则100°+240°−2x+x+60°=360°,解得,x=40°,则α=240°−2x=160°,当OD =A O时,设∠OA D =∠A D O=x,则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+180°−2x+60°=360°,解得,x=40°,则α=60°+40°=100°,综上所述,当α为100°或130°或160°时,△A OD 是等腰三角形.[点睛]本题考查的是等边三角形的性质,全等三角形的性质,等腰三角形的判定,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.。
D C B A 第14题
八年级数学《轴对称》单元测试题
选择题(本大题共12小题,每小题2分,共24分)
1. 下列几何图形中,是轴对称图形且对称轴条数大于1的有( )
长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线.
A 3个
B 4个
C 5个
D 6个
2. 下列说法正确的是( )
A. 任何一个图形都有对称轴
B.两个全等三角形一定关于某直线对称
C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEF
D.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B 关于直线L 对称
3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )
4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( )
A.(-2,-1)
B.(-2,1)
C.(2,1)
D.(1,-2)
5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( )
B. -1
C. 4
A. 1 D. -4
6.等腰三角形是轴对称图形,它的对称轴是( )
A.过顶点的直线
B.底边上的高
C.底边的中线
D.顶角平分线所在的直线.
7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( )
A.(4,1)
B.(4,-1)
C.(-4,1)
D.(-4,-1)
8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与
点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )
A 3 B.-3 C. 1 D. -1
9.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )
A.65°,65°
B.50°,80°
C.65°,65°或50°,80°
D.50°,50°
10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( )
A. 30°
B. 150°
C. 30°或150°
D.12°
11.等腰三角形底边长为6cm ,一腰上的中线把周长分成两部分的差为2cm ,则腰长为( )
A. 4cm
B. 8cm
C. 4cm 或8cm
D. 以上都不对
12.已知∠AOB =30°,点P 在∠AOB 的内部,点P1和点P 关于OA 对称,点P2和点P 关于OB 对称,则P1、O 、P2三点构成的三角形是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形
二、填空题:(本大题共8小题,每小题3分,共24分)
13.等边三角形是轴对称图形,它有 条对称轴.
14.如图,如果△A1B1C1与△ABC 关于y 轴对称,那么点A 的对应点A1的坐标为 15.是某时刻在镜子中看到准确时钟的情况,则实际时间是 . 16.=30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则= . PQ 17.30°,腰长是4cm ,则三角形的面积为 . 18.点1,2)关于直线y =1对称的点的坐标是 ;关于直线x =1对称的的坐标是 . 19.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长
是.
20.在△ABC和△ADC中,下列3个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:
三、解答题:(本大题共52分)
21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)
如图,已知线段AB和直线L,作出与线段AB关于直线L对称的图形.
已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
22.(5分)如图所示,在平面直角坐标系中,A(-1,Array
⑴求出△ABC的面积.
在图形中作出△ABC关于y轴的对称图形△A1B1C1.
写出点A1,B1,C1的坐标.
23.(5分)如图所示,梯形ABCD关于y轴对称,点
点B的坐标为(-2,0).
写出点C和点D的坐标;求出梯形ABCD的面积.
24.(5分)如图,△ABC中,DE是AC的垂直平分线,
周长为13cm.
求△ABC的周长.
25.(6分)如图,D是等边三角形ABC内一点,DB=
=∠DBC.
求证:∠BPD=30°.
26.(8分)如图,△ABC为任意三角形,以边AB、AC
角形ACE,连接CD、BE并且相交于点P.
求证:⑴CD=BE. ⑵∠BPC=120°
28.(7分)如图,在△ABC中,AB=AC,∠A=120
=6,AB的垂直平分线交BC于M,交AB于E,AC
F,
求证:BM=MN=NC.。