中考专项复习--一次函数与不等式
- 格式:doc
- 大小:151.50 KB
- 文档页数:5
中考数学考点专题训练——专题三:一次函数1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.16.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB延长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN =AN,求线段PM的长.17.在平面上,对于给定的线段AB和点C,若平面上的点P(可以与点C重合)满足,∠APB=∠ACB.则称点P为点C关于直线AB的联络点.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),C(﹣2,0).(1)在P1(2,2),P(1,0),R(1+,1)三个点中,是点O关于线段AB的联络点的是.(2)若点P既是点O关于线段AB的联络点,同时又是点B关于线段OA的联络点,求点P的横坐标m的取值范围;(3)直线y=x+b(b>0)与x轴,y轴分交于点M,N,若在线段BC上存在点N关于线段OM的联络点,直接写出b的取值范围.18.已知直线y=x+b与x轴交于点A,与y轴交于点B,(1)如图1,求∠BAO的度数;(2)如图2,点D在第三象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE且点E在第四象限,连接DE、OE,若DE=2OE,求证:S△ADE=2S△AOE;(3)如图3,点C为点A关于y轴的对称点,点D在第二象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE,点E在第四象限,连接OE且OE∥BC,过点A作AP⊥BE交BC于点P,点Q在AB上,BQ=BP,过点Q作QG⊥AP交x轴于点G.若OF=,CG=7,求S△AOE.19.如图,在平面直角坐标系xOy中,直线y=x+4与y=kx+4分别交x轴于点A、B,两直线交于y轴上同一点C,点D的坐标为(﹣,0),点E是AC的中点,连接OE交CD于点F.(1)求点F的坐标;(2)若∠OCB=∠ACD,求k的值;(3)在(2)的条件下,过点F作x轴的垂线1,点M是直线BC上的动点,点N是x轴上的动点,点P是直线l上的动点,使得以B,P,M、N为顶点的四边形是菱形,求点P的坐标.20.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF ∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.备战2021中考数学考点专题训练——专题三:一次函数参考答案1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.【答案】解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵AB=3,∴S△ABC=•y C==.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【答案】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.【答案】解:(1)当t=1时,A(1,0),B(3,0),C(3,3),D(1,3),则三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,y2=﹣x+2,y3=x+2是矩形ABCD的关联直线;故答案为:y2=﹣x+2,y3=x+2;(2)由矩形的性质得D(t,3),当y=3时,t+2=3,解得t=1;当y=0时t+2+2=0,解得t=﹣4.故t的取值范围为﹣4≤t≤1;(3)由矩形的性质得D(t,3),当y=3时,t2+2=3,解得t=±1(负值舍去).故t的取值范围为0<t≤1.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.【答案】解:(1)当y=0时,0=﹣,解得x=4;则A(4,0);联立两直线的解析式得,解得.则B(2,2);(2)∵A(4,0),∴OA=4,∴S=(OA﹣t)×2=(4﹣t)×2=4﹣t(0≤t<4);(3)如图,当OA为平行四边形的边时,∵OA=4,∴P1(6,2),P2(﹣2,);当OA为对角线时,P3(2,﹣2).综上所示,点P的坐标为:P1(6,2),P2(﹣2,2),P3(﹣2,2).5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.【答案】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.【答案】解:(1)将点B的坐标代入y=2x得,m=2×2=4,故点B(2,4),设直线l1的表达式为y=kx+b,将点A、B的坐标代入上式并解得:,解得,故直线l1的表达式为:y=x+2;(2)①当n=﹣1时,如下图,从图中可以看出,整点个数为1,即点(0,1);②如上图,当n=﹣2时,△BCD的内部(不含边上)恰有3个整点,故﹣2≤n<﹣1.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.【答案】解:(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),则AB=10;设直线AB的表达式为:y=kx+b,则,解得,故直线AB的表达式为:y=﹣x+8;(2)过点C作CM⊥y轴于点M,则,即,解得:CM=|10﹣2t|,S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,故S=;(3)点A、B的坐标分别为(6,0)、(0,8),设点P、Q的坐标分别为(0,s)、(m,n),①当AB是菱形的边时,点A向上平移8个单位向左平移6个单位得到点B,同样点Q向上平移8个单位向左平移6个单位得到点P,即0﹣8=m,s+6=n且BP=BA=10,解得:m=﹣8,n=24,故点Q的坐标为(﹣8,24);②当AB是菱形的对角线时,由中点公式得:6+0=m+0,8+0=s+n且BP=BQ,即(s﹣8)2=m2+(n﹣8)2,解得:m=6,m=,故点Q的坐标为(6,);综上,点Q的坐标为(﹣8,24)或(6,).8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.【答案】解:(1)甲车改变速度前的速度为:500出5=100(km/h),乙车达绥芬河是时间为:800÷80=10(h),故答案为:100;10;(2)∵乙车速度为80km/h,∴甲车到达绥芬河的时间为:,甲车改变速度后,到达绥芬河前,设所求函数解析式为:y=kx+b(k≠0),将(5,500)和(,800)代入得:,解得,∴y=80x+100,答:甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式为y=80x+100();(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×=100(km),40÷(100﹣80)=2(h),即出发2h时,甲、乙两车第一次相距40km.故答案为:100;2.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.【答案】解:(1)∵直线y=kx+b与y=﹣x﹣9平行,且过点A(2,3),则,解得,∴一次函数解析式为y=﹣x+4,当x=0时,y=4,∴A点坐标是(0,4);(2)证明:∵PM⊥x轴,PN⊥y轴,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,ND=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,OB=PD,∠O=∠CPD,OE=PC,∴△OBE≌△PDC(SAS),∴DC=BE,同理可证△MBC≌△NDE(SAS),∴DE=BC.∴四边形BCDE是平行四边形;(3)存在这样的点P,理由:设点P(m,﹣m+4),则CM=PC=|(4﹣m)|=|﹣m|,PD=m,当四边形BCDE为正方形时,则∠DCB=90°,DC=BC,而∠CBM+∠MCB=90°,∠MCB+∠DCP=90°,∴∠CBM=∠DCP,而∠DPC=∠CMB=90°,∴△DPC≌△CMB(AAS),∴CM=PD,即=|﹣m|=m,解得:m=或﹣8,故P点坐标是(,)或(﹣8,8).10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?【答案】解:(1)由图象知,520+12a﹣2×10a=424,∴a=12;(2)设当12≤x≤20时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,∴y=﹣53x+1060,当x=16时,y=212,即排队到第16分钟时,食堂排队等候打饭菜的学生有212人.(3)设需同时开放n个打饭窗口,由题意知10n×8≥520+12×8解得:n≥7.7,∵n为整数,∴n最小=8.答:至少需要同时开放8个打饭窗口.11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C 是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.【答案】解:(1)把A(4,0),B(0,3)代入y1=kx+b,得到,解得:,∴y1=﹣x+3.(2)∵BC∥x轴,∴点C的纵坐标为3,当y=3时,3=﹣x+5,解得x=,∴C(,3),∵CD⊥AB,∴直线CD的解析式为y=x+,由,解得,∴D(,),∴BD==.(3)如图,当∠BCD=∠BEO时,过点A作AM⊥BC交BC的延长线于M,点M作MN⊥x轴于N.∵OB=3,OE=OA=,∴tan∠BEO==2,∵CD⊥AB,AM⊥AB,∴CD∥AM,∴∠AMB=∠BCD=∠BEO,∴tan∠AMB==2,∵AB===5,∴AM=AB=,∵∠AOB=∠ANM=∠BAM=90°,∴∠BAO+∠ABO=90°,∠BAO+∠MAN=90°,∴∠MAN=∠ABO,∴△ABO∽△MAN,∴==,∴==,∴AN=,MN=2,∴M(,2),∴直线BM的解析式为y=﹣x+3,由,解得x=,∴点C的横坐标为当∠CBD=∠BEO时,同法可得点C的横坐标为.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.【答案】解:(1)①如图1中,由题意A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,由题意A(﹣0.5,1),直线l:x=0.5,∵直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意A(t﹣1,0),B(t+1,0),∵△ABC上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得t≥2或t≤﹣2.故答案为t≥2或t≤﹣2.(2)如图3中,∵A(t﹣1,0),B(t+1,0),∴AB=t+1﹣(t﹣1)=2,∵△ABD是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,,∴当点D在AB上方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则0≤b≤3.当点D在AB下方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则﹣1≤b≤2.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.【答案】解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.把(﹣2,14)代入可得14=﹣+b,∴b=,∴直线RT的解析式为y=x+14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.【答案】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC 所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵AC所在直线解析式为y=﹣x+15,∴令x=0,y=15,令y=0.则﹣,解得x=9.∴A(9,0),C(0,15),B(9,15),。
第3章 一次函数与一次不等式【知识衔接】————初中知识回顾————1、形如y=kx+b(k≠0)的函数叫做一次函数。
(1)它的图象是一条斜率为k ,过点(0,b )的直线。
(2)k>0⇔是增函数;k<0⇔是减函数。
2、不等式ax>b 的解的情况:(1)当a>0时,ab x >; (2)当a<0时,a b x <; (3)当a=0时,i) 若b≤0,则取所有实数;ii) 若b>0,则无解。
类似地,请同学们自行分析不等式ax <b 的解的情况。
————高中知识链接————一次函数y =kx +b (k ≠0,b ≠0)的图象所经过的象限有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0,函数y =kx +b 的图象经过第二、三、四象限.一次函数y =kx +b (k ≠0)中,|k |越大,直线y =kx +b 越靠近y 轴,即直线与x 轴正半轴的夹角越大;|k |越小,直线y =kx +b 越靠近x 轴,即直线与x 轴的夹角越小.学#科网【经典题型】初中经典题型1.一次函数y =(m -2)x +3的图象如图所示,则m 的取值范围是( )A.m<2 B.0<m<2 C.m<0 D.m>2【答案】A【解析】如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2,故选A.2.如图,把Rt∆ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将∆ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.82【答案】C3.已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为_____.【答案】(,)【解析】分析:利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;详解:由题意A(-,),∵A、B关于y轴对称,∴B(,),故答案为(,).4.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.【答案】1.5.【解析】分析:首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.点睛:本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.5.一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.【答案】D【解析】分析:先求出不等式组的解集,再在数轴上表示. 详解:解不等式组得-3<x ≤2,在数轴上表示为:故选D .点睛:解一元一次不等式组,通常采用“分开解,集中定”的方法,即单独的解每一个不等式,而后集中找它们的解的“公共部分”.在找“公共部分”的过程中,可借助数轴或口诀两种方法确定不等式组的解集.其中确定不等组解集的方法为:“大大取大,小小取小,大小小大中间找,大大小小是无解”.在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.6.若实数3是不等式2x –a –2<0的一个解,则a 可取的最小正整数为( )A. 2B. 3C. 4D. 5【答案】D【解析】解:根据题意,x =3是不等式的一个解,∴将x =3代入不等式,得:6﹣a ﹣2<0,解得:a >4,则a 可取的最小正整数为5,故选D .学-科网点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.高中经典题型1.若函数1y ax =+在[]1,2上的最大值与最小值之差为2,则实数a =( )A . 2B . 2-C . 2或2-D . 0【答案】C【解析】1y ax =+,若0a =,则y 的最大与最小之差为0(舍),若0a >,则()()max 221f x f a ==+,()()min 11f x f a ==+,则()2112a a a +-+==(符合),若0a <,则()()max 11f x f a ==+, ()()min 221f x f a ==+,则()1212a a a +-+=-=,则2a =-(符合),故选C . 2.若()()0f x ax b a =+>,且()()41ff x x =+,则()3f =__________. 【答案】193【解析】由()()()241f f x af x b a x ab b x =+=++=+, ()24,10a ab b a ∴=+=>,解得()112,,233a b f x x ==∴=+,于是()1933f =,故答案为193. 3.如图,已知函数f(x)的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式f(x)-f(-x)>-1的解集是______________.【答案】 (-1,- 12)∪[0,1)4.已知函数()()()110f x ax x a a =+->,且()f x 在[]0,1上的最小值为()g a ,求()g a 的最大值. 【答案】1【解析】试题分析:(1)由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,分三种情况讨论,即可求解函数的最小值,得出()g a 的表达式,即可求解()g a 的最大值. 试题解析:由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,(1)当a 1>时, 1a 0a ->,此时()f x 在[]0,1上为增函数,∴()()1g a f 0a ==;(2)当0a 1<<时, 1a 0a-<,此时()f x 在[]0,1上为减函数,∴()()g a f 1a == ;(3)当a 1=时, ()f x 1=,此时()g a 1=,∴(),01,g a { 1,1,aa a a <<=≥其在()0,1上为增函数,在[)1,∞上是减函数,又当a 1=时,有1a 1a==,∴当a 1=时, ()g a 取得最大值1. 点睛:本题考查了函数最值问题及其应用,其中解答中涉及到一次函数的单调性的应用,以及分段函数的性质,同时考查了分类讨论的思想方法,本题的解答中注意1a =的情况,容易导致错解,试题有一定的基础性,属于基础题.5.(1)求函数y =ax +1(a≠0)在[0,2]上的最值.(2)若函数y =ax +1在[0,2]上的最大值与最小值之差为2.求a 的值.【答案】(1)详见解析;(2) a =±1.6.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.学-科网(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍。
2021年中考数学专题复习:一次函数与不等式(三)1.已知直线y=kx+b(k≠0)与x轴和y轴的交点分别是(1,0)和(0,﹣2),那么关于x的不等式kx+b<0的解集是.2.如图,在平面直角坐标系中,函数y=mx+n的图象与y=kx+b的图象交于点P(﹣1,2),则不等式mx﹣b≥kx﹣n的解集为.3.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解是.4.如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则的解集为.5.同一直角坐标系中,一次函数y=k1x+b与正比例函数y=k2x的图象如图所示,则满足k1x+b>k2x的x取值范围是.6.如图.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为.7.当a取时,一次函数y=3x+a+6与y轴的交点在x轴下方.(在横线上填上一个你认为恰当的数即可)8.如图,在平面直角坐标系xOy中,若直线y1=﹣x+a与直线y2=bx﹣4相交于点P(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是.9.若直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是.10.在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为.11.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.12.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣ax<4的解集是.13.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.第13题图第14题图14.如图,已知函数y=3x+b和y=ax﹣c的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣c的解集是.15.一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则0<mx+n<﹣x+a 的解集为.16.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为.17.已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为.18.如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.19.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.20.若函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集为.参考答案1.解:把(1,0)和(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=2x﹣2,解不等式2x﹣2<0得x<1.故答案为x<1.2.解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(﹣1,2),∴当x≥﹣1时,mx+n≥kx+b,∴不等式mx﹣b≥kx﹣n的解集为x≥﹣1.故答案为x≥﹣1.3.解:方法1、∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故答案为:x<5方法2、解:将直线y=kx﹣b向右平移3个单位长度即可得到直线y=k(x ﹣3)﹣b,如图所示.观察图形可知:当x<5时,直线y=k(x﹣3)﹣b在x轴上方.故答案为:x<5.4.解:∵当x>﹣2时,y=x+b>0,当x<3时,y=kx+2>0,∴的解集为﹣2<x<3.故答案为﹣2<x<3.5.解:当x≤﹣3时,直线l1:y1=k1x+b都在直线l2:y2=k2x的上方,即k1x+b >k2x.∴满足k1x+b>k2x的x取值范围是x<﹣3,故答案为:x<﹣3.6.解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故答案为:x<2.7.解:一次函数y=3x+a+6中令x=0,解得y=a+6,由于交点在x轴下方,得到a+6<0,解得a<﹣6,因而横线上填上一个小于﹣6的数就可以.故本题答案为:﹣7.8.解:当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;故答案为x>1.9.解:直线y=kx+b的图象经过点(1,0),且函数值y随x的增大而减小,∴不等式kx+b>0的解集是x<1.故本题答案为:x<1.10.解:∵直线l1:y=k1x+b过A(0,﹣3),B(5,2),∴,解得∴直线l1的表达式为y=x﹣3,∵当x≥4时,不等式x﹣3>k2x+2恒成立,∴4﹣3>4k2+2,∴k2<﹣,∴取k2=﹣1满足题意,故答案为﹣1.11.解:联立两函数解析式成方程组,得:,解得:.∴当x<﹣1时,y=max{x+3,﹣x+1}=﹣x+1>2;当x≥﹣1时,y=max{x+3,﹣x+1}=x+3≥2.∴函数y=max{x+3,﹣x+1}最小值为2.故答案为:2.12.解:∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3(kx﹣ax<4)的解集为x<1.故答案为x<1.13.解:观察图象得:当x>a时,y1<y2;故答案为>a.14.解:∵函数y=3x+b和y=ax﹣c的图象交于点P(﹣2,﹣5),则根据图象可得不等3x+b>ax﹣c的解集是x>﹣2,故答案为:x>﹣2.15.解:由图可得,当0<mx+n时,x>2;当mx+n<﹣x+a时,x<3;∴不等式组0<mx+n<﹣x+a的解集为2<x<3,故答案为:2<x<3.16.解:∵一次函数y=﹣2x+b的图象与y轴交于点A(0,3),∴b=3,∴一次函数解析式为y=﹣2x+3,解不等式﹣2x+3>0得x<.故答案为x<.17.解:∵一次函数y=kx+b的图象过(﹣6,0),∴0=﹣6k+b,∴b=6k,∴3kx﹣b=3kx﹣3k>0,∵函数图象经过第二、三、四象限,∴k<0,∴x﹣1<0,解得:x<1.故答案为:x<1.18.解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.19.解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为:﹣2<x<2.故答案为:﹣2<x<2.20.解:函数y=ax+b的图象经过点(2,0),函数值y随x的增大而减小,∴不等式ax+b≥0的解集为x≤2.故本题答案为:x≤2.。
中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
2.会利用待定系数法确定一次函数的表达式。
3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。
4.理解正比例函数。
5.体会一次函数和二元一次方程的关系。
考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。
一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。
特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213xC.y=34x D.y=12(x-1)【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k >0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限 y 随x 的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象 一次函数y =kx +b (k ≠0)的图象是经过点(0.b )和(-bk.0)的一条直线 图象关系一次函数y =kx +b (k ≠0)的图象可由正比例函数y =kx (k ≠0)的图象平移得到;b >0.向上平移b 个单位长度;b <0.向下平移|b |个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质 函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0.b >0一、二、三y 随x 的增大而增大k >0.b <0一、三、四y =kx +b (k ≠0)k <0.b >0一、二、四y 随x 的增大而减小k <0.b <0二、三、四(3)两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2.b 1≠b 2.两直线平行; ②当k 1=k 2.b 1=b 2.两直线重合; ③当k 1≠k 2.b 1=b 2.两直线交于y 轴上一点; ④当k 1·k 2=–1时.两直线垂直.【例3】已知正比例函数y =x 的图象如图所示.则一次函数y =mx +n 图象大致是mnA .B .C .D .【例4】已知一次函数3y kx =+的图象经过点A .且y 随x 的增大而减小.则点A 的坐标可以是( ) A .()1,2- B .()1,2-C .()2,3D .()3,4考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数.且k≠0)y=kx+b(k.b是常数.且k≠0)图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a ≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标. 【例7】已知直线y =mx +n (m .n 为常数)经过点(0.–2)和(3.0).则关于x 的方程mx +n =0的解为 A .x =0 B .x =1C .x =–2D .x =3【例8】如图为y =kx +b 的图象.则kx +b =0的解为x = ( )A .2B .–2C .0D .–1【例9】如图.正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m.2).一次函数的图象经过点B (−2.−1). (1)求一次函数的解析式;(2)请直接写出不等式组−1<kx +b <2x 的解集.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是 y kx by mx n=+=+⎧⎨⎩A .B .C .D .考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B .则△AOB 的面积为( ) A .2B .3C .4D .6考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等. (2)用一次函数解决实际问题的一般步骤为: ①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式; ③确定自变量的取值范围; ④利用函数性质解决问题; ⑤检验所求解是否符合实际意义; ⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100 (1)设装运食品的车辆数为x.装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费.第一部分选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数①y=﹣2x+1.②y=ax﹣b.③y=﹣6x.④y=x2+2中.是一次函数的有A.①②B.①C.②③D.①④2.一次函数y=–2x+b.b<0.则其大致图象正确的是A.B.C .D .3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–24. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是A .x >﹣2B .x >0C .x >1D .x <15. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0B .b <0C .a +b >0D .a ﹣b <08.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <29.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,210.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y =(m +2)是正比例函数.则m 的值是__________.12.把直线y =2x ﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____. 13.如图.直线542y x =+与x 轴、y 轴分别交于A 、B 两点.把AOB 绕点B 逆时针旋转90°后得到11AO B .则点1A 的坐标是_____.14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C..则点2020B 的坐标______.23mx-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6.(1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数;(2)若点(a .2)在这个函数的图象上.求a 的值. 19. 如图.直线l 1的函数解析式为y =2x–2.直线l 1与x 轴交于点D .直线l 2:y =kx+b 与x 轴交于点A .且经过点B (3.1).如图所示.直线l 1、l 2交于点C (m .2).(1)求点D 、点C 的坐标;(2)求直线l 2的函数解析式;(3)利用函数图象写出关于x 、y 的二元一次方程组的解.20.某文化用品商店出售书包和文具盒.书包每个定价40元.文具盒每个定价10元.该店制定了两种优惠方案:方案一.买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时.顾客只能选用其中的一种方案.某学校为给学生发奖品.需购买5个书包.文具盒若干(不少于5个).设文具盒个数为x (个).付款金额为y (元). 22y x y kx b =-=+⎧⎨⎩(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒.通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品.最多可以买到__________个文具盒(直接回答即可).21.张师傅开车到某地送货.汽车出发前油箱中有油50升.行驶一段时间.张师傅在加油站加油.然后继续向目的地行驶.已知加油前、后汽车都匀速行驶.汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.(1)张师傅开车行驶小时后开始加油.本次加油升.(2)求加油前Q与t之间的函数关系式.(3)如果加油站距目的地210千米.汽车行驶速度为70千米/时.张师傅要想到达目的地.油箱中的油是否够用?请通过计算说明理由.22.某乡A.B两村盛产大蒜.A村有大蒜200吨.B村有大蒜300吨.现将这些大蒜运到C.D两个冷藏仓库.已知C仓库可储存240吨.D仓库可储存260吨.从A村运往C.D两处的费用分别为每吨40元和45元;从B村运往C.D两处的费用分别为每吨25元和32元.设从A村运往C仓库的大蒜为x吨.A.B两村运大蒜往两仓库的运输费用分别为y A元.y B元.(1)请填写下表.并求出y A.y B与x之间的函数关系式;C D总计A x吨200吨B300吨总计240吨260吨500吨(2)当x为何值时.A村的运费较少?(3)请问怎样调运.才能使两村的运费之和最小?求出最小值.。
中考数学复习专项知识总结—一次函数(中考必备)知识要点1、定义定义1:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数。
定义2:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
当b=0时,y=kx+b即y=kx,是正比例函数。
所以说正比例函数是一种特殊的一次函数。
2、一次函数的图象及其性质正比例函数的图象及性质:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,称为直线y=kx。
y=kx经过象限升降趋势增减性k>0三、一从左向右上升y随着x的增大而增大k<0二、四从左向右下降y随着x的增大而减小一次函数的图象及性质:一次函数y=kx+b(k、b是常数,k≠0)的图象是一条直线,称为直线y=kx+b。
当k>0时,直线y=kx+b从左向右上升,即y随着x 的增大而增大;当k<0时,直线y=kx+b从左向右下降,即y随着x的增大而减小。
y=kx+b经过象限升降趋势增减性k>0,b>0三、二、一从左向右上升y随着x的增大而增大k>0,b<0三、四、一k<0,b>0二、一、四从左向右下降y随着x的增大而减小k<0,b<0二、三、四3、待定系数法定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法。
函数解析式y=kx+b 满足条件的两定点(x1,y1)与(x2,y2)一次函数的图象直线l4、一次函数与方程(组)及不等式(组)方程(组)的解与相应函数的交点坐标是相对应的。
找到函数的交点坐标,也就找到了对应方程(组)的解,反之一样。
对于不等式(组)的解集也可以通过其对应的函数图象来解决。
5、函数与实际问题(适用于一次函数、二次函数、反比例函数)在研究有关函数的实际问题时,要遵循一审、二设、三列、四解的方法:第1步:审题。
认真读题,分析题中各个量之间的关系;第2步:设自变量。
根据各个量之间的关系设满足题意的自变量;第3步:列函数。
专题5:一次函数、方程和不等式综合(含答案)考点1 一次函数与一元一次方程1. 一次函数y kx b =+的图像如图所示,则方程0kx b +=的解为( )A.2x =B.2x =-C.1x =-D.1x =2. 已知一元一次方程的解为3x =,则函数y ax b =-的图像与x 轴的交点坐标为( )A.(3,0)B.(3,0)-C.(,0)aD.(,0)b - 3. 已知方程102x b +=的解是2x =-,下列是函数12y x b =+的图像的是( )4. 一次函数y kx b =+(,k b 为常数且0k ≠)的图像如图所示,根据图像可知关于x 的方程3kx b +=的解为 .考点2 一次函数与一元一次不等式5. 如图,直线y kx b =+与坐标轴交于A ,B 两点,则不等式0kx b +<的解集是 .6. 将一次函数12y x =的图像向上平移2个单位长度后,当0y >时,x 的取值范围是( ) A.4x > B.4x >- C.2x > D.2x >-7. 如图,函数2y x =与4y ax =+的图像相交于点(,3)A m ,则不等式24x ax ≥+的解集为( ) A. 32x ≥B. 3x ≤C.32x ≤ D. 3x ≥8. 如图,直线a 反映了某公司产品的销售收入y (元)与销售量x (吨)的关系,直线b 反映了该公司产品的销售成本y (元)与销售量x (吨)的关系,根据图像判断该公司盈利(即收人大于成本)时x 的取值范围是 .9. 如图,直线1y x n =+与x 轴交于点A ,与y 轴交于点Q ,直线2y x m =-+与x 轴交于点B ,两直线交于点P .根据图中信息解决下列问题: (1) 求,m n 的值; (2) 求点P 的坐标;(3) 当x 为何值时,x n x m +>-+10. 作出函数24y x =-的图像,并根据图像解决下列问题:(1) 当24x -≤≤时,求y 的取值范围;(2) 分别求当0y <,0y =,0y >时,x 的取值范围; (3) 求当42y -<<时,x 的取值范围.11. 一家小型放映厅的盈利额y (元)与售票数x (张)之间的关系如图所示,其中售票数超过150张时,要缴纳公安消防保险费50元,试根据图像回答下列问题: (1) 当0150x <≤时,求y 与x 之间的函数表达式;(2) 当x 取何值时,放映厅不赔不赚?当x 取何值时,放映厅赔本?若放映厅要获得利润200元时,x 的值应为多少?【巩固练习】 1. 如图,直线32y x =+与直线1y kx =-相交于点P ,点P 的纵坐标为12,则关于x 的不等式312x kx +>-的解集在数轴上表示正确的是( )2. 如图,函数1y x =和21433y x =+的图像相交于(1,1)-,(2,2)两点.当12y y >时,x 的取值范围是( )A.1x <-B.12x -<<C.2x >D.1x <-或2x > 3. 已知一次函数y ax b =+(,a b 是常数),x 与y 的部分对应值如表所示,则下列说法错误的是( )A.方程0ax b +=的解是1x =-B.不等式0ax b +>的解集是1x >-C.y ax b =+的函数值y 随x 的增大而增大D. y ax b =+的函数值y 随x 的增大而减小4. 如图,经过点(2,0)B -的直线y kx b =+与直线42y x =+相交于点(1,2)A --,则420x kx b +<+<的解集为 .5. 一次函数111y k x b =+与222y k x b =+的图像如图所示.则不等式组11220k x b k x b +>⎧⎨+<⎩的解集为 .6. 直线a :2y x =+和直线b :4y x =-+相交于点A ,直线,a b 分别与x 轴相交于点,B C ,与y 轴相交于点,D E .(1) 在同一平面直角坐标系中画出两直线; (2) 求ABC ∆的面积;(3) 观察图像,直接写出不等式24x x +≤-+的解集和不等式40x -+≤的解集.7. 某办公用品销售商店推出两种优惠方案:①购买1个书包,赠送1支水性笔;①购买书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元,小丽和同学需购买4个书包,若干支水性笔(不少于4支).(1) 分别写出两种优惠方案购买费用y (元)与所买水性笔数量x (支)之间的函数表达式; (2) 对x 的取值情况进行分析,说明按哪种优惠方案购买比较划算;(3) 小丽和同学需购买这种书包4个和水性笔12支,请你设计购买最实惠的方案.8. 某中学九年级甲、乙两班商定举行一次远足活动,A ,B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地,两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,12,y y 与x 的函数图像如图所示.根据图像解答下列问题: (1) 直接写出12,y y 与x 的函数表达式.(2) 求甲、乙两班学生出发几小时后相遇?相遇时乙班距离A 地多少千米? (3) 甲、乙两班首次相距4千米时所用时间是多少小时?参考答案1. C2. A3. C4. 2x =5. 3x <-6. B7. A8. 3x >9. (1) ①直线1y x n =+过点(0,1)①1n =①直线2y x m =-+过点(3,0) ①30m -+= ①3m =(2)由(1)知,11y x =+,23y x =-+ ①点P 为两直线的交点, ①13x x +=-+,①1x = 把1x =代入11y x =+,得12y = ①(1,2)P(3)当函数1y x n =+的图像在2y x m =-+的上方时,x n x m +>-+,此时1x > ①当1x >时,x n x m +>-+ 10. 函数24y x =-的图像如图所示. (1)当2x =-时,8y =- 当4x =时,4y =①当24x -≤≤时,Y 的取值范围为84y -≤≤(2)由图像可知,函数24y x =-的图像与x 轴的交点为(2,0) 当0y =时,2x =当0y <时,2x < 当0y >时,2x > (3①当4y =-时,0x = 当2y =时,3x =①当42y -<<时,x 的取值范围为03x <<11. (1)当0150x <≤时,由题图可设y kx b =+把(0,200)-,(150,100)代入可得200100150bk b -=⎧⎨=+⎩解得2200k b =⎧⎨=-⎩①当0150x <≤时,y 与x 之间的函数表达式为2200y x =-(2)由题图,可知函数2200y x =-(0150x <≤)的图像与x 轴的交点坐标为(100,0) ①当100x =,即售票数为100张时,放映厅不赔不赚 当0100x <<,即售票数小于100张时,放映厅赔本 由题图可知,当200y =时,200x = ①放映厅要获得利润200元时,x 的值应为200.【巩固练习】1. A2. D3. D4. 21x -<<-5. 3x >6. (1)两直线如图所示.(2)由(1)中图像知(2,0)B -,(4,0)C①点A 直线a :2y x =+和直线b :4y x =-+的交点①24y x y x =+⎧⎨=-+⎩解得13x y =⎧⎨=⎩①(1,3)A ①113[4(2)]3922ABC S BC ∆=⨯=⨯--⨯= (3)观察(1)中图像,可知当1x <时,直线a 在直线b 的下方 ①不等式24x x +≤-+的解集为1x ≤ 当4x >时,直线b 在x 轴的下方 ①不等式40x -+≤的解集为4x ≥7. (1)设按优惠方案①购买的费用为1y 元,按优惠方案①购买的费用为2y 元则1(4)5204560y x x =-⨯+⨯=+ 2(5204)0.9 4.572y x x =+⨯⨯=+ (2)当12y y >,即560 4.572x x +>+时 解得24x >①当24x >时,选择优惠方案①比较划算; 当24x >时, 解得24x =①当24x =时,选择优惠方案①,①均可;当12y y <,即560 4.572x x +<+时 由题意得424x ≤<①当424x ≤<时,选择优惠方案①比较划算. (3)①需要购买4个书包和12支水性笔,而1224<①购买方案一:用优惠方案①购买,需55051260120x +=⨯+= (元); 购买方案二:采用两种购买方案用优惠方案①购买4个书包.需42080⨯= (元),同时获赠4支水性笔 用优惠方案①购买8支水性笔,需8590%36⨯⨯= (元) 共需80 + 36二1168036116+=(元) 显然116120<①最佳购买方案是用优惠方案①购买4个书包,获赠4支水性笔,再用优惠方案①购买8支水性笔.8. (1) 14(0 2.5)y x x =≤≤,2510(02)y x x =-+≤≤ (2)根据题意可知,两班相遇时,两班离A 地的距离相等 令12y y = 即4510x x =-+解得109x =当109x =时,2104051099y =-⨯+=答:甲、乙两班学生出发109小时后相遇,相遇时乙班距离A 地409千米(3)根据题意,得214y y -= 即51044x x -+-= 解得23x =答:甲、乙两班首次相距4千米时所用时间是23小时。
2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)1.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣12.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣2,2),则关于x的不等式x+a>kx+b 的解集是()A.x<﹣2B.x>﹣2C.x<2D.x>23.如图,已知函数y=kx+b图象如图所示,则不等式kx+b<0的解集为()A.x>5B.x<5C.x>4D.x<44.一次函数y=kx+b(k,b为常数)的图象如图所示,则不等式kx+b<1的解集是()A.x<﹣2B.x<1C.x>﹣2D.x<05.如图,直线l1:y1=ax(a≠0)与直线l2:y2=x+b(b≠0)交于点P,有四个结论:①a<0②a>0③当x>0时,y1>0④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D.②③6.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b<0的解集是()A.x>0B.x<0C.x>2D.x<27.一次函数y1=kx+b与y2=mx+n的图象如图所示,则以下结论:①k>0;②b>0;③m >0;④n>0;⑤当x=3时:y1>y2.正确的个数是()A.1个B.2个C.3个D.4个8.如图,已知一次函数y1=x+b与正比例函数y2=kx的图象交于点P.四个结论:①k>0;②b>0;③当x<0时,y2>0;④当x<﹣2时,kx<x+b.其中正确的是()A.①③B.②③C.③④D.①④9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1B.﹣3C.﹣4D.﹣510.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则()A.x>0B.x>﹣3C.x>﹣6D.x>﹣911.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是()A.x<1B.x<2C.x>0D.x>212.在平面直角坐标系中,正比例函数y=2x的图象与直线y=kx+b交于A(﹣1,﹣2).直线y=kx+b,还经过点(﹣2,0).则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<0C.﹣2<x<﹣1D.﹣1<x<0 13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是.14.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为.15.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为.16.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为.17.一次函数y=kx+b的图象如图所示,则关于x的不等式kx﹣m+b>0的解集是.18.函数y=2x和y=ax+4的图象相交于点A(m,2),则不等式2x﹣4≤ax的解集.19.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣1)﹣b>0的解集为.20.已知直线y1=2x与直线y2=﹣2x+4相交于A,有以下结论:①A的坐标为(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④y1,y2在平面直角坐标系中的位置关系是平行,其中正确的是.21.如图,直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,则不等式k1x+b>k2x+b的解集为.22.在平面直角坐标系xOy中,一次函数y=ax和y=kx+7的图象如图所示,则关于x的一元一次不等式ax>kx+7的解集是.23.已知一次函数y=kx+b经过点A(3,0),B(0,3).(1)求k,b的值.(2)在平面直角坐标系xOy中,画出函数图象;(3)结合图象直接写出不等式kx+b>0的解集.24.在给出的网格中画出一次函数y=2x﹣3的图象,并结合图象求:(1)方程2x﹣3=0的解;(2)不等式2x﹣3>0的解集;(3)不等式﹣1<2x﹣3<5的解集.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=结合上面经历的学习过程,现在来解决下面的问题:在函数y=||(k>0)中,当x=﹣4时,y=1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=x||x 的解集.26.在平面直角坐标系中,直线y=2x向右平移1个单位长度得到直线y1.(1)直接写出直线y1的解析式;(2)直线y1分别交x轴,y轴于点A,B,交y2=kx于点C,若A为BC的中点.①请画图并求k的值;②当0<y1<y2时,请直接写出x的取值范围.27.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.28.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.29.如图,过点C(0,﹣2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m),且直线l1与x轴交于点B,直线l2与x轴交于点A.(1)直接写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式;(3)若点M在x轴的正半轴上运动,点M运动到何处时△ABP与△BPM面积相等?求出此时△BPM面积.30.如图,函数y1=2x和y2=kx+4(k为常数,且k≠0)的图象都经过点A(m,3).(1)求点A的坐标及k的值;(2)结合图象直接写出)y2≥y1时x的取值范围.31.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.32.设函数f(x)=|x+2|﹣|x﹣1|.(1)画出函数y=f(x)的图象;(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.参考答案1.解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选:D.2.解:因为直线y1=x+a与y2=kx+b相交于点P(﹣2,2),当x>﹣2时,x+a>kx+b,所以不等式x+a>kx+b的解集为x>﹣2.故选:B.3.解:∵从图象可知:一次函数图象和x轴的交点坐标为(4,0),y随x的增大而减小,∴不等式kx+b<0的解集是x>4,故选:C.4.解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(0,1),并且函数值y随x的增大而增大,因而则不等式kx+b<1的解集是x<0.故选:D.5.解:∵直线l1:y1=ax(a≠0)从左往右呈下降趋势,∴a<0,故①正确,②错误;由函数图象可得当x>0时,y1<0,故③错误;∵两函数图象交于P,∴x<﹣2时,y1>y2,故④正确,故选:C.6.解:由图可知:当x>2时,y<0,即kx+b<0;故关于x的不等式kx+b<0的解集为x>2.故选:C.7.解:∵一次函数y1=kx+b的图象经过第一、三象限,∴k>0,所以①正确;∵一次函数y1=kx+b的图象与y轴的交点在y轴的负半轴上,∴b<0,所以②错误;∵一次函数y2=mx+n的图象经过第二、四象限,∴m<0,所以③错误;∵一次函数y2=mx+n的图象与y轴的交点在y轴的正半轴上,∴n>0,所以④正确;∵x>2时,y1>y2,∴当x=3时:y1>y2.所以⑤正确.故选:C.8.解:∵直线y2=kx经过第二、四象限,∴k<0,故①错误;∵y1=x+b与y轴交点在正半轴,∴b>0,故②正确;∵正比例函数y2=kx经过原点,且y随x的增大而减小,∴当x<0时,y2>0;故③正确;当x<﹣2时,正比例函数y2=kx在一次函数y1=x+b图象的上方,即kx>x+b,故④错误.故选:B.9.解:当y=0时,nx+4n=0,解得x=﹣4,所以直线y=nx+4n与x轴的交点坐标为(﹣4,0),当x>﹣4时,nx+4n>0;当x<﹣2时,﹣x+m>nx+4n,所以当﹣4<x<﹣2时,﹣x+m>nx+4n>0,所以不等式组﹣x+m>nx+4n>0的整数解为x=﹣3.故选:B.10.解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>x,即kx﹣x>﹣b的解集为x>﹣9.故选:D.11.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故选:D.12.解:画出函数y=2x与y=kx+b如图,由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1,﹣2),∴不等式2x<kx+b的解集是x<﹣1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2,0),∴不等式kx+b<0的解集是x>﹣2,∴不等式2x<kx+b<0的解集是﹣2<x<﹣1,故选:C.13.解:一次函数y=(m﹣1)x﹣m+4中,令x=0,解得:y=﹣m+4,与y轴的交点在x轴的上方,则有﹣m+4>0,解得:m<4.故本题答案为:m<4且m≠1.14.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为x>﹣1.15.解:从图象可看出当x≥﹣1,直线l2的图象在直线l1的上方,不等式ax+b>kx.故答案为:x≥﹣1.16.解:∵一次函数y=kx+b的图象经过(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b<﹣3的解集是x>4.故答案是:x>4.17.解:当x<﹣3时,y=kx+b>m,所以关于x的不等式kx﹣m+b>0的解集为x<﹣3.故答案为:x<﹣3.18.解:∵函数y=2x的图象经过点A(m,2),∴2m=2,解得:m=1,∴点A(1,2),当x≤1时,2x≤ax+4,即不等式2x﹣4≤ax的解集为x≤1.故答案为x≤1.19.解:把(3,0)代入y=kx+b得3k﹣b=0,则b=3k,所以k(x﹣1)﹣b>0化为k(x﹣1)﹣3k>0,即kx﹣4k>0,因为k<0,所以x<4,故答案为:x<4.20.解:解方程组得,∴两直线的交点坐标为(1,2),所以①②正确;当y1<y2,即2x<﹣2x+4,解得x<1,即当x<1时,y1<y2;所以③正确;∵直线y1=2x与直线y2=﹣2x+4相交于A,∴y1,y2在平面直角坐标系中不平行,所以④错误.故答案为:①②③.21.解:∵直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,∴交点的横坐标为0∵从图象看,当x>0时,直线y1=k1x+b的图象位于直线y2=k2x+b的上方;当x<0时,直线y1=k1x+b的图象位于直线y2=k2x+b的下方∴当x>0时,k1x+b>k2x+b故答案为:x>0.22.解:因为当x>2时,ax>kx+7,所以关于x的一元一次不等式ax>kx+7的解集为x>2.故答案为x>2.23.解:(1)∵一次函数y=kx+b经过点A(3,0),B(0,3).∴,解得;(2)函数图象如图:;(3)不等式kx+b>0的解集为:x<3.24.解:(1)由图象可知,方程2x﹣3=0的解是x=,(2)由图象可知,不等式2x﹣3>0的解集是x>;(3)由图象可知,不等式﹣1<2x﹣3<5的解集是:1<x<4.25.解:(1)∵在函数y=||(k>0)中,当x=﹣4时,y=1,||1,解得k=4,∴这个函数的表达式是y=||;(2)∵y=||,∴y=,列表:x﹣4﹣2﹣1123y124421…描点、连线,画出该函数的图象如图所示:由图象可知,函数的图象关于y轴对称;(3)由函数图象可得,||x的解集是0<x≤2或x<0.26.解:(1)由“左加右减”的原则可知:把直线y=2x向右平移1个单位长度后,其直线解析式为y=2(x﹣1),即y=2x﹣2.故直线y1的为y=2x﹣2;(2)①如图,由直线y1的为y=2x﹣2可知A(1,0),B(0,﹣2),∵A为BC的中点,∴C(2,2),把C(2,2)代入y2=kx得,2=2k,∴k=1;②当0<y1<y2时,x的取值范围是1<x<2.故答案为1<x<2.27.解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B (2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x>1,∵AB=3,∴S△ABC=•y C==.28.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).29.解:(1)当x<2时,y1<y2;(2)把点P(2,m)代入y2=x+1中,得m=2+1=3,∴点P的坐标为(2,3).把点C(0,﹣2)、P(2,3)分别代入y1=kx+b中,得,解得,∴直线l1的解析式为y1=x﹣2;(3)由(2)得点P的坐标为(2,3),∵△ABP与△BPM有相同的高,即h=3.要使△ABP与△BPM面积相等,且点M在x 轴正半轴上.∴在x轴上取点M,当AB=BM时,△ABP与△BPM面积相等.∵在直线中,当y=0时,,即点B的坐标是(,0),∴AB=1+=,BM=OM﹣OB=,∴OM=,则点M运动到(0,)时△ABP与△BPM面积相等.∴S△BPM=.30.解:(1)把A(m,3)代入y1=2x得2m=3,解得m=,∴A(,3),把A(,3)代入y2=kx+4得3=k+4,解得k=﹣;(2)当x≤时,y2≥y1.31.解:(1)联立两函数解析式可得方程组,解得:,∴点A的坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,解得:x=﹣2,∴B(﹣2,0),当y2=0时,x﹣4=0,解得:x=4,∴C(4,0),∴CB=6,∴△ABC的面积为:6×3=9;(3)由图象可得:y1≤y2时x的取值范围是x≥1.32.解:(1)函数f(x)=,所以其图象如图:(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,即(|x+2|﹣|x﹣1|+4)的最大值≥|1﹣2m|,故|x+2|﹣|x﹣1|+4的最大值大于或等于|1﹣2m|,利用绝对值的意义可得|x+2|﹣|x﹣1|+4的最小值为3+4=7,∴|1﹣2m|≤7,解得﹣3≤m≤4。
中考数学专题复习:一次函数与方程、不等式一、单选题1.若0<m <n ,则直线y =﹣3x +m 与直线y =﹣x +n 的交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.若直线l 1经过点(﹣1,4),直线l 2经过点(3,0),且l 1与l 2关于y 轴对称,则l 1与l 2的交点坐标为( ) A .(0,3)B .(0,﹣3)C .(0,﹣6)D .(0,6)3.如图,函数y =ax +4和y =bx 的图象相交于点A ,则不等式bx ≥ax +4的解集为( )A .x ≥2B .x ≤2C .x <2D .x >24.如图,已知一次函数1y kx b =+和2y x b =-+的图象交于点P ,则二元一次方程组12y kx b y x b =+⎧⎨=-+⎩的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩5.若直线32y x =-与直线25y x =+的交点坐标为(),a b ,则下列方程组的解为x ay b =⎧⎨=⎩的是( ) A .3225y x x y -=-⎧⎨-=-⎩B .3225y x x y -=⎧⎨-=-⎩C .3225y x x y -=-⎧⎨-=⎩D .3225y x x y -=⎧⎨-=⎩6.如图,已知直线11y k x =过点)(3,6A --,过点A 的直线22y k x b =+交x 轴于点)(6,0B -,则不等式120k x k x b <+<的解集为( )A .6x <-B .63x -<<-C .30x -<<D .0x >7.已知方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩,则一次函数23y x =+与y ax c =+的图像的交点坐标是( ) A .(-1,1)B .(1,-1)C .(2,-2)D .(-2,2)8.已知一次函数y kx b =+(k b 、为常数,且0k ≠),x y 、的部分对应值如下表:当0y >时,x 的取值范围是( ) A .4x <-B .4x >-C .2x >-D .2x <-9.一次函数1y kx b =+与2y mx n =+的图象如图所示,则以下结论:①0k >;①0b >;①0m >;①0n >;①当3x =时,12y y >,正确的个数是( )A .1个B .2个C .3个D .4个10.如图,直线1:12AB y x =+分别与x 轴、y 轴交于点A ,点B ,直线:CD y x b =+分别与x 轴,y 轴交于点C ,点D .直线AB 与CD 相交于点P ,已知4ABD S ∆=,则点P 的坐标是( )A .5(3,)2B .(8,5)C .(4,3)D .1(2,5)4二、填空题11.如果关于x ,y 的方程组1(21)3y x y k x =-+⎧⎨=+-⎩无解,那么直线()13y k x =-+-不经过第_________象限.12.在平面直角坐标系xOy 中,一次函数y =kx 和y =mx +n 的图象如图所示,则关于x 的一元一次不等式kx ﹣n >mx 的解集是_________.13.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是__________.14.已知直线y 1=2x 与直线y 2=﹣2x +4相交于A ,有以下结论: ①A 的坐标为(1,2);①当x=1时,两个函数值相等;①当x<1时,y1<y2;①y1,y2在平面直角坐标系中的位置关系是平行,其中正确的是________.15.定义:对于实数a,b,符号max{a,b}表示:当a≥b时,max{a,b}= a,当a<b时,max{a,b}= b.例如max{-3,5}=5,max{2,1}=2.若关于x的函数y = max{x-2,-2x+1},则该函数的最小值为__________.三、解答题16.如图,直线l是一次函数y kx b=+的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出0y<时x的取值范围.17.如图,一次函数1: 22l y x=-的图像与x轴交于点D;一次函数2:l y kx b=+的图像与x轴交于点A,且经过点()3,1B,两函数图像交于点(),2C m.(1)求m ,k ,b 的值;(2)根据图象,直接写出122kx b x <+<-的解集.18.如图,已知直线1l :y =3x+1与y 轴交于点A ,且和直线2l :y =mx +n 交于点P (-2,a ),根据信息解答下列问题:(1)求a 的值,判断直线3l :y=-12n x -2m 是否也经过点P ?请说明理由;(2)不解关于x ,y 的方程组31y x y mx n=+⎧⎨=+⎩请你直接写出它的解;(3)若点的坐标为B (3,0),求直线2l 的函数表达式.参考答案11.一、二. 12.x >1 13.240x y =⎧⎨=⎩14.①①① 15.-1 16.(1)y=12x +1;(2)x <-2 17.(1)m=2;k=-1;b=4;(2)2<x <318.解:(1)把点P (-2,a )代入直线1l :y =3x+1得:()3215a =⨯-+=-,①点()2,5P --,直线3l 也经过点P ,理由如下: ①点()2,5P --在直线2l 上, ①25m n -+=-, 将2x =-代入122y nx m =--得: ()122252y n m m n =-⨯-⋅-=-+=-,①直线3l 也经过点P ;(2)25x y =-⎧⎨=-⎩;(3)3y x =-。
11.3.1 —11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=—ba。
2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b〉0或ax+b〈0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b〉0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b〈0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=—3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。
评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=—3x+12的图像,利用图像求:(1)不等式-3x+12〉0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在—6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y〉0时,x的取值范围为x〈4,∴不等式—3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式—3x+12≤0的解集为x≥4.(3)当—6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y〉0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y〈0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x—4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3〈3x—4,解得x〉74,∴当x>74时,y1〈y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4〉2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x—6〉0,画出直线y=3x—6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6〉0,所以不等式的解集为x〉2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x。
一次函数与一元一次不等式的应用一 函数自变量X 的取值范围:(1)若解析式为整式,则X 可取一切实数(2)若解析式为分式,则应取使分母不为零的实数 (3)若涉及零次幂时,则取值应使底数的值不为零 (4)在实际问题中,取值应使实际问题合乎实际意义(5)若解析式涉及以上多种情况时,应分别求出各种情况下的允许值,然后再求出它们的公共部分 作为X 的取值范围二 运用待定系数法求一次函数(或正比例函数)的解析式 待定系数法是通过先设出函数的解析式,再根据条件列出方程或方程组求出解析式中未知的系数, 从而得出函数解析式的方法。
步骤:(1)设关系式 (2)代入对应值 (3)解方程(组)(4)代入关系式,得出函数解析式三 不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变(3)(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b (2)a – b=0⇔a=b (3)a –b <0⇔a <b 4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <一次函数值的变化对应着相应自变量的取值范围:(1)可从一次函数的图象上直观看出(近似值), (2)也可通过解(方程)不等式而得到(精确值). 由于任意一个一元一次不等式都能写成0>+b kx (或<0)的形式,而不等式的左边与一次函数b kx y +=的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归纳为两种认识:(1)从函数值的角度看,就是寻求使一次函数b kx y +=的值大于(或小于)0的自变量x 的取值范围(2)从函数图象的角度看,就是确定直线b kx y +=在x 轴上方(或下方)部分相应x 的取值范围。
我们既可以运用函数图象解不等式 ,也可以运用解不等式帮助研究函数问题 ,二者相互渗透 ,互相作用。
不等式与函数是紧密联系着的一个整体 。
步骤:①列出数量间的函数关系式,②将这几种方案转化为函数间的相等与不等关系 ③根据自变量的值实际范围解方程或不等式再确定自变量的值,④作答。
经典例题分析:【问题1】学校为改进教学条件,准备购买一批新电脑,进行市场调查,有两家同一品牌的同一型号的电脑每台报价匀为6000元,但多买都有一定的优惠。
甲商场的优惠条件:第一台按原报价收费, 其余每台优惠25%; 乙商场的优惠条件:每台优惠20%(1)分别写出甲、乙两商场的收费Y1、Y2与所买电脑台数x 之间的函数关系式 (2)什么情况下到甲商场购买更优惠? (3)什么情况下到乙商场购买更优惠? (4)什么情况下两家商场的收费相同?练习:某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,并且报价都是每人200元,经过协商, 甲旅行社表示可给每位游客七五折优惠;乙旅行社表示可先免去一位游客费用,其余游客八折优惠, 问:该单位选择哪一家旅行社支付的旅游费用较少?【问题二】某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用后,那么服药后2小时血液中含药量最高,达每毫升6微克,(1微克=10-3毫克),接着逐步衰减,10小时时血液中含量为每毫升3微克,每毫升血液中含药量y (微克)随时间x (小时)的变化如图所示。
当成人按规定剂量服用后:(1)分别求出x ≤2和x ≥2时y 与x 之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效的时间是多长?练习:兄弟俩赛跑,哥哥先让弟弟跑9m ,然后自己才开始跑。
已知弟弟每秒跑3m ,哥哥每秒跑4m 。
列出函数关系式,作出函数图象,观察图象回答下列问题:(1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面?(4)谁先跑过20m ?谁先跑过100m ?问题三:我市某乡A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨,现将这些柑桔运到C 、D 两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元,设从A 村运往C 仓库的柑桔重量为x 吨,A 、B 两村运往两仓库的柑桔运输费用分别为A y 元和B y 元(1)请填写下表,并求出A y 、B y 与x 之间的函数关系式。
收地 运地C (吨)D (吨)总计(吨)Ax200问题二图 x y (微克)(小时)63102OyxO AB解: (2)试讨论A 、B 两村中,哪个村的运费较多?(3)考虑到B 村的经济承受能力,B 村的柑桔运费不得超过4830元,在这种情况下,问怎样调运才能使两村运费之和最小?求出这个最小值。
练习:红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。
为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠。
一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元。
普通间(元/人/天) 豪华间(元/人/天) 贵宾间(元/人/天)三人间 50 10O 500 双人间 70 150 800 单人间1002001500①三人间、双人间普通客房各住了多少间?②设三人间共住了x 人,则双人间住了_______人,一天一共花去住宿费用y 元表示,写出y 与x 的函数关系式;③在直角坐标系内画出这个函数图象;④如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?(一)填空与选择1.如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为.2.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2 007次,点P 依次落在点P 1, P 2, P 3, P 4, …,P 2 007的位置,则P 2 007 的横坐标x 2 007=_.3.若直线y=mx+4,x=l ,x=4和x 轴围成的直角梯形的面积是7,则m 的值是( ) A .-12 B .- 23 C .-32D .-24.已知直线y 1=ax+b 和y 2=mx+n 的图象如图所示,根据图象填空. ⑴ 当x_ _时,y 1>y 2;当x____时,y 1=y 2; 当x______时,y 1<y 2. ⑵ 方程组12y =ax+by =mx+n⎧⎨⎩ 是.5.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为.6.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),B 300 总计 240 260 500 y x O A B① ② ③ ④ 4 8 12 16 4 yA 3B 3(第1题图) (第2题图) (第4题图)(第5题图)604040 150 30单位:cm A B B 则B n 的坐标是______________.(二)例题讲解例1:某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图是裁法一的裁剪示意图)裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数2mn设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m =,n =;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?例2.“5•12”汶川大地震后,某健身器材销售公司通过当地“红十字会”向灾区献爱心,捐出了五月份全部销售利润.已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y 1(万元)和杂项支出y 2(万元)分别与总销售量x (台)成一次函数关系(如图). (1)求y 1与x 的函数解析式; (2)求五月份该公司的总销售量;(3)设公司五月份售出甲种型号器材t 台,五月份总销售利润为W (万元),求W 与t 的函数关系式;(销售利润=销售额-进价-其他各项支出) (4)请推测该公司这次向灾区捐款金额的最大值.3.如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲、乙两辆汽车分别从B 、C 两地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙两车到A 地的距离1y 、2y (千米)与行驶时间 x (时)的关系如图②所示. 根据图象进行以下探究:⑴请在图①中标出 A 地的位置,并作简要的文字说明; ⑵求图②中M 点的坐标,并解释该点的实际意义;⑶在图②中补全甲车的函数图象,求甲车到 A 地的距离1y 与行驶时间x 的函数关系式; ⑷A 地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.例4.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究:单位(万元/台) 甲 乙 丙 进价 0.9 1.2 1.1 售价 1.2 1.6 1.3A Dy /km900y (千米) 乙甲图②CB 图①0 20 0.2 0.31.2B y 1 y 2=0.005x+0.3x(台) y(万元)(例1图)信息读取(1)甲、乙两地之间的距离为km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?例5.如图,直线y=-33x+1分别与X 轴,Y 轴交于B ,A. (1)求B ,A 的坐标;(2)把△AOB 以直线AB 为轴翻折,点O 落在点C ,以BC 为一边做等边三角形△BCD,求D 点的坐标.例6.如图,直线y=kx+8分别与x 轴、y 轴相交于A 、B 两点,O 为坐标原点,点A 的坐标为(4,0). (1)求k 的值;(2)若P 为y 轴(点B 除外)上的一点,过P 作PC ⊥轴,交直 线AB 于C.设线段PC 的长为n,点P 的坐标为(0,m).如果点P 在线段BO (点B 除外)上移动,求n 与m 的函数关系式,并求自变量m 的取值范围;②如果点P 在射线BO (B 、O 两点除外)上移动,连结PA ,则ΔAPC 的面积S 也随之发生变化。