一元一次不等式与一次函数的关系
- 格式:doc
- 大小:130.00 KB
- 文档页数:10
一次函数与一元一次不等式的关系一次函数和一元一次不等式是初中数学中比较基础的知识点,两者之间也有着密切的联系。
本文将从定义、性质、图像等方面探讨一次函数和一元一次不等式之间的关系。
一、一次函数的定义一次函数是指形如 $y=kx+b$ 的函数,其中 $k$ 和 $b$ 都是常数,$x$ 和 $y$ 是变量。
其中,$k$ 称为斜率,表示函数图像的倾斜程度;$b$ 称为截距,表示函数图像与 $y$ 轴的交点。
二、一元一次不等式的定义一元一次不等式是指形如 $ax+b>0$ 或 $ax+b<0$ 的不等式,其中 $a$ 和 $b$ 都是实数,$x$ 是变量。
其中,$a$ 表示不等式左侧的系数,$b$ 表示不等式右侧的常数。
三、一次函数的性质1. 斜率为正,则函数是单调递增的;斜率为负,则函数是单调递减的。
2. 截距表示函数与 $y$ 轴的交点,当 $x=0$ 时,$y=b$。
3. 一次函数的图像是一条直线,可以通过两个点来确定。
四、一元一次不等式的性质1. 当 $a>0$ 时,不等式的解集为 $x>-b/a$;当 $a<0$ 时,不等式的解集为 $x<-b/a$。
2. 如果不等式中的 $<$ 变成了 $leq$ 或 $geq$,则解集不变。
3. 如果不等式中的 $>$ 和 $<$ 交换,不等式的解集也随之交换。
五、一次函数和一元一次不等式的关系1. 一次函数的图像可以用来表示一元一次不等式的解集。
例如,不等式 $2x+3>0$ 的解集可以表示成一次函数 $y=2x+3$ 在$y>0$ 区域的图像。
2. 一元一次不等式的解集也可以用来表示一次函数的定义域或值域。
例如,不等式 $3x-1<5$ 的解集为 $x<2$,则一次函数$y=3x-1$ 的定义域为 $(-infty, 2)$。
3. 一次函数的斜率和截距也可以用来确定一元一次不等式的形式。
◆知识讲解1.一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax +b (a≠0,a ,b 为常数)中,函数的值等于0时自变量x 的值就是一元一次方程ax +b=0(a≠0)的解,所对应的坐标(-ba,0)是直线y=ax+ b 与x 轴的交点坐标,反过来也成立;直线y=ax +b 在x 轴的上方,也就是函数的值大于零,x 的值是不等式ax+ b>0(a≠0)的解;在x 轴的下方也就是函数的值小于零,x 的值是不等式ax +b<0(a≠0)的解.2.坐标轴的函数表达式函数关系式x=0的图像是y 轴,反之,y 轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x 轴,反之,x 轴可以用函数关系式y=0表示.3.一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.4.两条直线的位置关系与二元一次方程组的解(1)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y=k 1x+b 1不平行于直线y=k 2x+b 2⇔k 1≠k 2.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y=k 1x+b 1∥直线y=k 2x+b 2 ⇔k 1=k 2,b 1≠b 2.(3)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y=k 1x+b 1与y=k 2x+b 2重合⇔k 1=k 2,b 1=b 2.◆例题解析例1 (2006,长河市)我市某乡A ,B 两村盛产柑橘,A•村有柑橘200t ,•B•村有柑橘300t .现将这些柑橘运到C ,D 两个冷藏仓库,•已知C•仓库可储存240t ,•D•仓库可储存260t ;从A 村运往C ,D 两处的费用分别为每吨20元和25元,从B 村运往C ,D 两处的费用分别为每吨15元和18元,设从A村运往C仓库的柑橘重量为xt,A,B•两村运往两仓库的柑橘运输费用分别为y A元和y B元.(1)请填写下表,并求出y B,y A与x之间的函数关系式;(2)试讨论A,B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过480元.在这种情况下,•请问怎样调运,才能使两村运费之和最小?求出这个最小值.【分析】(1)根据运输的吨数及运费单价可写出y,y与x之间的函数关系.(2)欲比较y A与y B的大小,应先讨论y A=y B的大小,应先讨论y A=y B或y A>y B或y A<y B 时求出x的取值范围.(3)根据已知条件求出x的取值范围.根据一次函数的性质可知在此范围内,两村运费之和是如何变化的,进而可求出相应的值.【解答】(1)y A=-5x+5000(0≤x≤200),y B=3x+4680(0≤x≤200).(2)当y A=y B时,-5x+5000=3x+4680,x=40;当y A>y B时,-5x+5000>3x+4680,x<40;当y A<y B时,-5x+5000<3x+4680,x>40.∴当x=40时,y A=y B即两村运费相等;当0≤x<40时,y A>y B即B村运费较少;当40<x≤200时,y A<y B即A村费用较少.(3)由y B≤4830得3x+4580≤4830.∴x≤50.设两村运费之和为y,∴y=y A+y B,即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当A村调往C仓库的柑橘重为50t,调运D仓库为150t,B村调往C仓库为190t,调往D仓库110t的时候,两村的运费之和最小,最小费用为9580元.例2 某家庭今年3个月的煤气量和支付费用见下表:该市的煤气收费方法是:基本费+超额费+•保险费,•若每月用气量不超过最低量am3,则只付3元基本费和每户的定额保险费c元;若用气量超过acm3,则超过的部分每立方米支付b元,并知c≤5元,求a,b,c.【分析】数学能帮助我们解决许多生活中的实际问题,本题要求a,b,c的值,•不妨设每月用气量为x(m2),支付费用为y(元),再根据题意列出x,y的关系表达式,即y=3(0) 3()()c x ab x ac x a+≤≤⎧⎨+-+>⎩由此可推断出a,b,c的值.【解答】设每月用气量为xm3,支付费用为y元,根据题意得y=3(0) 3()()c x ab x ac x a+≤≤⎧⎨+-+>⎩∵c≤5,∴c+3≤8因2月份和3月份的费用均大于8,故用气量大于最低限度am3,将x=25,y=14;x=35,y=19分别代入②得143(25) 193(35)b a cb a c=+-+⎧⎨=+-+⎩④-③得:10b=5 ∴b=0.5把b=0.5代入③得a=3+2c又因1月份的用气量是否超过最低限度尚不明确,故当a<4时,将x=4•代入②得4=3+0.5[4-(3+2c)]+c,即4=3.5-c+c不成立则a≥4,此时的付款分式选①,有3+c=4∴c=1把x=1代入a=3+2c得a=5∴a=5,.b=0.5,c=1.【点评】本题要求a,b,c的值,表面看与一次函数无关,•但实际上题中不仅包含函数关系,而且是一个分段函数,求分段函数解析式的关键是分清各段的取值范围,其条件分别在各自的取值范围内使用,若有不确定的情形,须进行分类讨论.1.(2008,武汉)如图1所示,直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式组12x<kx+b<0的解集为_______.图1 图2 图32.(2006,江苏南通)如图2,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于_______.3.如图3所示,L甲,L乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s与时间t的关系,观察图像并回答下列问题:(1)乙出发时,与甲相距______km;(2)走了一段路后,乙的自行车发生故障,停下来修理,修车为_____h;(3)乙从出发起,经过_____h与甲相遇;(4)甲行走的路程s与时间t之间的函数关系式_______;(5)如果乙自行车不出现故障,那么乙出发后经过______h与甲相遇,相遇处离乙的出发点____km.并在图中标出其相遇点.4.(2006,山西太原)如图所示的图形都是二次函数y=ax2+bx+a2-1的图像,若b>0,则a 的值等于()A.152-B.-1 C.152--D.15.如图,一次函数y=kx+6的图像经过A,B两点,则kx+b>0的解集是()A.x>0 B.x<2C.x>-3 D.-3<x<26.(2004,安徽省)购某种三年期国债x元,到期后可得本息和y元,已知y=kx,•则这种国债的年利率为( ) A .k B .3k C .k -1 D .13k - 7.(2006,浙江舟山)近阶段国际石油迅速猛涨,中国也受期影响,为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.•假设一辆出租车日平均行程为300km .(1)使用汽油的出租车,假设每升汽油能行驶12km ,当前的汽油价格为4.6元/L ,•当行驶时间为t 天时,所耗的汽油费用为p 元,试写出p 关于t 的函数关系式;(2)使用液化气的出租车,假设每千克液化气能行驶15~16km ,•当前的液化气价格为4.95元/kg ,当行驶时间为t 天时,所耗的液化气费用为w 元,试求w 的取值范围(用t 表示);(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益.(用20字左右谈谈感想).8.(2006,枣庄)已知关于x 的二次函数y=x 2-m x+222m +与y=x 2-m x -222m +,这两个二次函数的图像中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图像经过A ,B 两点; (2)若点A 坐标为(-1,0),试求点B 坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x•值的增大而减小?。
一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。
两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。
另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。
事实上,不等式与函数和方程是紧密联系的一个整体。
2.一次函数的图象与一元一次不等式的关系。
一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。
【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。
题型有选择题、填空题及解决实际问题(多为压轴题)。
【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。
思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。
解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。
评注:(1)两点确定一条直线。
(2)大于往右看,小于往左看。
【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。
已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。
解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。
评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。
一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。
一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。
这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。
具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。
例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。
总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。
一元一次不等式与一次函数的关系
一元一次不等式与一次函数之间有着密切的联系,这一联系表现在以下几个方面:
一、当令一元一次不等式中等号左边的表达式为一次函数时,可以将其化简为一次函数形式:
1. 一元一次方程组:
a. 当一元一次方程组中等式左右两边分别为一次函数时,可以将其化简为一次函数形式。
b. 两个一次方程涉及到同一个未知数时,可以最终得出结果,即将一元一次不等式化简为一次函数的形式。
2. 一元二次不等式:
a. 当一元二次不等式左边为一次函数时,也可以将其化简为一次函数形式。
b. 二次不等式的解也可以表现为一次函数的形式,即分段函数。
二、求解一元一次不等式可以利用一次函数的性质:
1. 关于一元一次方程:
a. 利用一次函数求函数图像实现一元一次方程的求解,从而得到不
等式的解。
b. 利用一次函数的性质验证不等式的正确性,从而得到不等式的解。
2. 关于一元二次方程:
a. 利用一次函数的对称性,判断不等式的大小,从而得到不等式的解。
b. 利用一次函数的单调性,得到不等式上下界,从而得到不等式的解。
综上所述,一元一次不等式与一次函数有着密切的联系,一元一次不
等式可以化简为一次函数形式,求解一元一次不等式也可以利用一次
函数的性质。
不等式与函数图象一元一次方程、一元一次不等式及一次函数的关系:函数y=ax+ba≠0,a,b为常数中,函数的值等于0时自变量x的值就是一元一次方程ax+ b=0a≠0的解,所对应的坐标-ba,0是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0a≠0的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0a≠0的解.例题1:观察y=2x-5的图象回答下列问题.1x取哪些值时,2x-5=03x取哪些值时,2x-5<02x取哪些值时,2x-5>04x取哪些值时,2x-5>33如果y=-2x-5,那么当x取何值时,y>0例题2:已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是例题2图练习123练习1.如图所示,直线y=kx+b与x轴交于点-4,0,当y>0时,x的取值范围是2.一次函数y=kx+bk、b是常数,k≠0的图像如图所示,则不等式kx+b>0的解集是3.一次函数y=kx+b的图像如图所示,当y<0时,x的取值范围是.例题2.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图像如图所示,则x的不等式k1x+b>k2x的解为练习:1,如图,直线y=1/2kx+b经过A-2,-1和B-3,0两点,则不等式组x<kx+b<0的解集为__________.2.如图,l 1反映了某公司的销售收入与销量的关系,l 2反映了该公司产品的销售成本与销量的关系,当该公司赢利收入大于成本时,销售量必须____________.3.小亮用作图像的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图像L 1,L 2如图所示,他解的这个方程组是A .22112y x y x =-+⎧⎪⎨=-⎪⎩B .22y x y x =-+⎧⎨=-⎩ C .38,132y x y x =-⎧⎪⎨=-⎪⎩D .22,112y x y x =-+⎧⎪⎨=--⎪⎩ 4.如图,一次函数y=kx+6的图像经过A,B两点,则kx+b>0的解集是A .x>0B .x<2C .x>-3D .-3<x<2课后练习: 1.如图4所示,已知函数y=x+b 和y=ax+3的图像交点为P,•则不等式x+b>ax+3的解集为________.图4图5图62.函数y 1=x+1与y 2=ax+ba≠0的图像如图5所示,•这两个函数图像的交点在y 轴上,那么使y 1,y 2的值都大于零的x 的取值范围是A .x>-1B .x<2C .1<x<2D .-1<x<23.如图6,一次函数y=kx+b 的图像经过A,B 两点,则kx+b>0•的解集是A .x>0B .x>2C .x>-3D .-3<x<2。
知识回顾:1、定义:不等式:一般地用不等号连接的式子叫做不等式。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、解不等式:把不等式变为x>。
或x<a的形式。
一、知识要点:1、一次函数的定义:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,kHO)的形式,则称y是x的一次函数(x为自变量)。
当b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的解析式:y=kx+b(kH0)注:一次函数的解析式的形式是y=d+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-纟,0)两点的一条直线,我们称它为直线ky=kx+b,它可以看作由直线尸kx平移|b|个单位长度得到.(当b〉0时,向上平移;当b〈0时,向下平移)(1)解析式:(k、b是常数,kHO)(2)必过点:和(3)走向:k>0,b=0,图象经过第象限;k<0,b二0,图象经过象限O直线经过第象限O直线经过第象限Z?>0\b<0<O C>直线经过第象限P<0<=>直线经过第象限\b>Q[b<0(4)增减性:k>0,y随x的增而;k<0,y随x增大而(5)倾斜度:|k|越大,图象越接近于轴;|k|越小,图象越接近于轴.(6)图像的平移:上加下减;左加右减将函数y=kx+b图像向上平移3个单位变为,然后再向右平移3个单位变为;将函数y=kx+b图像向下平移3个单位变为然后再向左平移3个单位变为2、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线, 所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点,.即横坐标或纵坐标为0的点.34、用待定系数法确定函数解析式的一般步骤:(设、列、解、答)(1)设:根据已知条件写出含有待定系数的函数关系式;(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解:解方程得出未知系数的值;(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二、典型例题:1、若点(inji)在函数y=2x+l的图象上,则2m-n的值2、己知正比例函数y=kx伙工0),点⑵-3)在函数上,则y随x的增大而3、如果一次函数空+3的图象经过第一、二、四象限,则m的取值范围是4、地面气温是20°C,如果每升高100m,气温下降6°C,则气温t(°C)与高度h(m)的函数关系式是o5、己知一次函数尸kx+b的图象如图所示,则k,b的符号是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<06、已知一次函数尸kx+b的图象经过点(-1,-5),且与正比例函数尸**的图象相交于点(2,a),(1)求a的值,(2)k,b的值,(3)这两个函数图象与x轴所围成的三角形的面积。
一次函数与方程、不等式的关系考点·方法·破译 1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a c x b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选A .【变式题组】01.(浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图像可得不等式2x +b >ax -3的解集是________. 03. (武汉)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.第1题图 第2题图 第3题图【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围. 【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x mm y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∴00x y >⎧⎨>⎩,∴5013201m m m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求∴ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∴l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∴y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0). ∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S ∴ABC =12×2×3=3.【变式题组】01. 已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),∴ABC 的面积为1,求这两个一次函数的解析式. 02. 如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直.⑴求点C 坐标; ⑵设∴BOC 中位于直线l 左侧部分面积为S ,求S 与t 之间的函数关系式;⑶当t 为何值时,直线l 平分∴COB 面积. 演练巩固·反馈提高 01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么∴ABC 的面积是( ) A .2 B .3 C .4 D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S ∴ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________.10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________. 13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.(河北)如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-). ⑴求直线l 2的解析式; ⑵求S ∴ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S ∴ADP =S ∴ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后, ⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。
学校____________ 班级____________ 姓名____________【学习目标】1、一元一次不等式与一次函数的关系。
2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较。
3、通过一元一次不等式与一次函数的图象之间的结合,培养数形结合意识。
【学习重点】了解一元一次不等式与一次函数之间的关系。
【学习难点】根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。
【学习过程】一、复习导学前面我们学习过一次函数、一元一次方程与一元一次不等式,我们知道一元一次方程的解就是一次函数图象与x轴交点的横坐标,也就是说:“一元一次方程ax+b=0”与“求当x为何值时,y=ax+b的值为0”是同一问题,那么一元一次不等式与一次函数之间有怎样的关系呢?如:下面两个问题是同一问题吗?(1)解不等式:2x-4<0(2)当x为何值时,函数y=2x-4的值小于0?今天我们就来探究类似这样的问题?二、自主探究、合作交流1.探讨一下一元一次不等式与一次函数的图象之间的关系:还记得一次函数吗?请举例给出它的一般形式.如y=2x-5为一次函数.在一次函数y=2x-5中,当y=0时,有方程2x-5=0;当y>0时,有不等式2x-5>0;当y<0时,有不等式2x-5<0.由此可见:_________________________________________________________________ ___________________________________________________________________________.2.做一做:作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0?(2)x取哪些值时,2x-5>0?(3)x取哪些值时,2x-5<0?(4)x取哪些值时,2x-5>1?请回答:(1)(2)(3)(4)3.试一试如果y=-2x-5,那么当x取何值时,y>0?首先要画出函数y=-2x-5的图象,如图:从图象上可知:_____________________________________________________ __________________________________________________________________.4.练一练函数y1=2x-5和y2=x-2的图象如图所示,观察图象回答下列问题:(1)x取何值时,y1=y2?(2)x取何值时,y1>y2?(3)x取何值时,y1<y2?从图象上看:总结一次函数与一元一次不等式的关系:从数的角度看从形的角度看三、应用新知、拓展提升(一)基础演练1.已知函数y=3x+8,当x________________________时,函数的值等于0.当x_________________________时,函数的值大于0.当x__________________________________时,函数的值不大于2.2.如图,直线l1,l2交于一点P,若y1≥y2,则()A.x≥3 B.x≤3 C.2≤x≤3 D.x≤4(二)典例示范例1.作出函数y1=2x-4与y2=-2x+8的图象,并观察图象回答下列问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)你能求出函数y1=2x-4,y2=-2x+8的图象与x轴所围成的三角形的面积吗?并写出过程.例2.一次函数y=-3x+12中,x为何值时:(1)当x取何值时,y>0;(2)当x取何值时,y=0;(3)当x取何值时,y<0 .(三)拓展提升例3.已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?四、课堂小结1.转化思想:转化__________问题 ___________问题2.解函数问题的方法:图象法:_________________________________.3.一次函数与一元一次不等式的关系:从数的角度看从形的角度看五、课堂检测1.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是()A.x>5 B.x< C.x<-6 D.x>-62.已知一次函数的图象如图所示,当x<1时,y的取值范围是()A .-2<y <0B .-4<y <0C .y <-2D .y <-4 3.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.4.已知1213222y x y x =-=+,,试确定x 取何值时2y 不小于1y ?5.在同一坐标系中画出一次函数y 1=-x +1与y 2=2x -2的图象,并根据图象回答下列问题:(1)写出直线y 1=-x +1与y 2=2x -2的交点P 的坐标.(2)直接写出:当x 取何值时y 1>y 2;y 1<y 2参考答案:一、复习导学二、自主探究、合作交流1.探讨一下一元一次不等式与一次函数的图象之间的关系:一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式.2.做一做:(1)当y =0时,2x -5=0,∴x =25,∴当x =25时,2x -5=0. (2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图象上可知,y >0时,图象在x 轴上方,图象上任一点所对应的x 值都满足条件.当x >25时,由y =2x -5可知y >0.因此当x >25时,2x -5>0. (3)同理可知,当x <25时,有2x -5<0; (4)要使2x -5>1,也就是y =2x -5中的y 大于1,那么过纵坐标为1的点作一条直线平行于x 轴,这条直线与y =2x -5相交于一点B (3,1),则当x >3时,有2x -5>1.3.试一试从图象上可知,图象在x 轴上方时,图象上每一点所对应的y 的值都大于0,而每一个y 的值所对应的x 的值都在A 点的左侧,即为小于-的数,由-2x -5=0,得x =-,所以当x 取小于-的值时,y >0.4.练一练从图象上看,(1)y 1=y 2时,两个一次函数的图象交于一点,此点的横坐标就是方程2x -5=x -2的解;(2)一次函数y 1=2x -5的图象在y 2=x -2的图象上方的部分对应点的横坐标就是不等式2x -5>x -2的解;(3)一次函数y 1=2x -5的图象在y 2=x -2的图象下方的部分对应点的横坐标就是不等式2x -5<x -2的解.总结一次函数与一元一次不等式的关系:从数的角度看求ax +b >0(或<0)(a ,b 是常数,a ≠0)的解集就是求函数y =ax +b 的函数值大于0(或小于0)时x 的取值范围.从形的角度看求ax +b >0(或<0)(a ,b 是常数,a ≠0)的解集就是求直线y =ax +b 在x 轴上方或下方时自变量的取值范围三、应用新知、拓展提升(一)基础演练1.=83- ,﹥83-,﹤﹣2. 2.B (二)典例示范例1 . 分析:要使2x -4>0成立,就是y 1=2x -4的图象在x 轴上方的所有点的横坐标的集合,同理使-2x +8>0成立的x ,即为函数y 2=-2x +8的图象在x 轴上方的所有点的横坐标的集合,要使它们同时成立,即求这两个集合中公共的x ,根据函数图象与x 轴交点的坐标可求出三角形的底边长,由两函数的交点坐标可求出底边上的高,从而求出三角形的面积.解:(1)当x >2时,2x -4>0;(2)当x <4时,-2x +8>0;(3)当2<x <4时,2x -4>0与-2x +8>0同时成立;(4)由2x -4=0,得x =2.由-2x +8=0,得x =4.所以AB =4-2=2.由2428y x y x =-⎧⎨=-+⎩,, 得交点C (3,2).所以△ABC 中AB 边上的高为2.所以S =21×2×2=2. 例2.解:(1)当y >0时,则有-3x +12>0,-3x >-12, x <4(2)当y =0时,则有-3x +12=0,-3x =-12, x =4(3)当y <0时,则有-3x +12<0,-3x <-12, x >4(三)拓展提升例3.解:如图所示:当x 取小于47的值时,有y 1>y 2. 四、课堂小结1.转化思想:一次不等式问题 一次函数问题2.解函数问题的方法:图象法:画出函数图象解决函数和不等式问题.3.一次函数与一元一次不等式的关系:从数的角度看求ax +b >0(或<0)(a ,b 是常数,a ≠0)的解集就是求函数y =ax +b 的函数值大于0(或小于0)时x 的取值范围.从形的角度看求ax +b >0(或<0)(a ,b 是常数,a ≠0)的解集就是求直线y =ax +b 在x 轴上方或下方时自变量的取值范围五、课堂检测1.C . 2.C . 3.m <4且m ≠1.4.当2-≥x 时2y 不小于1y .5.图象略.(1)P (1,0); (2)当x <1时y 1>y 2,当x >1时y 1<y 2. 转化。
一次函数与一次方程,一次不等式的关系知识点:一、一次函数与一元一次方程的关系直线y=kx+b (k ≠0)与x 轴交点的横坐标,就是一元一次方程kx+b=0(k ≠0)的解。
求直线y=kx+b 与x 轴交点时,可令y=0,得到方程kx+b=0,解方程得x=-b/k 。
直线y=kx+b 交x 轴于(-b/k ,0),-b/k 就是直线y=kx+b 与x 轴交点的横坐标。
二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为ax=b>0或ax=b<0 (b a 、为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系一次函数的解析式y=kx+b (k ≠0)本身就是一个二元一次方程,直线y=kx+b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y=kx+b (k ≠0),因此二元一次方程的解也就有无数个。
例题解析一、一次函数与一元一次方程综合已知直线y=(3m-2)x+2和y=-3x-2交于x 轴上同一点,m 的值为______已知一次函数y=-x+a 与y=x-b 的图象相交于点(m,8),则b-a=______.二、一次函数与一元一次不等式综合1.已知一次函数y=-2x+525y x =-+.(1)画出它的图象;(2)求出当x=3/2时,y 的值;(3)求出当y=-3时,x 的值;(4)观察图象,求出当x 为何值时,y>0,y<0,y=02.当自变量x 满足什么条件时,函数y=-4x+1的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.3.已知直线A 为y=x+5,直线B 为y=-2x-6.当A>B 时,x 的取值范围是_____4.已知一次函数y=-2x+3(1)当x 取何值时,函数y 的值在-1与2之间变化?(2)当x 从-2到3变化时,函数y 的最小值和最大值各是多少?5.直线A:y=Mx+b 与直线B:y=Nx 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式Nx>Mx+b 的解集为______.6.当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.7.如图,直线y=kx+b (k ≠0)经过A(5,1),B(-2,-3)两点,则不等式0.5x> kx+b>-3的解集为______.5题图 7题图8已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当x=2时,y 的值;(2)x 为何值时,y<0?(3)当-2<x<1时,x 的值范围;(4)当-2<y<1时,y 的值范围.。
导学案:一元一次不等式与一次函数的关系学校____________ 班级____________ 姓名____________
【学习目标】
1、一元一次不等式与一次函数的关系。
2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较。
3、通过一元一次不等式与一次函数的图象之间的结合,培养数形结合意识。
【学习重点】
了解一元一次不等式与一次函数之间的关系。
【学习难点】
根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。
【学习过程】
一、复习导学
前面我们学习过一次函数、一元一次方程与一元一次不等式,我们知道一元一次方程的解就是一次函数图象与x轴交点的横坐标,也就是说:
“一元一次方程ax+b=0”与“求当x为何值时,y=ax+b的值为0”是同一问题,
那么一元一次不等式与一次函数之间有怎样的关系呢?
如:下面两个问题是同一问题吗?
(1)解不等式:2x-4<0
(2)当x为何值时,函数y=2x-4的值小于0?
今天我们就来探究类似这样的问题?
二、自主探究、合作交流
1.探讨一下一元一次不等式与一次函数的图象之间的关系:
还记得一次函数吗?请举例给出它的一般形式.
如y=2x-5为一次函数.
在一次函数y=2x-5中,
当y=0时,有方程2x-5=0;
当y>0时,有不等式2x-5>0;
当y<0时,有不等式2x-5<0.
由此可见:_________________________________________________________________ ___________________________________________________________________________.
2.做一做:
作出函数y=2x-5的图象,观察图象回答下列问题.
(1)x取哪些值时,2x-5=0?
(2)x取哪些值时,2x-5>0?
(3)x取哪些值时,2x-5<0?
(4)x取哪些值时,2x-5>1?
请回答:
(1)
(2)
(3)
(4)
3.试一试
如果y=-2x-5,那么当x取何值时,y>0?
首先要画出函数y=-2x-5的图象,如图:
从图象上可知:_____________________________________________________ __________________________________________________________________.4.练一练
函数y1=2x-5和y2=x-2的图象如图所示,观察图象回答下列问题:
(1)x取何值时,y1=y2?
(2)x取何值时,y1>y2?
(3)x取何值时,y1<y2?
从图象上看:
总结一次函数与一元一次不等式的关系:
从数的角度看
从形的角度看
三、应用新知、拓展提升
(一)基础演练
1.已知函数y=3x+8,当x________________________时,函数的值等于0.当x_________________________时,函数的值大于0.当x__________________________________时,函数的值不大于2.2.如图,直线l1,l2交于一点P,若y1≥y2,则()
A.x≥3B.x≤3C.2≤x≤3 D.x≤4
(二)典例示范
例1.作出函数y1=2x-4与y2=-2x+8的图象,并观察图象回答下列问题:
(1)x取何值时,2x-4>0?
(2)x取何值时,-2x+8>0?
(3)x取何值时,2x-4>0与-2x+8>0同时成立?
(4)你能求出函数y1=2x-4,y2=-2x+8的图象与x轴所围成的三角形的面积吗?并写出过程.
例2.一次函数y=-3x+12中,x为何值时:
(1)当x取何值时,y>0;
(2)当x取何值时,y=0;
(3)当x取何值时,y<0 .
(三)拓展提升
例3.已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?
四、课堂小结
1.转化思想:
转化
__________问题___________问题
2.解函数问题的方法:
图象法:_________________________________.
3.一次函数与一元一次不等式的关系:
从数的角度看
从形的角度看
五、课堂检测
1.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( )
A .x >5
B .x <1
2
C .x <-6
D .x >-6
2.已知一次函数y kx b =+的图象如图所示,当x <1时,y 的取值范围是( )
A .-2<y <0
B .-4<y <0
C .y <-2
D .y <-4 3.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.
4.已知1213
222
y x y x =-=+,,试确定x 取何值时2y 不小于1y ?
5.在同一坐标系中画出一次函数y 1=-x +1与y 2=2x -2的图象,并根据图象回答下列问题:
(1)写出直线y 1=-x +1与y 2=2x -2的交点P 的坐标. (2)直接写出:当x 取何值时y 1>y 2;y 1<y 2
参考答案:
-4 y O
2
x
一、复习导学
二、自主探究、合作交流
1.探讨一下一元一次不等式与一次函数的图象之间的关系:
一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式.
2.做一做:
(1)当y=0时,2x-5=0,
∴x
∴当x2x-5=0.
(2)要找2x-5>0的x的值,也就是函数值y大于0时所对应的x的值,从图象上可
知,y>0时,图象在x轴上方,图象上任一点所对应的x值都满足条件.当x
y=2x-5可知y>0.因此当x2x-5>0.
(3)同理可知,当x2x-5<0;
(4)要使2x-5>1,也就是y=2x-5中的y大于1,那么过纵坐标为1的点作一条直线平行于x轴,这条直线与y=2x-5相交于一点B(3,1),则当x>3时,有2x-5>1.3.试一试
从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个y的值所对应的x的值都在A点的左侧,即为小于-2.5的数,由-2x-5=0,得x=-2.5,所以当x取小于-2.5的值时,y>0.
4.练一练
从图象上看,
(1)y1=y2时,两个一次函数的图象交于一点,此点的横坐标就是方程2x-5=x-2的解;
(2)一次函数y1=2x-5的图象在y2=x-2的图象上方的部分对应点的横坐标就是不等式2x-5>x-2的解;
(3)一次函数y1=2x-5的图象在y2=x-2的图象下方的部分对应点的横坐标就是不等式
2x-5<x-2的解.
总结一次函数与一元一次不等式的关系:
从数的角度看
求ax+b>0(或<0)(a,b是常数,a≠0)的解集就是求函数y=ax+b的函数值大于0(或小于0)时x的取值范围.
从形的角度看
求ax+b>0(或<0)(a,b是常数,a≠0)的解集就是求直线y=ax+b在x轴上方或下方时自变量的取值范围
三、应用新知、拓展提升
(一)基础演练
1
,﹤﹣2.2.B
(二)典例示范
例1.
分析:要使2x-4>0成立,就是y1=2x-4的图象在x轴上方的所有点的横坐标的集合,同理使-2x+8>0成立的x,即为函数y2=-2x+8的图象在x轴上方的所有点的横坐标的集合,要使它们同时成立,即求这两个集合中公共的x,根据函数图象与x轴交点的坐标可求出三角形的底边长,由两函数的交点坐标可求出底边上的高,从而求出三角形的面积.解:
(1)当x>2时,2x-4>0;
(2)当x<4时,-2x+8>0;
(3)当2<x<4时,2x-4>0与-2x+8>0同时成立;(4)由2x-4=0,得x=2.
由-2x+8=0,得x=4.
所以AB=4-2=2.
得交点C(
3,2).
所以△ABC中AB边上的高为2.
所以S
例2.
解:(1)当y>0时,则有-3x+12>0,-3x>-12,x<4
(2)当y=0时,则有-3x+12=0,
-3x=-12,x=4
(3)当y<0时,则有-3x+12<0,
-3x<-12,x>4
(三)拓展提升
例3.
解:如图所示:
当x
y1>y2.
四、课堂小结1.转化思想:一次不等式问题
一次函数问题
2.解函数问题的方法:
图象法:画出函数图象解决函数和不等式问题.
3.一次函数与一元一次不等式的关系:
从数的角度看
求ax+b>0(或<0)(a,b是常数,a≠0)的解集就是求函数y=ax+b的函数值大于0(或小于0)时x的取值范围.
从形的角度看
求ax+b>0(或<0)(a,b是常数,a≠0)的解集就是求直线y=ax+b在x轴上方或下方时自变量的取值范围
五、课堂检测
1.C.2.C.3.m<4且m≠1.
4
5.图象略.(1)P(1,0);(2)当x<1时y1>y2,当x>1时y1<y2.
转化。