13.3.1等腰三角形(第1课时)课件ppt
- 格式:ppt
- 大小:1.15 MB
- 文档页数:28
教学设计13.3.1等腰三角形(第一课时)项目概要部分课题 13.3.1等腰三角形(第一课时)教材数学学科人教版八年级上册第十三单元课题3教学目标一、知识与技能:通过学习等腰三角形的概念及性质,会应用等腰三角形的性质计算、证明。
二、过程与方法:1、经历等腰三角形性质的探究,学生通过实践、操作、观察、猜想、论证,发展了合情推理的水平和演绎推理的水平,同时增强了语言表达水平。
2、在应用等腰三角形性质的过程中,培养了学生应用数学的意识。
三、情感、态度与价值观:在活动中,培养学生自主探究,合作交流的意识,提升学习的兴趣。
任务分析1.本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所以针对学生的特点,能充分地发挥学生主观能动性,让学生自己去发现、去联想.2. 通过学生自己动手实验得到等腰三角形性质的内容,能够使他们比较好的掌握知识、提升学习数学的兴趣,达到了事半功倍之效.3. 在整个教学过程中,利用直观教具及电化教学手段,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯.教学重点探索并证明等腰三角形的性质。
教学难点性质1证明中辅助线的添加和对性质2的理解。
预习设计1、有两边相等的三角形叫,相等的两边叫,另一边叫两腰的夹角叫,腰和底边的夹角叫2、如图,在△ABC中,AB=AC,标出各部分名称。
3、把活动中剪出的△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表4、归纳等腰三角形的性质:性质 1 等腰三角形的两个相等(简写成“”)性质2 等腰三角形、、互相重合。
重合的线段重合的角产出学生能利用等腰三角形的两个性质解决问题,提升使用知识和技能解决问题的水平。
课前教学准备提示1.教具:长方形纸,剪刀,幻灯片、尺子。
2.学具:长方形纸。
学习过程(学生活动)学习指导(教师活动)内容和目标提示[活动一]回顾知识等腰三角形:有两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰所夹的角叫做底角。
13.3.1第1课时等腰三角形的性质知识点1等腰三角形的性质(等边对等角)图13-3-11.如图13-3-1,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是() A.55°B.45°C.35°D.65°2.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°3.如图13-3-2,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()图13-3-2A.35°B.40°C.45°D.50°4.在△ABC中,AB=AC,∠A=100°,则∠B=________°.5.如图13-3-3,在等腰三角形ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=________°.图13-3-36.如图13-3-4,在△ABC中,AB=AC,D是△ABC内的一点,且BD=CD.求证:∠ABD=∠ACD.图13-3-47.如图13-3-5,在△ABC中,AB=AC,∠CAD是外角,AE是∠CAD的平分线.求证:AE∥BC.图13-3-5知识点2等腰三角形的性质(三线合一)8.如图13-3-6,在△ABC中,AB=AC,D是BC边的中点,下列结论中不正确的是()图13-3-6A.∠B=∠C B.AD⊥BCC.AD平分∠BAC D.AB=2BD9.如图13-3-7,在△ABC中,AB=AC,AD⊥BC于点D.若AB=6,CD=4,则△ABC 的周长是________.图13-3-710.如图13-3-8所示,在△ABC中,AB=AC,D是BC的中点,P是AD上任意一点,PE⊥AB于点E,PF⊥AC于点F.求证:PE=PF.图13-3-811.2018·凉山州如图13-3-9,在△ABC 中,按以下步骤作图:①分别以点A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连接AD.若AD =AC ,∠B =25°,则∠C 的度数为( )图13-3-9A .70°B .60°C .50°D .40°12.如图13-3-10,在△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE 的度数为( )图13-3-10A.50°B.51°C.51.5°D.52.5°13.如图13-3-11,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()图13-3-11A.60°B.70°C.75°D.90°14.已知:如图13-3-12,AB=AC,D是BC的中点,AD=AE,AE⊥BE,垂足为E.AB平分∠DAE吗?请说明理由.图13-3-1215.如图13-3-13所示,已知AB=AC,AD=AE,求证:BE=CD.(要求:请用两种不同的方法证明)图13-3-1316.在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图13-3-14①,当点D在BC的什么位置时,DE=DF?并证明你的结论.(2)如图②,过点C作AB边上的高CG,则DE,DF,CG之间存在怎样的等量关系?并加以证明.图13-3-14教师详解详析1.A[解析] ∵DE∥BC,∠1=125°,∴∠B=180°-125°=55°. ∵AB=AC,∴∠C=∠B=55°.2.C[解析] 如图所示,在△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②若底角是50°,∵AB=AC,∴∠B=∠C=50°.∵∠A+∠B+∠C=180°,∴∠A=180°-50°-50°=80°.∴这个等腰三角形的顶角为50°或80°.3.A4.405.18[解析] 由AB=AC,∠A=36°得∠C=180°-36°2=72°.所以在Rt△BCD中,∠CBD=90°-∠C=90°-72°=18°,故填18.6.证明:如图.∵AB=AC,∴∠ABC=∠ACB.∵BD=CD,∴∠1=∠2.∴∠ABC-∠1=∠ACB-∠2,即∠ABD=∠ACD.7.证明:由三角形外角与内角的关系知∠CAD=∠B+∠C.∵AB=AC,∴∠B=∠C(等边对等角).∵AE是∠CAD的平分线,∴∠DAE=∠CAE(角平分线的定义).∵∠CAD=∠DAE+∠CAE=2∠DAE,∴∠DAE=∠B.∴AE∥BC.8.D[解析] 由“等边对等角”可得∠B=∠C,故选项A正确;由等腰三角形“三线合一”的性质,可得AD⊥BC,AD平分∠BAC,故选项B,C都正确;只有选项D不能得出,故选D.9.20[解析] ∵在△ABC中,AB=AC,∴△ABC是等腰三角形.又∵AD⊥BC于点D,∴BD=CD.∵AB=6,CD=4,∴△ABC的周长=6+4+4+6=20.10.证明:∵AB=AC,D是BC的中点,∴AD平分∠BAC.又∵PE⊥AB,PF⊥AC,∴PE=PF.11.C [解析] 由作图可知MN 为线段AB 的垂直平分线, ∴AD =BD.∴∠DAB =∠B =25°.∵∠CDA 为△ABD 的一个外角, ∴∠CDA = ∠DAB +∠B =50°.∵AD =AC ,∴∠C =∠CDA =50°.故选C. 12.D [解析] ∵AC =CD , ∴∠ADC =∠A =50°. ∵CD =BD ,∴∠B =∠BCD.又∵∠ADC =∠B +∠BCD ,∴∠B =25°. ∵BD =BE ,∴∠BDE =∠BED =12(180°-∠B)=12×(180°-25°)=77.5°.∵∠ADC +∠CDE +∠BDE =180°, ∴∠CDE =180°-50°-77.5°=52.5°. 13.A [解析] ∵AB =BC =CD =DE =EF ,∴∠A =∠ACB ,∠CBD =∠CDB ,∠DCE =∠CED ,∠EDF =∠EFD. ∵∠A =15°,∴∠ACB =15°.∴∠CDB =∠CBD =∠A +∠ACB =30°.∴∠CED =∠DCE =∠A +∠ADC =15°+30°=45°.∴∠EFD =∠EDF =∠CED +∠A =45°+15°=60°.∴∠DEF =180°-∠EDF -∠EFD =60°.14.解:AB 平分∠DAE.理由:∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC.又AE ⊥BE ,∴∠E =∠ADB =90°.在Rt △ABE 和Rt △ABD 中,⎩⎪⎨⎪⎧AE =AD ,AB =AB , ∴Rt △ABE ≌Rt △ABD(HL).∴∠EAB =∠DAB ,即AB 平分∠DAE.15.证明:(证法一)∵AB =AC ,∴∠B =∠C. ∵AD =AE ,∴∠ADE =∠AED.∴∠ADB =∠AEC. 又∵AB =AC ,∠B =∠C ,∴△ABD ≌△ACE.∴BD =CE.∴BE =CD.(证法二)如图所示,过点A 作AF ⊥BC 于点F. ∵AB =AC ,∴BF =CF.∵AD =AE ,∴DF =EF.∵BE =BF +EF ,CD =CF +DF ,∴BE =CD.(方法不唯一)16.解:(1)当D 为BC 的中点时,DE =DF. 证明:连接AD.∵AB =AC ,D 为BC 的中点,∴AD平分∠BAC.∵DE⊥AB,DF⊥AC,∴DE=DF.(2)CG=DE+DF.证明:连接AD. ∵S△ABC=S△ADB+S△ADC,∴12AB·CG=12AB·DE+12AC·DF.∵AB=AC,∴CG=DE+DF.。