2015-2016学年七年级上册数学期末考试试卷]
- 格式:doc
- 大小:138.00 KB
- 文档页数:2
2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。
青海省西宁市2015-2016学年七年级数学上学期期末考试试题一、选择题(共6小题,每小题3分,满分18分)1.+8﹣9=()A.+1 B.﹣1 C.﹣17 D.+17.单项式﹣πxy的次数为(2 3 .4 D.﹣ CA.﹣ B.2)) 3.若a=b,则下列式子错误的是( 11=5b﹣D.5a﹣a2=b﹣2 C﹣A.﹣. a=b B..一元一次方程x﹣1=2的解表示在数轴上,是图中数轴上的哪个点( 4)A.D点 B.C点 C.B点 D.A点CD=DECD=2CE;④.其中能表上,下面的等式:①CE=DE;②;③DE=CD5.点E在线段CD示E是CD中点的有()A.1个 B.2个 C.3个 D.4个6.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.5二、填空题(共8小题,每小题2分,满分16分).的倒数是 7 .8.绝对值是3的数是.9.西宁市2015﹣2016学年度第一学期初一年级参加期末考试人数约为1.2万人,将1.2万人用科学记数法表示为人.10.54°36′的余角为.11.已知关于x的方程1﹣a(x+2)=2a的解是x=﹣3,则a的值是..若2xy与4xy可以合并,则m+n= .3m﹣1222n1213.点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= .14.如图,用大小相等的小正方形拼大正方形,拼第(1)个大正方形要4个小正方形,拼第(2)个需要9个小正方形…,想一想,按照这样的方法拼成的第n个大正方形由个小正方形拼成.三、解答题(共8小题,满分66分).15.计算﹣2÷22×(﹣).计算:25×.161.5x+2)﹣((1﹣0.5x)=.解方程:172.解方程:.18y=3.)的值,其中)xx19.求2(+y)﹣(y﹣xx+(y﹣yx=122222222﹣,平分∠AOE,∠COF=34°,求OFOAB20.如图,已知直线和CD相交于点,∠COE是直角,∠BOD 的度数.21.西宁市为了鼓励市民节约用水制定阶梯收取水费,每月每户如果用水量没超过10立方米,则每立方米水费为2.5元;每月每户如果用水量超过10立方米,超过的部分每立方米在原单价的基础上增加20%收费.张清家12月份共交水费49元,请问张清家12月份用水多少立方米?222.(1)如图1,点C是线段AB上的一点,AB=10,点M,N分别为AC,CB的中点,MN为多少?请说明理由.(2)如图2,点C,D是线段AB上的两点,AB=10,CD=4,点M,N分别为AC,DB的中点,MN 为多少?请说明理由.32015-2016学年青海省西宁市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.+8﹣9=()A.+1 B.﹣1 C.﹣17 D.+17【考点】有理数的减法.【分析】先将减法转化为加法,然后再利用加法法则计算即可.【解答】解:+8﹣9=8+(﹣9)=﹣(9﹣8)=﹣1.故选:B.【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键..单项式﹣πxy的次数为(2 3 .4 D.﹣ CA..﹣ B 单项式.【考点】根据单2)项式次数的定义进行解答即可.【分析】2.πxy的次数为3【解答】解:单项式﹣.故选D 熟知一个单项式中所有字母的指数的和叫做单项式的次数是本题考查的是单项式,【点评】解答此题的关键.),则下列式子错误的是( 3.若a=b 1 ﹣1=5b﹣.﹣ D.AC.b a=B.a﹣2=b﹣2 5a 【考点】等式的性质.,等式【分析】根据等式的基本性质:等式的两边同时加上(或减去)同一个数(或字母),等式仍成立.即可0的数(或字母)仍成立;等式的两边同时乘以(或除以)同一个不为解决.错误;,右边乘以,故解:【解答】AA、左边乘以正确;2,故BB、两边都减,故CC正确;、两边都乘以﹣ D正确;、两边都乘以5,再都减1,故D .故选:A结果仍相等;(或减)等式的两边加同一个数(或式子)【点评】本题考查的是等式的性质:0)结果仍相等.等式的两边同乘(或除以)同一个数(除数不为的解表示在数轴上,是图中数轴上的哪个点(﹣4.一元一次方程x1=2 )4点.AB点 D点 B.C点 C.A.D 解一元一次方程;数轴.【考点】【专题】计算题;一次方程(组)及应用. 1求出方程的解,即可作出判断.【分析】去分母,移项合并,把x系数化为2=4,【解答】解:方程去分母得:x﹣ x=6,解得: D点,把方程的解表示在数轴上,是图中数轴上的A故选【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键..其中能表;③CD=2CE;④CD=上,下面的等式:①CE=DE;②DE=CD5.点E在线段CDDE )CD 中点的有(示E是个D.4 个C.3个 A.1个 B.2 两点间的距离.【考点】推理填空题.【专题】由.分成两段长度相等的线段.即:CE=DE的中点,则点E将线段CD【分析】点E如果是线段CD 此性质可判断出哪一项符合要求.,故①正确;的中点,则CE=DE【解答】解:假设点E是线段CD的中点,故②正确;是线段CDCE=CD,点当EDE=CD时,则 CD的中点,故③正确;E﹣CE=CE,点是线段当CD=2CE,则DE=2CE CD的中点,故④不正确;DE,点E不是线段④CD= 综上所述:①、②、③正确,只有④是错误的. C.故选:【点评】本题考点:线段中点的性质,线段的中点将线段分成两个长度相等的线段.两地同时出发,相向而行.已知甲车B千米,甲、乙两车分别从450A、6.A、B两地相距的值t 千米.则t/小时,经过小时两车相距50/速度为120千米小时,乙车速度为80千米)是(2.5 2或.2.5 D..A.2 B2或2.25 C 【考点】一元一次方程的应用.千米,第二次应该是相遇后交错应该有两种情况,第一次应该还没相遇时相距50【分析】速度×时间,可列方程求解.50千米,根据路程=离开相距千米,根据题意,得小时两车相距50【解答】解:设经过t120t+80t=450+50,﹣120t+80t=45050,或.,或解得t=2t=2.5 50千米.小时相距答:经过2小时或2.5 .故选D能够根本题考查了一元一次方程的应用,解决问题的关键是能够理解有两种情况、【点评】据题意找出题目中的相等关系.5二、填空题(共8小题,每小题2分,满分16分)..的倒数是 7【考点】倒数.【专题】推理填空题.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣1).)﹣.1【解答】解:﹣ 1的倒数为:1÷(﹣)=1÷(﹣故答案为:﹣.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数.8.绝对值是3的数是±3 .【考点】绝对值.【分析】根据绝对值的性质得|3|=3,|﹣3|=3,故求得绝对值等于3的数.【解答】解:因为|3|=3,|﹣3|=3,所以绝对值是3的数是±3,故答案为:±3.【点评】本题主要考查了绝对值的性质,掌握绝对值性质的逆向运用是解答此题的关键.9.西宁市2015﹣2016学年度第一学期初一年级参加期末考试人数约为1.2万人,将1.24万人用科学记数法表示为 1.2×10 人.【考点】科学记数法—表示较大的数.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,n【分析】要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将1.2万用科学记数法表示为1.2×10.4【解答】1.2×10.4故答案为:点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a| n【<10,n为整数,表示时关键要正确确定a的值以及n的值.10.54°36′的余角为 35°24′.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义列出算式,然后再进行计算即可.【解答】解:90°﹣54°36′=35°24′.故答案为:35°24′.【点评】本题主要考查的是余角的定义和度分秒的换算,掌握余角的定义以及度分秒的换算是解题的关键.11.已知关于x的方程1﹣a(x+2)=2a的解是x=﹣3,则a的值是 1 .【考点】一元一次方程的解.【分析】把x=﹣3代入方程即可得到一个关于a的方程,解方程求得a的值.6【解答】解:把x=﹣3代入方程得:1+a=2a,解得:a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解是能使方程左右两边相等的未知数的值,理解定义是关键..若2xy与4xy可以合并,则m+n= 2 .3m﹣1222n12【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据有理数的加法,可得答案.解:2xy与4xy可以合并,得3m﹣1222n【解答】3m﹣1=2,2n=2.解得m=1,n=1,m+n=1+1=2.故答案为:2.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= 4cm或8cm .【考点】两点间的距离.【分析】A、B、C在同一条直线上,则C可能在线段AB上,也可能C在AB的延长线上,应分两种情况进行讨论.【解答】解:当C在线段AB上时:AC=AB﹣BC=6﹣2=4cm;当C在AB的延长线上时,AC=AB+BC=6+2=8cm.故答案为:4cm或8cm.【点评】此题主要考查了两点之间的距离求法,求线段的长度,能分两种情况进行讨论是解决本题的关键.14.如图,用大小相等的小正方形拼大正方形,拼第(1)个大正方形要4个小正方形,拼第(2)个需要9个小正方形…,想一想,按照这样的方法拼成的第n个大正方形由(n+1)2个小正方形拼成.【考点】规律型:图形的变化类.【分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案.解:∵第一个图形有2=4个正方形组成,2【解答】3=9个正方形组成,2第二个图形有4=16个正方形组成,2第三个图形有n个图形有(n+1)个正方形组成,2∴第(n+1).2故答案为:【点评】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键.7三、解答题(共8小题,满分66分)15.计算﹣2÷.×(﹣【考点】有理数的混合运算.【分析】首先进行乘方运算、同时22)把除法运算转化为乘法运算,然后进行乘法运算即可. =【解答】解:原式﹣4×﹣9×=﹣=.认真【点评】本题主要考查有理数的混合运算,乘方运算,关键在于正确地进行乘法运算,的进行计算..计算:25×16.【考点】有理数的乘法.【分析】根据有理数的乘法,应用乘法的分配律,即可解答.)【解答】解:原式=25×(=25×(﹣)=﹣5.【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则.17.解方程:2(1﹣0.5x)=﹣(1.5x+2)【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:2﹣x=﹣1.5x﹣2,移项合并得:0.5x=﹣4,解得:x=﹣8.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键..解方程:. 18【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:7(2x﹣1)=42﹣3(3x+1),去括号得:14x﹣7=42﹣9x﹣3,移项合并得:23x=46,解得:x=2.8【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键..)y+(xy﹣)的值,其中x=1,y=﹣x(19.求2x+y)﹣(xy﹣【考点】整式的加减—22222222 3化简求值.【专题】计算题;整式.的值代入计算即可求出值.原式去括号合并得到最简结果,把【分析】x与y2222222222+y,=x+2y﹣xy+x+y﹣yx=2x【解答】解:原式 x=1,y=﹣3=+=16时,原式.当此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.【点评】平分∠AOE,∠COF=34°,求OF点,∠COECD相交于O是直角,和20.如图,已知直线AB ∠BOD的度数.【考点】角平分线的定义.【专题】计算题.【分析】利用图中角与角的关系即可求得.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.21.西宁市为了鼓励市民节约用水制定阶梯收取水费,每月每户如果用水量没超过10立方米,则每立方米水费为2.5元;每月每户如果用水量超过10立方米,超过的部分每立方米在原单价的基础上增加20%收费.张清家12月份共交水费49元,请问张清家12月份用水多少立方米?【考点】一元一次方程的应用.【分析】可设张清家12月份用水x立方米,根据张清家12月份共交水费49元列出方程计算即可.【解答】解:设张清家12月份用水x立方米,依题意有2.5×10+2.5×(1+20%)(x﹣10)=49,9解得x=18.答:张清家12月份用水18立方米.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)如图1,点C是线段AB上的一点,AB=10,点M,N分别为AC,CB的中点,MN为多少?请说明理由.(2)如图2,点C,D是线段AB上的两点,AB=10,CD=4,点M,N分别为AC,DB的中点,MN为多少?请说明理由.【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案;(2)根据线段的和差,可得(AC+BD)的长,根据线段中点的性质,可得(MC+ND)的长,根据线段的和差,可得答案.【解答】解:(1)MN=5,理由如下:由点M,N分别为AC,CB的中点,得NC=BC. MC=AC,由线段的和差,得=×10=5; MN=MC+NC=(AC+BC)(2)MN=7,理由如下:由线段的和差,得AC+BD=AB﹣CD=10﹣4=6.由点M,N分别为AC,DB的中点,得DN=DB.AC, MC=由线段的和差,得+CD=×6+4=7. MN=MC+CD+DN=(AC+DB)【点评】本题考查了两点间的距离,利用线段的和差得出(MC+CD+DN)是解题关键.1020XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
浙江省温州市苍南县2015-2016学年度七年级数学上学期期末考试试题一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣22.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×10103.8的立方根为()A. B.C.2 D.±24.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=05.与无理数最接近的整数是()A.5 B.6 C.7 D.86.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3 C.4x4y D.x2y27.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D 这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是.12.已知∠1=30°,则∠1的补角的度数为度.13.若x﹣3与1互为相反数,则x= .14.用代数式表示“a的2倍与b的的和”.15.计算:(﹣)×(﹣6)= .16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是.(直接写出答案)23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.浙江省温州市苍南县2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣2【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 600 000 000用科学记数法表示为:4.6×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.8的立方根为()A. B.C.2 D.±2【考点】立方根.【专题】计算题.【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.4.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=0【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、x+1是代数式,故A错误;B、3x+2y=2是二元一次方程,故B错误;C、3x﹣3=4x﹣4是一元一次方程,故C正确;D、x2﹣6x+5=0是一元二次方程,故D错误;故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.与无理数最接近的整数是()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:<<,得49与51接近,与无理数最接近的整数是7,故选:C.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大是解题关键.6.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3 C.4x4y D.x2y2【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得答案.【解答】解:A、字母项相同且相同字母的指数也相同,故A正确;B、相同字母的指数不同,故B错误;C、相同字母的指数不同,故C错误;D、相同字母的指数不同,故D错误;故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b【考点】实数与数轴.【分析】根据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得a<﹣1,0<b<1.A、﹣b<0,故A错误;B、﹣a>0是正数,故B正确;C、a﹣b<a<0,故C错误;D、a+b<0,故D错误;故选:B.【点评】本题考查了实数与数轴,利用点的坐标得出a、b的值是解题关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人【考点】一元一次方程的应用.【分析】设男生有x人,女生有人,根据男生每人种3棵,女生每人种2棵,共种了52棵树苗,求出男生和女生的人数,再两者相减即可得出答案.【解答】解:设男生有x人,女生有人,根据题意得:3x+2=52,解得:x=12,女生的人数是:20﹣12=8人,则其中男生人数比女生人数多12﹣8=4(人);故选D.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D 这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31【考点】两点间的距离.【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,可以解答本题.【解答】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,线段AB的长度是一个正整数,AB>CD,∴当AB=8时,3AB+CD=3×8+2=26,当AB=9时,3AB+CD=3×9+2=29,当AB=10时,3AB+CD=3×10+2=32.故选B.【点评】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是 4 .【考点】绝对值.【专题】计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知∠1=30°,则∠1的补角的度数为150 度.【考点】余角和补角.【专题】计算题.【分析】若两个角的和等于180°,则这两个角互补.根据已知条件直接求出补角的度数.【解答】解:∵∠1=30°,∴∠1的补角的度数为=180°﹣30°=150°.故答案为:150.【点评】本题考查了补角的定义,解题时牢记定义是关键.13.若x﹣3与1互为相反数,则x= 2 .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣3+1=0,解得:x=2,故答案为:2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.用代数式表示“a的2倍与b的的和”.【考点】列代数式.【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求倍数,然后求和.【解答】解:用代数式表示“a的2倍与b的的和”为:,故答案为:【点评】此题考查代数式问题,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.15.计算:(﹣)×(﹣6)= ﹣1 .【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣4+3=﹣1,故答案为:﹣1【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于 5 .【考点】代数式求值.【分析】根据题意得出x﹣4y=3,再变形后代入求出即可.【解答】解:根据题意得:x﹣4y=3,所以2x﹣8y﹣1=2(x﹣4y)﹣1=2×3﹣1=5,故答案为:5.【点评】本题考查了求代数式的值的应用,能整体代入是解此题的关键.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是72°.【考点】对顶角、邻补角;角平分线的定义.【分析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,∠AOE=144°,可求∠BOE,从而可求∠B OD,根据对顶角的性质即可得到结论.【解答】解:∵AB、CD相交于O,∴∠AOC与∠DOB是对顶角,即∠AOC=∠DOB,∵∠AOE=144°,∴∠BOE=180°﹣∠AOE=36°,又∵OE平分∠BOD,∠BOE=30°,∴∠BOD=2∠BOE=2×36°=72°,∴∠BOD=∠AOC=72°,故答案为:72°.【点评】本题主要考查对顶角的性质以及角平分线的定义、邻补角,解决本题的关键是求出∠BOE.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是64cm .【考点】列代数式.【专题】应用题.【分析】设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,根据图示可得两块阴影部分长的和为20cm,宽表示为(16﹣3y)cm和(16﹣x)cm,再求周长即可.【解答】解:设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.【点评】此题主要考查了列代数式,关键是正确理解题意,根据图示表示出阴影部分的长和宽.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及算术平方根运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=3﹣1+5=8﹣1=7;(2)原式=2+9×(﹣)=2+(﹣3)=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣8=1﹣x,移项合并得:3x=9,解得:x=3;(2)去分母得:2x+3x﹣6=6,移项合并得:5x=12,解得:x=2.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a﹣2ab+2ab﹣b﹣a=a﹣b,当a=3,b=﹣2时原式=3﹣(﹣2)=3+2=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)【考点】垂线;角平分线的定义.【分析】(1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,由平角的定义可得5x+90°﹣2x=180°,解得x,即得结果.【解答】解:(1)∵∠DOF=25°,OF平分∠COD,∴∠DOC=50°,∵OB⊥OD,∴∠BOC=90°﹣50°=40°,∵OA⊥OC,∴∠AOB=90°﹣∠BOC=50°;(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,∴∠COD=∠AOB,设∠DOF=∠COF=x,∵OA平分∠BOE,∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,∴5x+90°﹣2x=180°,解得:x=30°,即∠DOF=30°.故答案为:30°.【点评】本题主要考查了角平分线的定义和垂直的定义,利用定义得出各角的度数是解答此题的关键.23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处31 人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有 6 个.【考点】一元一次方程的应用.【分析】(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数,根据等量关系列出方程,再解即可;(2)设调往甲处x人,则调往乙处(70﹣x)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×2,根据等量关系列出方程,再解即可;(3)设调往甲处z人,则调往乙处(70﹣z)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×n,根据等量关系列出方程,再求出整数解即可.【解答】解:(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得:14+y=6+(70﹣y),解得:y=31,故答案为:31;(2)解:设调往甲处x人,则调往乙处(70﹣x)人,由题意得:14+x=2(6+70﹣x),解得:x=46成人数:70﹣46=24(人),答:应调往甲处46人,乙处24人.(3)设调往甲处z人,则调往乙处(70﹣z)人,列方程得14+z=n(6+70﹣z),14+z=n(76﹣z),n=,解得:,,,,,,共6种,故答案为:6.【点评】此题主要考查了一元一次方程的应用以及二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为 2 .(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题;压轴题;存在型;数形结合;分类讨论;方程思想;一次方程(组)及应用.【分析】(1)结合图形,表示出AP、AQ的长,可得PQ;(2)当P,Q两点第一次重合时,点P运动路程+点Q运动路程=AB的长,列方程可求得;(3)点Q落在线段AP的中点上有以下三种情况:①点Q从点B出发未到点A;②点Q到达点A后,从A到B;③点Q第一次返回到B后,从B到A,根据AP=2AQ列方程可得.【解答】解:(1)根据题意,当x=3时,P、Q位置如下图所示:此时:AP=3,BQ=3×3=9,AQ=AB﹣BQ=10﹣9=1,∴PQ=AP﹣AQ=2;(2)设x秒后P,Q第一次重合,得:x+3x=10解得:x=2.5,∴BQ=3x=7.5;(3)设x秒后,点Q恰好落在线段AP的中点上,根据题意,①当点Q从点B出发未到点A时,即0<x<时,有x=2(10﹣3x),解得;②当点Q到达点A后,从A到B时,即<x<时,有x=2(3x﹣10),解得 x=4;③当点Q第一次返回到B后,从B到A时,即<x<10时,有x=2(30﹣3x),解得;综上所述:当x=或x=4或x=时,点Q恰好落在线段AP的中点上.故答案为:(1)2.【点评】本题考查了数轴、一元一次方程的应用,解答(3)题,对x分类讨论是解题关键,属中档题.。
某某省资阳市简阳市2015-2016学年度七年级数学上学期期末考试试题一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有.①a>0;②a<0;③a=0.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.某某省资阳市简阳市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:的相反数是﹣.故选C.【点评】本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.属于基础题型,比较简单.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种【考点】二元一次方程的应用.【专题】应用题;压轴题.【分析】设1角的硬币为x个,5角的硬币为y个,根据面值是1元,即10角列二元一次方程,求其非负整数解即可.【解答】解:设1角的硬币为x个,5角的硬币为y个,则x+5y=10,即x=10﹣5y,∵x,y是非负整数,∴x=0,5,10,y=2,1,0.故换法共有3种.故选B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求其整数解.3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B【考点】两点间的距离.【分析】根据题图,要从A地到B地,一定要经过E点且必须经过线段EB,所以只要考虑A到E的路线最短即可,根据“两点之间线段最短“的结论即可解答.【解答】解:根据图形,从A地到B地,一定要经过E点且必须经过线段EB,所以只要找出从A到E的最短路线,根据“两点之间线段最短“的结论,从A到E的最短路线是线段AE,即A﹣F﹣E,所以从A地到B地最短路线是A﹣F﹣E﹣B.故选:D.【点评】此题主要考查了两点间的距离,关键时尽量缩短两地之间的里程.4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】有理数的除法;有理数的加法;有理数的减法;有理数的乘法.【分析】分别根据有理数的减法、加法、乘法、除法法则计算各式,然后判断.【解答】解:①0﹣(﹣5)=5,错误;②(﹣3)+(﹣9)=﹣12,正确;③,正确;④(﹣36)÷(﹣9)=4,错误.故选B.【点评】本题考查了有理数的加、减、乘、除运算法则.注意确定运算的符号.5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【考点】整式的加减;非负数的性质:偶次方.【分析】利用作差法比较M与N的大小即可.【解答】解:∵M=4x2﹣5x+11,N=3x2﹣5x+10,∴M﹣N=(4x2﹣5x+11)﹣(3x2﹣5x+10)=4x2﹣5x+11﹣3x2+5x﹣10=x2+1>0,∴M>N.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式【考点】单项式;多项式.【分析】根据单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项正确;B、﹣的系数是﹣,次数是3,故本选项错误;C、是整式,故本选项错误;D、多项式2x2y﹣xy是三次二项式,故本选项错误.故选A.【点评】本题考查了单项式的知识:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°【考点】钟面角.【分析】钟表12个数字,每相邻两个数字之间的夹角为30度.【解答】解:∵1个小时在时钟上的角度为180°÷6=30°,∴3.5个小时的角度为30°×3.5=105°.故选B.【点评】本题主要考查角度的基本概念.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】利用平行线的性质和三角形内角和的定理即可求得.【解答】解:∵∠A=35°,∠AOB=75°,根据三角形的内角和是180°,∴∠B=70°.∵AB∥CD,根据两条直线平行,内错角相等,∴∠C=∠B=70°.故选C.【点评】考查了平行线的性质:两条直线平行,内错角相等.以及三角形的内角和定理:三角形的内角和是180°.9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体,而D选项,上底面不可能有两个,故不是正方体的展开图.故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33【考点】有理数的混合运算.【专题】新定义.【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】解:∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.【点评】本题考查二进制和十进制之间的转换.需注意观察所给例题及二进制数的特点.二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= 2或0 .【考点】有理数的加减混合运算;绝对值.【专题】计算题.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是﹣a3b﹣3a2b+ab3﹣3 .【考点】多项式.【专题】计算题.【分析】根据多项式次数的定义求解.【解答】解:多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是:﹣a3b﹣3a2b+ab3﹣3.故答案为:﹣a3b﹣3a2b+ab3﹣3.【点评】本题考查了多项式的定义,解题的关键是熟练掌握定义,并能灵活运用.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.【考点】列代数式.【专题】压轴题.【分析】能射进阳光部分的面积=长方形的面积﹣直径为2b的半圆的面积.【解答】解:能射进阳光部分的面积=2ab﹣πb2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.阴影部分的面积一般应整理为一个规则图形的面积.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是内错角相等,两直线平行.【考点】平行线的判定.【专题】应用题.【分析】根据图形知道已知∠PAB=∠ACD,利用内错角相等,判断两直线平行.【解答】解:∵∠PAB=∠ACD,∴CD∥AP(内错角相等,两直线平行).【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有②③.①a>0;②a<0;③a=0.【考点】绝对值.【分析】根据a≤0时,|a|=﹣a,即可得出结论.【解答】解:∵实数a满足a﹣|a|=2a,∴|a|=﹣a,即a<0,∴②正确,∵当a=0时,实数a满足a﹣|a|=2a=0,∴③正确,故答案为:②③.【点评】本题主要考查了绝对值的定义,解答本题的关键是熟练掌握:如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算法则首先计算乘方,然后计算乘除,最后计算加减,同级别运算从左向右进行计算,即可得出结果.【解答】解:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|=[﹣1++1﹣18]÷|﹣2×|=﹣÷=﹣【点评】题目考查了有理数的混合运算,解决此类问题的关键是掌握有理数混合运算法则,题目整体难易程度适中,适合课后训练.18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.【考点】平行线的性质.【分析】过点C作CF∥BD,根据两直线平行,内错角相等即可求解.【解答】解:过点C作CF∥BD,则CF∥BD∥AE,∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°﹣20°=70°,∵CF∥AE,∴∠CAE=∠FCA=70°.答:∠CAE的度数为70°.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.【考点】角的计算;角平分线的定义.【分析】首先求得∠ABD的度数,然后根据角平分线的定义求得∠EBD的度数,然后根据∠CBE=∠EBD ﹣∠CBD求解.【解答】解:∠ABD=∠ABC+∠CBD=80°+30°=110°;∵BE是∠ABD的平分线,∴∠EBD=∠ABD=55°,∴∠CBE=∠EBD﹣∠CBD=55°﹣30°=25°.【点评】本题考查了角度的计算,正确理解题目中的角的关系是关键.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?【考点】有理数的混合运算;有理数大小比较.【专题】应用题.【分析】按照旅行社的计算费用要求代入数据进行计算,进一步比较得出答案即可.【解答】解:甲旅行社的费用:600+600×=1500(元)乙旅行社的费用:600××3=1440(元)因为1440<1500,所以乙旅行社的费用更优惠.【点评】此题考查有理数的混合运算的实际运用,理解题意,掌握两种计算方法是解决问题的关键.21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【考点】角的计算;角平分线的定义.【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC=α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC=β+15°,∠CON=β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.【解答】解:(1)∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°;(2)∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC=∠AOC=α+15°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=α+15°﹣15°=α.(3)∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC=∠AOC=β+45°,∠CON=∠BOC=β.∵∠MON=∠MOC﹣∠CON,∴∠MON=β+45°﹣β=45°.(4)根据(1)、(2)、(3)可知∠MON=∠BOC,与∠BOC的大小无关.【点评】本题主要考查的是角的计算、角平分线的定义,求得∠MOC和∠CON的大小,然后再依据∠MON=∠MOC﹣∠CON求解是解题的关键.22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE= 6 cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.【考点】两点间的距离.【分析】(1)由点D、E分别是AC和BC的中点,C点为AB的中点,求出AC,BC,CD,CE的长度,运用DE=CD+CE即可得出答案.(2)先求出BC,再利用中点关系求出CD,CE即可得出DE的长.(3)设AC=acm,由点D、E分别是AC和BC的中点,可得DE=CD+CE=(AC+BC)=AB=6cm,即可得出不论AC取何值(不超过12cm),DE的长不变,【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=6cm,∴CD=CE=3cm,∴DE=CD+CE=6cm,故答案为:6.(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=(AC+BC)=AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,【点评】本题主要考查线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
黑龙江省哈尔滨市双城区2015~2016 学年度七年级上学期期末数学试卷一、选择题(共10 小题,每小题3 分,满分30 分)1.有理数6 的相反数是()A.﹣6 B.6 C. D.﹣2.下列数轴画正确的是()A.B. C.D.3.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3 中正数有()A.1 个B.2 个C.3 个D.4 个4.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面相对的面上标的字是()A.爱B.的C.学D.美5.单项式﹣ab2 的系数是()A.1 B.﹣1 C.2 D.36.8 点30 分时,时钟的时针与分针所夹的锐角是()A.70°B.75°C.80°D.60°7.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A. B. C. D.8.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密).已知加密规则为:明文a,b,c 对应的密文a+1,2b+4,3c+9.例如明文1,2,3 对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,69.多项式x2﹣2xy3﹣y﹣1 是()A.三次四项式B.三次三项式C.四次四项式D.四次三项式10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是()A.110 B.158 C.168 D.178二、填空题(共10 小题,每小题3 分,满分30 分)11.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015 年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000 元,将67000000000 元用科学记数法表示为.12.∠α=15°35′,∠β=10°40′,则∠α+∠β= .13.若﹣7x m+2y4z2 与﹣3x3y n z1 是同类项,则m= .14.如图,∠AOB=90°,以O 为顶点的锐角共有个.15.如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC 的长度)为米.16.方程x2+3x+1=4 是一元一次方程,则a= .17.某超市规定,如果购买不超过50 元的商品时,按全额收费;购买超过50 元的商品时,超过部分按九折收费.某顾客在一次消费中,向售货员交纳了212 元,那么在此次消费中该顾客购买了价值元的商品.18.观察下面一组式子:(1)1× ;;(3);(4)…写出这组式子中的第(n)组式子是.19.已知,线段AB 在数轴上且它的长度为5,点A 在数轴上对应的数为﹣2,则点B 在数轴上对应的数为.20.一件童装每件的进价为a 元(a>0),商家按进价的3 倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.三、解答题(共7 小题,满分60 分)21.计算题(1)20﹣(﹣7)﹣|﹣2|(﹣54)÷(﹣9)﹣(﹣4)×(﹣)(3)()×(﹣36)(4)(﹣1)2﹣[2﹣(﹣3)2 .22.解方程(1).23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.24.某车间有技术工人85 人,平均每天每人可加工甲种部件16 个或乙种部件10 个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?25.如图,已知线段AB 和CD 的公共部分为BD,且BD= AB= CD,线段AB、CD 的中点E、F 之间距离是20,求AB、CD 的长.26.如图所示,OE,OD 分别平分∠AOC 和∠BOC,(1)如果∠AOB=90°,∠BOC=40°,求∠DOE 的度数;如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、的结果中,你发现了什么规律,请写出来.27.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300 元买这种卡后,凭卡可在这家商场按标价的8 折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500 元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?黑龙江省哈尔滨市双城区2015~2016 学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共10 小题,每小题3 分,满分30 分)1.有理数6 的相反数是()A.﹣6 B.6 C. D.﹣【考点】相反数.【分析】根据相反数的定义(只有符号不同的两个数,其中一个数是另一个数的相反数)求出即可.【解答】解:6 的相反数是﹣6,故选A.【点评】本题考查了相反数定义的应用,能正确理解相反数的定义是解此题的关键,注意:只有符号不同的两个数,其中一个数是另一个数的相反数.2.下列数轴画正确的是()A.B. C.D.【考点】数轴.【分析】根据数轴的三要素:原点、单位长度、正方向,可得答案.【解答】解:A 没有单位长度,故A 错误;B、没有正方向,故B 错误;C、原点、单位长度、正方向都符合条件,故C 正确;D、原点左边的单位表示错误,应是从左到右由小到大的顺序,故D 错误;故选:C.【点评】本题考查了数轴,注意数轴的三要素:原点、单位长度、正方向.3.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3 中正数有()A.1 个B.2 个C.3 个D.4 个【考点】正数和负数.【分析】根据相反数、负数的立方根是负数,可化简各数,根据正数大于零,可得答案.【解答】解:﹣(﹣5)=5>0,﹣(﹣5)2=﹣5<0,﹣|﹣5|=﹣5<0,(﹣5)3=﹣125<0,故﹣(﹣5)是正数,故选:A.【点评】本题考查了正数和负数,先化简再判断正数和负数,注意负数的偶次幂是正数,负数的奇次幂是负数.4.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面相对的面上标的字是()A.爱B.的C.学D.美【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“学”是相对面,“数”与“的”是相对面,“我”与“美”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.单项式﹣ab2 的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】根据单项式的系数是数字部分,可得答案.【解答】解:单项式﹣ab2 的系数是﹣1,故选:B.【点评】本题考查了单项式,注意单项式的系数包括符号.6.8 点30 分时,时钟的时针与分针所夹的锐角是()A.70°B.75°C.80°D.60°【考点】钟面角.【分析】根据钟面平均分成2 份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:钟面每份是30°,8 点30 分时针与分针相距2.5 份,8 点30 分时,时钟的时针与分针所夹的锐角是30°×2.5=75°,故选:B.【点评】本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数等于钟面角.7.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A. B. C. D.【考点】剪纸问题.【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选B.【点评】对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.8.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密).已知加密规则为:明文a,b,c 对应的密文a+1,2b+4,3c+9.例如明文1,2,3 对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,6【考点】一元一次方程的应用.【专题】数字问题.【分析】此题的关键是读懂加密规则:“明文a,b,c 对应的密文a+1,2b+4,3c+9.”把7,18,15 分别代入这三个式子,计算即可.【解答】解:由题意知a+1=7,2b+4=18,3c+9=15,解得明文a=6,b=7,c=2,故选B.【点评】认真读题,理清明文与密文之间的关系,是解决本题的关键.9.多项式x2﹣2xy3﹣y﹣1 是()A.三次四项式B.三次三项式C.四次四项式D.四次三项式【考点】多项式.【分析】先观察多项式的项数,再确定每项的次数,最高次项的次数就是多项式的次数.【解答】解:多项式x2﹣2xy3﹣y﹣1 有四项,最高次项﹣2xy3 的次数为四,是四次四项式.故选:C.【点评】本题考查了多项式的项和次数定义.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是()A.110 B.158 C.168 D.178【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列式进行计算即可得解.【解答】解:根据排列规律,10 下面的数是12,10 右面的数是14,∵8=2×4﹣0,22=4×6﹣2,44=6×8﹣4,∴m=12×14﹣10=158.故选B.【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.二、填空题(共10 小题,每小题3 分,满分30 分)11.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015 年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000 元,将67000000000 元用科学记数法表示为 6.7×1010 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.∠α=15°35′,∠β=10°40′,则∠α+∠β= 26°15′.【考点】度分秒的换算.【分析】利用度、分、秒分别相加即可,再注意秒的结果若满60,则转化为1 分.【解答】解:∵∠α=15°35′,∠β=10°40′,∴∠α+∠β=15°35′+10°40′=26°15′.故答案为:26°15′.【点评】考查了度分秒的换算,此类题是进行度、分、秒的加法计算,相对比较简单,注意以60 为进制即可.13.若﹣7x m+2y4z2 与﹣3x3y n z1 是同类项,则m= 1 .【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵﹣7x m+2y4z2 与﹣3x3y n z1 是同类项,∴m+2=3,n=4,∴m=1.故答案为:1.【点评】本题考查了同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.14.如图,∠AOB=90°,以O 为顶点的锐角共有 5 个.【考点】角的概念.【分析】明确角的概念,依次数出以OA、OD、OC 为一边的角的个数即可.【解答】解:以OA 为一边的角,∠AOD,∠AOC;以OD 为一边的角,∠DOC,∠DOB;以OC 为一边的角,∠COB.共5 个角.故答案是:5.【点评】此题考查了角的概念,首先要认识图中所示的角,再依次数出图中的角,要注意不要漏数,也不要多数.15.如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC 的长度)为(a﹣2b)米.【考点】整式的加减.【专题】应用题.【分析】从A 点沿着楼梯爬到C 点长度的和应该是楼梯的水平宽度与垂直高度的和,依此用(3a﹣b)减去,即可求得小明家楼梯的竖直高度.【解答】解:(3a﹣b)﹣=3a﹣b﹣2a﹣b=a﹣2b(米).故小明家楼梯的竖直高度(即:BC 的长度)为(a﹣2b)米.故答案为:(a﹣2b).【点评】考查了整式的加减,整式的加减实质上就是合并同类项.16.方程x2+3x+1=4 是一元一次方程,则a= .【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0).【解答】解:由题意得:2a﹣1=0,所以a=.故答案为:.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.17.某超市规定,如果购买不超过50 元的商品时,按全额收费;购买超过50 元的商品时,超过部分按九折收费.某顾客在一次消费中,向售货员交纳了212 元,那么在此次消费中该顾客购买了价值 230 元的商品.【考点】一元一次方程的应用.【专题】经济问题.【分析】此题的关键是理解那部分打折,找到等量关系是购买的价值﹣打折的部分=交纳的,打折的部分为购买的价值减去50 元,设购买价值为x 元的商品,根据等量关系列方程即可.【解答】解:设购买价值为x 元的商品,根据题意得50+90%(x﹣50)=212解得x=230故填:230【点评】此题贴近生活,打折问题经常可见,有利于提高学生兴趣.18.观察下面一组式子:(1)1× ;;(3);(4)…写出这组式子中的第(n)组式子是.【考点】规律型:数字的变化类.【分析】观察题中算式与结果,若把1 看作,则算式中的两个因数的分子都是1,分母为连续自然数,结果恰是算式中的第一个因数减去第二个因数,结合此规律即可求解.【解答】解:若把1 看作,则算式中的两个因数的分子都是1,分母为连续自然数,结果恰是算式中的第一个因数减去第二个因数,所以第(n)组式子是.故答案为:.【点评】此题主要考察数的规律探索,结合已知发现总结算式中数的规律,并合理应用是解题的关键.19.已知,线段AB 在数轴上且它的长度为5,点A 在数轴上对应的数为﹣2,则点B 在数轴上对应的数为 3 或﹣7 .【考点】数轴.【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解答】解:由线段AB 在数轴上且它的长度为5,点A 在数轴上对应的数为﹣2,得﹣2+5=3,或﹣2﹣5=﹣2+(﹣5)=﹣7.故答案为:3 或﹣7.【点评】本题考查了数轴,数轴上到一点距离相等的点有两个,位于该点的左右,以防遗漏.20.一件童装每件的进价为a 元(a>0),商家按进价的3 倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为0.8a 元.【考点】列代数式.【分析】先表示出用每件童装的实际售价,然后减去进价就是利润的表达式.【解答】解:实际售价为:3a×0.6=1.8a,所以,每件童装所得的利润为:1.8a﹣a=0.8a.故答案为:0.8a.【点评】本题考查了列代数式,解题的关键在于读懂题意,明白打六折的含义.三、解答题(共7 小题,满分60 分)21.计算题(1)20﹣(﹣7)﹣|﹣2|(﹣54)÷(﹣9)﹣(﹣4)×(﹣)(3)()×(﹣36)(4)(﹣1)2﹣[2﹣(﹣3)2 .【考点】有理数的混合运算.【专题】计算题.【分析】(1)根据有理数的减法和去绝对值的方法进行计算即可;根据有理数的乘除和减法法则进行计算即可;(3)根据乘法的分配律进行计算即可;(4)根据有理数的混合运算的方法进行计算即可.【解答】解:(1)20﹣(﹣7)﹣|﹣2|=20+7﹣2=25;(﹣54)÷(﹣9)﹣(﹣4)×(﹣)=6﹣3=3;(3)()×(﹣36)==﹣12+20﹣33=﹣25;(4)(﹣1)2﹣[2﹣(﹣3)2=1﹣=1﹣=1= .【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.解方程(1).【考点】解一元一次方程.【分析】(1)先去分母,再去括号,移项、合并同类项,把x 的系数化为1 即可;先把方程中的分母化为整数,再去分母,去括号,再移项、合并同类项,把x 的系数化为1 即可.【解答】解:(1)去分母得,2(5x+1)=6﹣,去括号得,10x+2=6﹣2x+1,移项得,10x+2x=6+1﹣2,合并同类项得,12x=5,x 的系数化为1 得,x=;原方程可化为﹣=﹣10,去分母得,200x﹣600﹣(150x+600)=﹣300,去括号得,200x﹣600﹣150x﹣600=﹣300,移项得,200x﹣150x=﹣300+600+600,合并同类项得,50x=900,x 的系数化为1 得,x=18.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.23.化简求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=.【考点】整式的加减—化简求值.【分析】先去括号,然后合并同类项使整式化为最简,再将x 的值代入即可得出答案.【解答】解:原式=﹣x2+ x﹣2﹣x+1=﹣x2﹣1,将x=代入得:﹣x2﹣1=﹣.故原式的值为:﹣.【点评】化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.24.某车间有技术工人85 人,平均每天每人可加工甲种部件16 个或乙种部件10 个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【考点】二元一次方程组的应用.【专题】应用题.【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x 人,加工的乙部件的有y 人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25 代入①解得y=60,所以答:加工的甲部件的有25 人,加工的乙部件的有60 人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.25.如图,已知线段AB 和CD 的公共部分为BD,且BD=AB= CD,线段AB、CD 的中点E、F 之间距离是20,求AB、CD 的长.【考点】两点间的距离.【分析】根据线段中点的性质,可得AE=AB,CF= CD,根据线段的和差,可得AC 的长、EF 的长,根据解方程,可得x 的值.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F 分别为AB、CD 的中点,∴AE= AB=1.5x,CF= CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.【点评】本题考查了两点间的距离,利用BD=AB= CD 得出BD=x,则AB=3x,CD=4x,AC=6x 是解题关键.26.如图所示,OE,OD 分别平分∠AOC 和∠BOC,(1)如果∠AOB=90°,∠BOC=40°,求∠DOE 的度数;如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、的结果中,你发现了什么规律,请写出来.【考点】角平分线的定义;角的计算.【分析】(1)首先计算出∠AOC 的度数,然后再根据角平分线的性质可得∠COE=∠AOC,∠COD= ∠BOC,根据∠DOE=∠COE﹣∠COD 代入角度计算即可;方法与(1)相同,首先计算出∠AOC 的度数,然后再根据角平分线的性质可得∠COE=∠AOC,∠COD= ∠BOC,根据∠DOE=∠COE﹣∠COD 代入角度计算即可;(3)根据(1)的结果可得∠DOE 的大小与∠BOC 的大小无关.【解答】解:(1)∵∠AOB=90°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=90°+40°=130°,又∵OE,OD 分别平分∠AOC 和∠BOC,∴∠COE= ∠AOC= ×130°=65°,∠COD= ∠BOC= ×40°=20°,∴∠DOE=∠COE﹣∠COD=65°﹣20°=45°;∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,又∵OE,OD 分别平分∠AOC 和∠BOC,∴∠COE=∠AOC=(α+β),∠COD= ∠BOC= ,∴∠DOE=∠COE﹣∠COD= (α+β)﹣= + ﹣= ;(3)∠DOE 的大小与∠BOC 的大小无关.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线把角分成相等的两部分.27.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300 元买这种卡后,凭卡可在这家商场按标价的8 折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500 元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【考点】一元一次方程的应用.【分析】(1)根据花300 元买这种卡后,凭卡可在这家商场按标价的8 折购物,得出等式进而求出即可;根据(1)中所求即可得出怎样购买合算;(3)首先假设进价为y,则可得出(300+3500×0.8)﹣y=25%y 进而求出即可.【解答】(1)解:设顾客购买x 元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500 元时不买卡合算;当顾客消费等于1500 元时买卡与不买卡花钱相等;当顾客消费大于1500 元时买卡合算;小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400 元钱;(3)设进价为y 元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480 元.【点评】此题主要考查了一元一次方程的应用,正确得出买卡后付费等式是解题关键.。
2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题1. 3的相反数是( )A .3B .C .﹣3D .﹣2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是( )A .圆柱体B .正方体C .长方体D .球体3.下列调查方式合适的是( )A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为( )平方米.A .126×104B .1.26×104C .1.26×106D .1.26×1075.下列计算正确的是( )A .2x+3y=5xyB .5a 2﹣3a 2=2C .(﹣7)÷=﹣7D .(﹣2)﹣(﹣3)=1 6.代数式3x a y b 与x 2y 是同类项,则a ﹣b 的值为( )A .1B .0C .﹣2D .27.有理数a 、b 在数轴上的位置如图所示,则下列结论正确的是( )A .B .a ﹣b >0C .ab >0D .a+b <08.用代数式表示“a 与b 两数的差的平方”,正确的是( )A .a 2﹣bB .a ﹣b 2C .a 2﹣b 2D .(a ﹣b )29.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.二、填空题11.单项式4x2y的系数是.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是.13.|a﹣1|+|b﹣2|=0,则a+b= .14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是.15.下列说法正确的是(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为人,m= ,n= ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题1.3的相反数是()A.3 B.C.﹣3 D.﹣【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:3的相反数是﹣3,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是()A.圆柱体B.正方体C.长方体D.球体【考点】由三视图判断几何体.【分析】根据三视图的知识,主视图以及左视图都是矩形,俯视图为一个圆,故易判断该几何体为圆柱.【解答】解:根据主视图和左视图是矩形,得出该物体的形状是柱体,根据俯视图是圆,得出该物体是圆柱体.故选:A.【点评】本题考查由三视图确定几何体的形状,同时考查学生空间想象能力,从主视图、左视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状.3.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;D、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为()平方米.A.126×104B.1.26×104C.1.26×106D.1.26×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 260 000=1.26×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列计算正确的是()A.2x+3y=5xy B.5a2﹣3a2=2 C.(﹣7)÷=﹣7 D.(﹣2)﹣(﹣3)=1 【考点】合并同类项;有理数的混合运算.【分析】直接利用合并同类项法则以及有理数混合运算法则分别分析得出答案.【解答】解:A、2x+3y,无法计算,故此选项错误;B、5a2﹣3a2=2a2,故此选项错误;C、(﹣7)÷=﹣,故此选项错误;D、(﹣2)﹣(﹣3)=1,正确.故选:D.【点评】此题主要考查了合并同类项以及有理数混合运算,正确掌握运算法则是解题关键.6.代数式3x a y b与x2y是同类项,则a﹣b的值为()A.1 B.0 C.﹣2 D.2【考点】同类项.【专题】计算题;整式.【分析】利用同类项定义求出a与b的值,即可求出a﹣b的值.【解答】解:∵3x a y b与x2y是同类项,∴a=2,b=1,则a﹣b=2﹣1=1.故选A【点评】此题考查了同类项,熟练掌握同类项定义是解本题的关键.7.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.B.a﹣b>0 C.ab>0 D.a+b<0【考点】数轴.【分析】根据数轴可以判断a、b的正负和它们的绝对值的大小,从而可以解答本题.【解答】解:由数轴可得,a<0<b且|a|>|b|,∴<0,故选项A错误,a﹣b<0,故选项B错误,ab<0,故选项C错误,a+b<0,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点.8.用代数式表示“a与b两数的差的平方”,正确的是()A.a2﹣b B.a﹣b2C.a2﹣b2D.(a﹣b)2【考点】列代数式.【分析】a与b两数的差的平方则是先分别计算差再计算乘方.【解答】解:a与b两数的差的平方表示为(a﹣b)2;故选D【点评】本题考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.9.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可以得到方程中x的次数应该为1,从而可以解答本题.【解答】解:∵方程2x m+1=0是一元一次方程,∴m=1,故选B.【点评】本题考查一元一次方程的定义,解题的关键是明确一元一次方程中未知数的次数是一次.10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.【考点】规律型:数字的变化类.【分析】仔细观察给出的数字,找出其中存在的规律从而解题即可.【解答】解:∵1=;;;∴第n个数是:故选B.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.二、填空题11.单项式4x2y的系数是 4 .【考点】单项式.【分析】根据单项式的概念即可求出答案.【解答】解:故答案为:4;【点评】本题考查单项式的概念,属于基础题型.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是0 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程求得a的值.【解答】解:把x=2代入方程得1﹣1=a,解得:a=0.故答案是:0.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.13.|a﹣1|+|b﹣2|=0,则a+b= 3 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出a、b的值,再将它们代代数式中求解即可.【解答】解:根据题意得:,解得:,则a+b=1+2=3.故答案是:3.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是30°.【考点】角平分线的定义.【分析】根据邻补角定义可得∠BOC的度数,再根据角平分线定义可得∠AOC的度数.【解答】解:∵∠BOD=120°,∴∠BOC=180°﹣120°=60°,∵OA平分∠BOC,∴∠AOC=∠BOC=60°=30°,故答案为:30°.【点评】此题主要考查了角平分线,关键是掌握角平分线把角分成相等的两部分.15.下列说法正确的是①②③④(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.【考点】有理数;绝对值.【专题】常规题型.【分析】①单独的一个数和字母是单项式,所以﹣3.1是整式;②可通过正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0做出判断;③0特殊的有理数,它有很多特殊的性质,它是数轴上正负数的分界点;④是有理数的定义.【解答】解:﹣3.1是单项式,所以﹣3.1是负数,是分数也是整式故①正确;当a为实数时,|a|≥a,所以一个数的绝对值不小于它本身,故②正确;0是特殊的有理数,不是正数也不负数,故③正确;整数和分数统称有理数,故④正确.故答案为:①②③④【点评】本题考查了数的分类、绝对值的性质、0及有理数的定义.0是特殊的有理数,它不是正数与不是负数,它的绝对值和相反数都是它本身,它没有倒数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.【考点】解一元一次方程;有理数的混合运算.【专题】计算题;实数;一次方程(组)及应用.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及乘法运算,再计算加减运算即可得到结果;(3)方程去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=1+3+2=6;(2)原式=﹣1+3﹣2=0;(3)去括号得:2x﹣2+x=4,移项合并得:3x=6,解得:x=2;(4)去分母得:2x+2=x﹣1+6,移项合并得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.【考点】整式的混合运算—化简求值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再代入求值可得.【解答】解:原式=2ab﹣(a2b3﹣a2b4)=2ab﹣a2b3+a2b4,当a=﹣1,b=2时,原式=2×(﹣1)×2﹣(﹣1)2×23+(﹣1)2×24=﹣4﹣8+16=4.【点评】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?【考点】两点间的距离;一元一次方程的应用.【分析】(1)先根据中点的定义,求得AB长,再根据BC的长求得AC长即可;(2)成本价×(1+20%)×90%=270元,根据此等量关系列方程即可.【解答】解:(1)∵点D是线段AB的中点,BD=4,∴AB=2BD=8,又∵BC=2,∴AC=AB+BC=8+2=10,故线段AC的长度为10;(2)设这种商品的成本价为x元,依题意得:x(1+20%)×90%=270,解得:x=250.答:这种商品的成本价是250元.【点评】本题主要考查了两点间的距离以及一元一次方程的应用,解题关键是要读懂题目的意思,理清线段之间的和差关系;根据题目给出的条件,找出合适的等量关系,列出方程求解.19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为20 人,m= 15% ,n= 35% ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【考点】条形统计图;统计表;扇形统计图.【分析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【解答】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为:20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?【考点】一元一次方程的应用;列代数式.【分析】(1)根据题意可以求得某户某月用了6吨水,应付的水费;(2)根据题意可以求得某户某月用了x吨水(x>7),应付的水费;(3)根据题意可以判断出32元水费在哪个用水范围内,从而可以解答本题.【解答】解:(1)由题意可得,某户某月用了6吨水,应付水费为:4×2+(6﹣4)×3=14(元),即某户某月用了6吨水,应付14元的水费;(2)由题意可得,某户某月用了x吨水(x>7),应付水费为:4×2+(7﹣4)×3+(x﹣7)×5=(5x﹣18)元,即某户某月用了x吨水(x>7),应付水费(5x﹣18)元;(3)当x=7时,收费为:4×2+(7﹣4)×3=17,∵17<32,∴32=5x﹣18,解得,x=10即某户某月付了水费32元,用水10吨.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出所求问需要的条件.。
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
山东省青岛市黄岛区2015~2016学年度七年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣3的倒数是()A.3 B.﹣C.﹣3 D.2.如图,南偏东15°和北偏东25°的两条射线组成的角(即∠AOB)等于()度.A.40°B.80°C.50°D.140°3.下列调查中,适合用普查方式的是()A.了解一批节能灯泡的使用寿命B.了解一批炮弹的杀伤半径C.了解某校2015~2016学年度八年级(3)班学生的身高情况D.了解一批袋装食品中是否含有防腐剂4.把方程中分母化整数,其结果应为()A.B.0C.D.05.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A.2 B.4 C.6 D.86.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.67.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.12(x+10)=13x+60C.D.8.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A. B.C.D.二、填空题(共9小题,每小题3分,满分32分)9.下列各数:﹣(﹣2),|﹣2|,(﹣3),﹣|0|,﹣,其中负数有个.10.若ab m和﹣a n b3是同类项,则n﹣m=.11.请写出一个解为x=2的一元一次方程.12.比较大小:52°52′52.52°.(填“>”、“<”或“=”)13.如图,是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题最多,共有70个,则有关道路交通问题的电话有个.14.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD的度数是.15.将一个底面直径是10厘米、高为40厘米的圆柱锻压成底面直径为16厘米的圆柱,则锻压后圆柱的高为厘米.16.如图是幼儿园小朋友用火柴拼出的一列图形,请仔细观察,找出规律,并计算第2016个图形中共有根火柴.17.(1)如图1,是由几个大小完全一样的小正方体搭成的几何体从上面看的图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体从正面看和左面看的形状图.(2)已知图2:线段a、b,求作一条线段c,使c=2a﹣b.三、解答题(共7小题,满分64分)18.计算与化简:(1)(﹣)×(﹣12)(2)(﹣3)2÷(2)﹣4×(﹣)2(3)x2y﹣3×(xy2﹣yx2)+y2x,其中x=﹣2,y=1.19.解方程:(1)4x﹣3=3 (2)y﹣.20.如图,∠AOB,∠DOC都是直角.(1)如果∠AOD=128°,∠BOC的度数.(2)除直角外,找出图中其他相等的角.21.A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A城市有多远?22.为了解某校“阅读工程”的开展情况.市教育局从该校初中生中随机抽取了150名学生进行了阅读情况的问卷调查,绘制了如下不完全的统计图:根据上述统计图提供的信息,解答下列问题:(1)每天阅读时间在1﹣2小时学生有多少人?(2)采用“笔记积累”阅读方式的学生有多少人?(3)补全条形统计图.(4)若将写读后感、笔记积累、画圈点读三种方式称为记忆阅读,求笔记积累人数占有记忆阅读人数的百分比.23.王志和孙尚到图书城去买书,两人在书城购买书共花费了206元,共购买了16本书,其中王志平均每本书的价格为12元,孙尚平均每本书的价格为14元.(1)王志和孙尚各购买书多少本?(2)如果在书城办会卡买书可以享受7折优惠,那么两人合办一张会员卡(会员卡8元),请问此次购书两人共可以节省多少钱?24.如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…(1)第四个图形有个正方形组成,周长为cm.(2)第n个图形有个正方形组成,周长为cm.(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.山东省青岛市黄岛区2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣3的倒数是()A.3 B.﹣C.﹣3 D.【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣3的倒数是﹣,故选:B.【点评】本题考查了倒数,分子分母交换位置是求倒数的关键.2.如图,南偏东15°和北偏东25°的两条射线组成的角(即∠AOB)等于()度.A.40°B.80°C.50°D.140°【考点】方向角.【分析】根据角的和差,可得答案.【解答】解:如图,南偏东15°和北偏东25°,得∠AOC=25°,∠BOD=15°.由角的和差,得∠AOB=180°﹣∠AOC﹣∠BOD=180°﹣25°﹣15°=140°,故选:D.【点评】本题考查了方向角,利用角的和差是解题关键.3.下列调查中,适合用普查方式的是()A.了解一批节能灯泡的使用寿命B.了解一批炮弹的杀伤半径C.了解某校2015~2016学年度八年级(3)班学生的身高情况D.了解一批袋装食品中是否含有防腐剂【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:了解一批节能灯泡的使用寿命用抽样调查,A错误;了解一批炮弹的杀伤半径用抽样调查,B错误;了解某校2015~2016学年度八年级(3)班学生的身高情况用普查方式,C正确;了解一批袋装食品中是否含有防腐剂用抽样调查,D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.把方程中分母化整数,其结果应为()A.B.0C.D.0【考点】解一元一次方程.【专题】计算题.【分析】方程两边同乘以10化分母为整数,乘的时候分母及分子都要乘以10.【解答】解:根据分式的性质,每个分式分子分母同乘以10得:.故选C.【点评】本题考查了化分母为整数,注意方程两边每一项都要同乘以同一个数.注意分式的基本性质与等式的性质的不同点.5.如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A.2 B.4 C.6 D.8【考点】比较线段的长短.【专题】计算题.【分析】根据两中点进行解答.【解答】解:∵点C为线段AB的中点,AB=8,则BC=AC=4.点D为线段AC的中点,则AD=DC=2.∴BD=CD+BC=6.故选C.【点评】利用中点性质转化线段之间的长短关系是解题的关键.6.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6【考点】频数(率)分布直方图.【专题】图表型.【分析】由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.【点评】本题主要考查学生对频率直方图的认识和对频数的计算.7.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.12(x+10)=13x+60C.D.【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.【点评】列方程解应用题的关键是找出题目中的相等关系.8.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A.B.C.D.【考点】认识立体图形.【分析】结合已知图形,先判断a,b,c,d所代表的图形,再判断记作a⊙d的图形即可.【解答】解:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合,故选A.【点评】读懂题意,结合图形组合的特点,判断出a,b,c,d所代表的图形,是解决问题的关键.二、填空题(共9小题,每小题3分,满分32分)9.下列各数:﹣(﹣2),|﹣2|,(﹣3),﹣|0|,﹣,其中负数有2个.【考点】正数和负数.【专题】推理填空题.【分析】将题目的数据进行化简,然后根据负数的定义,即可判断题目中负数的个数.【解答】解:∵﹣(﹣2)=2,|﹣2|=2,(﹣3)=﹣3,﹣|0|=0,﹣=﹣,∴﹣(﹣2),|﹣2|,(﹣3),﹣|0|,﹣中负数有2个,故答案为:2.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数据进行化简.10.若ab m和﹣a n b3是同类项,则n﹣m=﹣2.【考点】同类项.【分析】直接利用同类项的定义得出n,m的值进而得出答案.【解答】解:∵ab m和﹣a n b3是同类项,∴n=1,m=3,则n﹣m=1﹣3=﹣2.故答案为:﹣2.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.11.请写出一个解为x=2的一元一次方程x﹣2=0.【考点】一元一次方程的解.【专题】开放型.【分析】根据方程的解的定义,只要使x=2能使方程左右两边相等即可.(答案不唯一).【解答】解:写出一个解为x=2的一元一次方程是x﹣2=0.故答案是:x﹣2=0.【点评】本题考查了方程的解的定义,方程的解是能使方程的左右两边相等的未知数的值.12.比较大小:52°52′>52.52°.(填“>”、“<”或“=”)【考点】角的大小比较;度分秒的换算.【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论、【解答】解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.【点评】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较.13.如图,是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题最多,共有70个,则有关道路交通问题的电话有40个.【考点】用样本估计总体;条形统计图.【专题】图表型.【分析】根据条形统计图可以看出:环境保护70个占总体的35%,即可求得热线电话的总的个数,再根据交通问题所占的比例即可求解.【解答】解:有关道路交通问题的电话有:70÷35%=200个,20%×200=40.【点评】能够从条形统计图中发现环境保护占总体的多少,然后根据已知部分求全体用除法计算.14.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD的度数是50°或10°.【考点】角平分线的定义.【分析】分类讨论:OC在∠AOB外,OC在∠AOB内两种情况.根据角平分线的性质,可得∠BOD 与∠AOB的关系,再根据角的和差,可得答案.【解答】解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.【点评】本题考查了角的计算,先根据角平分线的性质,求出∠BOD,在由角的和差,得出答案,分了讨论是解题关键.15.将一个底面直径是10厘米、高为40厘米的圆柱锻压成底面直径为16厘米的圆柱,则锻压后圆柱的高为15.625厘米.【考点】一元一次方程的应用.【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【解答】解:设锻压后圆柱的高为x厘米,由题意得:π()2x=π()2×40,解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点评】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系.16.如图是幼儿园小朋友用火柴拼出的一列图形,请仔细观察,找出规律,并计算第2016个图形中共有6049根火柴.【考点】规律型:图形的变化类.【专题】推理填空题;实数.【分析】将第1、2、3、4个图形中火柴数量拆分成序数的3倍与1的和,据此可知第2016个图形中火柴的数量.【解答】解:第一个图中,有火柴1+1×3=4根;第二个图形中,有火柴1+2×3=7根;第三个图形中,有火柴1+3×3=10根;第四个图形中,有火柴1+4×3=13根;…则第2016个图形中,有火柴1+2016×3=6049根.故答案为:6049.【点评】本题主要考查图形的变化规律,将图形的变化规律转化为数字规律是关键.17.(1)如图1,是由几个大小完全一样的小正方体搭成的几何体从上面看的图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体从正面看和左面看的形状图.(2)已知图2:线段a、b,求作一条线段c,使c=2a﹣b.【考点】作图-三视图;作图—复杂作图.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.(2)在射线AM上依次截取AB=BC=a,再截取DC=b,则AD=2a﹣b.【解答】解:(1)如图所示:(2)如图,AD即为所作.【点评】(1)考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.(2)复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(共7小题,满分64分)18.计算与化简:(1)(﹣)×(﹣12)(2)(﹣3)2÷(2)﹣4×(﹣)2(3)x2y﹣3×(xy2﹣yx2)+y2x,其中x=﹣2,y=1.【考点】有理数的混合运算;整式的加减—化简求值.【专题】计算题;实数.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=8﹣3+10=15;(2)原式=9×﹣4×=(9﹣4)×=5×=;(3)原式=x2y+xy2+2yx2+y2x=3x2y+2xy2,当x=﹣2,y=1时,原式=12﹣4=8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.解方程:(1)4x﹣3=3(2)y﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)按照解一元一次方程的步骤:去括号、移项、合并同类项、系数化为1可得方程的解;(2)按照解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1可得方程的解.【解答】解:(1)去括号,得:4x﹣60+3x=3,移项,得:4x+3x=3+60,合并同类项,得:7x=63,系数化为1,得:x=9;(2)去分母,得:6y﹣3(y﹣1)=12﹣(y+2),去括号,得:6y﹣3y+3=12﹣y﹣2,移项,得:6y﹣3y+y=12﹣2﹣3,合并同类项,得:4y=7,系数化为1,得:x=.【点评】本题主要考查解一元一次方程的基本能力,严格遵循解方程的基本步骤是关键.20.如图,∠AOB,∠DOC都是直角.(1)如果∠AOD=128°,∠BOC的度数.(2)除直角外,找出图中其他相等的角.【考点】余角和补角.【分析】(1)根据直角定义可得∠AOB=90°,∠COD=90°,然后利用∠AOD=128°可得∠AOC=128°﹣90°=38°,进而可得∠BOC的度数;(2)根据同角的余角相等可得答案.【解答】解:(1)∵∠AOB,∠DOC都是直角,∴∠AOB=90°,∠COD=90°,∵∠AOD=128°,∴∠AOC=128°﹣90°=38°,∴∠BOC=90°﹣38°=52°;(2)∠AOC=∠BOD,∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOC=∠BOD+∠BOC,∴∠AOC=∠BO D.【点评】此题主要考查了余角,以及角的计算,关键是掌握余角的性质:同角的余角相等,理清角之间的和差关系.21.A、B两城市间有一条300千米的高速公路,现有一长途客车从A城市开往B城市,平均速度为85千米/时,有一小汽车同时B城市开往A城市平均速度是115千米/时,问两车相遇时离A城市有多远?【考点】一元一次方程的应用.【分析】设两车经过x小时相遇,根据两车所行的路程和为300千米列方程求得相遇时间,进一步利用相遇时间乘客车速度得出答案即可.【解答】解:设两车经过x小时相遇,由题意得85x+115x=300解得:x=1.585x=85×1.5=127.5答:两车相遇时离A城市有127.5千米.【点评】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.22.为了解某校“阅读工程”的开展情况.市教育局从该校初中生中随机抽取了150名学生进行了阅读情况的问卷调查,绘制了如下不完全的统计图:根据上述统计图提供的信息,解答下列问题:(1)每天阅读时间在1﹣2小时学生有多少人?(2)采用“笔记积累”阅读方式的学生有多少人?(3)补全条形统计图.(4)若将写读后感、笔记积累、画圈点读三种方式称为记忆阅读,求笔记积累人数占有记忆阅读人数的百分比.【考点】条形统计图;扇形统计图.【分析】(1)每天阅读时间在1﹣2小时学生数=每天阅读时间在1﹣2小时的百分比×总人数;(2)采用“笔记积累”阅读方式的学生数=总人数﹣其他方式的总人数;(3)根据(2)中计算结果,可补全条形图;(4)笔记积累人数占有记忆阅读人数的百分比=笔记积累人数÷记忆阅读的人数×100%.【解答】解:(1)每天阅读时间在1﹣2小时学生有:(1﹣10%﹣20%﹣40%)×150=45人;(2)采用“笔记积累”阅读方式的学生有:150﹣(18+22+70)=40人;(3)补全条形图如下:(4)笔记积累人数占有记忆阅读人数的百分比为:×100%=50%.【点评】本题主要考查条形统计图和扇形统计图,从不同的统计图中获取有用的信息是解题的关键.23.王志和孙尚到图书城去买书,两人在书城购买书共花费了206元,共购买了16本书,其中王志平均每本书的价格为12元,孙尚平均每本书的价格为14元.(1)王志和孙尚各购买书多少本?(2)如果在书城办会卡买书可以享受7折优惠,那么两人合办一张会员卡(会员卡8元),请问此次购书两人共可以节省多少钱?【考点】一元一次方程的应用.【分析】(1)设王志购买书x本,则孙尚购买书(16﹣x)本,根据两人在书城购买书共花费了206元列出方程,求解即可;(2)先求出办会卡购书一共需要的钱数,再用206元减去这个钱数即可.【解答】解:(1)设王志购买书x本,则孙尚购买书(16﹣x)本,根据题意得12x+14(16﹣x)=206,解得x=9,16﹣x=7.答:王志购买书9本,孙尚购买书7本;(2)办会卡购书一共需要:8+206×0.7=152.2(元),206﹣152.2=53.8(元).答:此次购书两人共可以节省53.8元钱.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…(1)第四个图形有16个正方形组成,周长为22cm.(2)第n个图形有n2个正方形组成,周长为6n﹣2cm.(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.【考点】规律型:图形的变化类;列代数式;代数式求值.【专题】推理填空题.【分析】(1)将第1、2、3个图形中正方形个数写成序数的平方,周长是序数6倍与2的差,根据规律得到第4个图形中正方形个数和周长;(2)延续(1)中规律写出第n个图形中正方形的个数和周长;(3)若周长为58,可列方程,求出n的值,根据n的值从而求出其正方形个数;【解答】解:(1)根据题意,知:第一个图形:正方形有1=12个,周长为4=4+6×0;第二个图形:正方形有:4=22个,周长为10=4+6×1;第三个图形:正方形有:9=32个,周长为16=4+6×2;故第四个图形:正方形有:42=16个,周长为4+6×3=22;(2)根据以上规律,第n个图形有正方形n2个,其周长为:4+6(n﹣1)=6n﹣2;(3)若某图形的周长为58cm,则有:6n﹣2=58,解得:n=10,即第10个图形的周长为58cm,则第10个图形中正方形有102=100个.故答案为:(1)16,22;(2)n2,6n﹣2.【点评】本题主要考查图形的变化规律,将图形的变化规律转化为数字的规律是关键.- 21 -。
2015-2016学年重庆市南岸区七年级(上)期末数学试卷一、选择题(48分)1.(2014•自贡)比﹣1大1的数是()A.2 B.1 C.0 D.﹣22.(2013•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查4.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B5.(2015秋•南岸区期末)下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=96.(2015秋•南岸区期末)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元7.(2007•常州)下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是()A.B.C.D.8.(2015秋•南岸区期末)下列各组单项式中,为同类项的是()A.a3与a2B.﹣3与a C.2xy与2x D.与2a29.(2015•邯郸二模)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°10.(2015•临淄区一模)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.若用餐的人数有90人,则这样的餐桌需要()张?A.15 B.16 C.21 D.2211.(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长12.(2015秋•南岸区期末)王明和李丽是邻居,星期天他们两家人准备去郊外的湿地公园玩,早上两家人同时乘坐了两辆不同价格的出租车,王明家乘坐的是起步4公里10元,以后每公里收1.2元,李丽家乘坐的起步3公里8元,以后每公里收1.3元,两家人几乎同时到公园,付款后王明发现两家人的车费仅差1元,则两家住地离公园的路程是()A.20公里B.21公里C.22公里D.25公里二、填空题(24分)13.(2000•福建)若|a|=2,则a=.14.(2015秋•南岸区期末)36.42°=度分秒.15.(2015秋•南岸区期末)若x=2是方程mx+3=x﹣5的解,则m的值为.16.(2015秋•南岸区期末)小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为.17.(2015秋•南岸区期末)请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若一个同学报给第二个同学的数是5,而第四个同学报出的答案是.18.(2015秋•南岸区期末)一个正方体的六个面上分别涂有红、白、黄、绿、蓝、紫六种不同的颜色,其中红、白、黄、绿、蓝、紫,分别代表的是数字﹣1、﹣2、﹣3、﹣4、﹣5、﹣6中的一个数,如图是这个正方体的三种放置方法,若三个正方体下底面所标颜色代表的数字分别是a,b,c,则a+b+c+abc=.三、解答题(14分)19.(7分)(2015秋•南岸区期末)计算:(1)2﹣(+10)﹣(﹣3)+4(2).20.(7分)(2015秋•南岸区期末)如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.四、解答题(40分)21.(10分)(2015秋•南岸区期末)解方程:(1)4﹣x=3(2﹣x)(2).22.(10分)(2015秋•南岸区期末)重庆新天地陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算)(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得5元,若超额完成任务(以350个为标准),则超过部分每个另奖10元,少生产每个扣3元,试求该工艺厂在这一周应付出的工资总额.23.(10分)(2012•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=,b=;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.(10分)(2015秋•南岸区期末)一位打工者来到一个新城市,想租一套房子,A家房主的条件是:先交1000元,每个月租金680元,B家房主的条件是:每月租金780元(1)这位打工者想在这座城市住半年,租哪家的房子合算?(2)如果这位打工者想住一年,租哪家的房子合算?(3)这位打工者住多长时间时,租两家的房子费用都一样?五、解答题(24分)25.(12分)(2015秋•南岸区期末)概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法﹣﹣﹣杨辉法:(如图(1))口诀:“九子斜排,上下对易,左右相更,四维挺出”学以致用:(1)请你将下列九个数:﹣18、﹣16、﹣14、﹣12、﹣10、﹣8、﹣6、﹣4、﹣2,分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等;(2)将方格2中左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和相等;(3)将9个连续自然数填入方格3的方格内,使每一横行、每一竖行及两条对角线的3个数之和都等于60;(4)用﹣3~5这九个数补全方格4中的幻方.方格1方格2方格3方格426.(12分)(2015秋•南岸区期末)如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)请直接写出AB、BC、AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.2015-2016学年重庆市南岸区七年级(上)期末数学试卷参考答案与试题解析一、选择题(48分)1.(2014•自贡)比﹣1大1的数是()A.2 B.1 C.0 D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.2.(2013•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.5.(2015秋•南岸区期末)下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9【考点】有理数的除法;有理数的减法;有理数的乘方.【专题】计算题.【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.【解答】解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.【点评】此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.6.(2015秋•南岸区期末)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元【考点】列代数式.【分析】用4个足球的价钱加上7个篮球的价钱即可.【解答】解:买4个足球、7个篮球共需要(4m+7n)元.故选:A.【点评】此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.7.(2007•常州)下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;B、折叠后缺少下底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一个侧面,所以也不能折叠成一个正方体.故选C.【点评】只要有“田”字格的展开图都不是正方体的表面展开图.8.(2015秋•南岸区期末)下列各组单项式中,为同类项的是()A.a3与a2B.﹣3与a C.2xy与2x D.与2a2【考点】同类项.【分析】根据同类项的定义:含有相同的字母,且相同字母的次数相同,即可作出判断.【解答】解:A、相同字母的次数不同,故不是同类项,选项错误;B、所含字母不同,则不是同类项,选项错误;C、所含字母不同,则不是同类项,选项错误;D、正确;故选A.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.(2015•邯郸二模)如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【考点】角的计算.【分析】由图示可得,∠2与∠BOC互余,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.【点评】本题考查了角的计算,解决本题的关键是利用补角求出∠BOC.10.(2015•临淄区一模)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.若用餐的人数有90人,则这样的餐桌需要()张?A.15 B.16 C.21 D.22【考点】规律型:图形的变化类.【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程解答即可.【解答】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;4n+2=90解得n=22答:这样的餐桌需要22张.故选:D.【点评】此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.11.(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长【考点】生活中的平移现象.【专题】操作型.【分析】分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.【点评】此题主要考查了生活中的平移现象,得出各图形中铁丝的长是解题关键.12.(2015秋•南岸区期末)王明和李丽是邻居,星期天他们两家人准备去郊外的湿地公园玩,早上两家人同时乘坐了两辆不同价格的出租车,王明家乘坐的是起步4公里10元,以后每公里收1.2元,李丽家乘坐的起步3公里8元,以后每公里收1.3元,两家人几乎同时到公园,付款后王明发现两家人的车费仅差1元,则两家住地离公园的路程是()A.20公里B.21公里C.22公里D.25公里【考点】一元一次方程的应用.【分析】首先设出未知数,然后用x表示出王明和李丽的打车费用,然后根据题意列出一元一次方程,求出x的值即可.【解答】解:设两家住地离公园的路程为x公里,王明打车费用为10+1.2×(x﹣4),李丽打车费用为8+1.3×(x﹣3),根据题意,得10+1.2×(x﹣4)+1=8+1.3×(x﹣3),解得x=25.答:两家住地离公园的路程是25公里,故选D.【点评】本题主要考查了一元一次方程的应用,解答本题的关键是用未知数x表示出两人乘车所收费用,此题难度不大.二、填空题(24分)13.(2000•福建)若|a|=2,则a=±2.【考点】绝对值.【专题】计算题.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.(2015秋•南岸区期末)36.42°=36度25分12秒.【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒转化运算,注意以60为进制.【解答】解:36.42°=36度25分12秒.【点评】此类题是进行度、分、秒转化运算,相对比较简单,注意以60为进制即可.15.(2015秋•南岸区期末)若x=2是方程mx+3=x﹣5的解,则m的值为﹣3.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:2m+3=2﹣5,解得:m=﹣3,故答案为:﹣3【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(2015秋•南岸区期末)小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为4.【考点】一元一次方程的应用.【分析】可设最小的数为未知数,表示出其余3个数,让4个数的和相加等于22列式求值即可.【解答】解:设圈住的最小的数为x,其余数为(x+1),(x+2),(x+3),x+(x+1)+(x+2)+(x+3)=22,解得x=4,则x+1=5,x+2=6,x+3=7.故答案为:4.【点评】本题考查一元一次方程的应用,得到4个数的代数式是解决本题的突破点;用到的知识点为:日历上横行中相邻的数相隔1.17.(2015秋•南岸区期末)请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若一个同学报给第二个同学的数是5,而第四个同学报出的答案是35.【考点】规律型:数字的变化类.【分析】根据叙述:第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案即可表示出每个同学报出的数.【解答】解:第一个同学报5,第二个同学报6,第三个同学报36,第四个同学报36﹣1=35.故答案为:35.【点评】此题考查数字的变化规律,理解题意,按照题目给出的运算方法即可解决问题.18.(2015秋•南岸区期末)一个正方体的六个面上分别涂有红、白、黄、绿、蓝、紫六种不同的颜色,其中红、白、黄、绿、蓝、紫,分别代表的是数字﹣1、﹣2、﹣3、﹣4、﹣5、﹣6中的一个数,如图是这个正方体的三种放置方法,若三个正方体下底面所标颜色代表的数字分别是a,b,c,则a+b+c+abc=﹣85.【考点】专题:正方体相对两个面上的文字.【分析】先根据图中正方形的摆放方式可知与白色面相邻的面有紫、蓝、绿、红,然后再确定出其中相对的面,从而得出a、b、c的值,最后代入计算即可.【解答】解:∵根据图形可知:白色面相邻的面有紫、蓝、绿、红,∴“紫”与“绿”是对面,“红”与“蓝”是对面,“白”与“黄”是对面.∴第一个正方体的底面是黄色,第二个正方体的底面是紫色,第三个正方体的底面是绿色.∴a=﹣3,b=﹣6,c=﹣4.∴a+b+c+abc=(﹣3)+(﹣6)+(﹣4)+(﹣3)×(﹣6)×(﹣4)=﹣13+(﹣72)=﹣85.故答案为:﹣85.【点评】本题主要考查的是正方形相对两个面上的文字,确定出正方体的对面是解题的关键.三、解答题(14分)19.(7分)(2015秋•南岸区期末)计算:(1)2﹣(+10)﹣(﹣3)+4(2).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣10+3+4=9﹣10=﹣1;(2)原式=﹣1+2﹣8=﹣9+2=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(7分)(2015秋•南岸区期末)如图,已知四点A、B、C、D,请用尺规作图完成(保留作图痕迹)(1)画直线AB;(2)画射线AC;(3)求作点P,使PA+PB+PC+PD的值最小.【考点】直线、射线、线段.【专题】作图题.【分析】(1)根据直线没有端点,是向两方无限延伸的画出图形即可;(2)根据射线有1个端点,是向一方无限延伸的画出图形即可;(3)使PA+PB+PC+PD的值最小的点P,应在AC、BD连线的交点上,由此画出即可.【解答】解:如图所示:.【点评】此题考查直线、射线、线段的画法,掌握直线、射线、线段的意义和特征是解决问题的关键.四、解答题(40分)21.(10分)(2015秋•南岸区期末)解方程:(1)4﹣x=3(2﹣x)(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣x=6﹣3x,移项合并得:2x=2,解得:x=1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(10分)(2015秋•南岸区期末)重庆新天地陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算)(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得5元,若超额完成任务(以350个为标准),则超过部分每个另奖10元,少生产每个扣3元,试求该工艺厂在这一周应付出的工资总额.【考点】正数和负数.【分析】(1)根据有理数的加法运算,再根据最大数减最小数,可得答案;(2)利用表格中数据进行加减运算即可;(3)根据产量乘以单价,可得工资,根据超产数量乘以超产的奖励单价,可得奖金,根据有理数的加法,可得答案.【解答】解:(1)由图表可得:周一:40+5=45(个);周二:40﹣6=34(个);周三:40﹣5=35(个);周四:40+15=55(个);周五:40﹣10=30(个);周六:40+16=56(个);周日:40﹣8=32(个);所以本周产量最多的一天比最少的一天多生产56﹣32=26(个).(2)由题意可得:5﹣6﹣5+15﹣10+16﹣8+50×7=357(个),所以工艺厂在本周实际生产工艺品的数量为357个;(3)357×5+(357﹣350)×10=1855(元).答:该厂工人这一周的工资总额是1855元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.23.(10分)(2012•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=100,b=0.15;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.【考点】频数(率)分布表;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【解答】解:(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点评】本题考查的用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2015秋•南岸区期末)一位打工者来到一个新城市,想租一套房子,A家房主的条件是:先交1000元,每个月租金680元,B家房主的条件是:每月租金780元(1)这位打工者想在这座城市住半年,租哪家的房子合算?(2)如果这位打工者想住一年,租哪家的房子合算?(3)这位打工者住多长时间时,租两家的房子费用都一样?【考点】一元一次方程的应用.【分析】设这位打工者要住x个月,则A家租金为:680x+1000,B家租金为:780x,(1)当x=6时,代入各式,分别求出A家和B家的租金,选择租金便宜的方案;(2)当x=12时,代入各式,分别求出A家和B家的租金,选择租金便宜的方案;(3)根据A家租金=B家租金,求出x的值.。
2015-2016学年安徽省芜湖市七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算:(﹣2)×3的结果是()A.﹣6 B.﹣1 C.1 D.62.如图,这个几何体从上面看到的平面图形是()A.B.C.D.3.将77800用科学记数法表示应为()A.0.778×105 B.7.78×105C.7.78×104D.77.8×1034.下列各组数中互为相反数的是()A.+(+2)与﹣(﹣2)B.+(﹣2)与﹣(﹣2)C.+(+2)与﹣(﹣)D.+(﹣2)与﹣(+2)5.下列各组中,不是同类项的是()A.x3y4与x3z4B.3x与﹣xC.5ab与﹣2ba D.﹣3x2y与6.如果1是关于x方程x+2m﹣5=0的解,则m的值是()A.﹣4 B.4 C.﹣2 D.27.如图所示,点O在直线L上,∠1与∠2互余,∠α=116°,则∠β的度数是()A.144°B.164°C.154°D.150°8.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=6,那么x=3C.如果x﹣3=y﹣3,那么x﹣y=0 D.如果mx=my,那么x=y9.从点O引两条射线OA、OB,在OA、OB上分别截取OM=1cm,ON=1cm,则M、N 两点间的距离一定()A.小于1cm B.大于1cm C.等于1cm D.有最大值2cm10.把方程3x+去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)11.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④12.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82015的个位数字是()A.2 B.4 C.6 D.8二、填空题(本大题共6小题,每小题4分,共24分)13.有理数5.614精确到百分位的近似数为.14.若∠α的补角为76°28′,则∠α=.15.数轴上点A与B分别表示互为相反数的两个数,且点A在点B的左边,A,B之间的距离为8个单位,则A代表的数是.16.已知点C在直线AB上,若AC=4cm,BC=6cm,E、F分别为线段AC、BC的中点,则EF=cm.17.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是元.18.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB 上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从O→A1→B1→B2→A2…按此规律,则动点M到达A10点处所需时间为秒.(结果保留π)三、解答题(本大题共5小题,共40分,解答时必须给出必要的演算过程或推理步骤)19.(1)计算:(﹣4)×(﹣3)+(﹣)﹣23(2)先化简,再求值:已知x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=.20.解方程:(1)4x﹣2=2x+4(2)﹣1=2+.21.某数学兴趣小组在用黑色围棋进行摆放图案的游戏中,一同学摆放了如下图案,请根据图中信息完成下列的问题:(1)填写下表:(2)第10个图形中棋子为 颗围棋;(3)该同学如果继续摆放下去,那么第n 个图案要用 颗围棋;(4)如果该同学手上刚好有90颗围棋子,那么他按照这种规律从第①个图案摆放下去,是否可以摆放成完整的图案后刚好90颗围棋子一颗不剩?如果可以,那么刚好摆放完成几个完整的图案?如果不行,那么最多可以摆放多少个完整图案,还剩余几颗子?(只答结果,不说明理由)22.油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人35人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片,如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?23.(1)如图1,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB= 度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个方形的一个顶点重合放置,若OF平分∠DOB,那么OE平分∠AOC 吗?为什么?2015-2016学年安徽省芜湖市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算:(﹣2)×3的结果是()A.﹣6 B.﹣1 C.1 D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣2)×3=﹣2×3=﹣6.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.如图,这个几何体从上面看到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看一个圆环,故B符合题意,故选:B.【点评】本题考查了简单几何体的三视图,从上面看得到的图形是俯视图,注意能看到的线都划实线.3.将77800用科学记数法表示应为()A.0.778×105 B.7.78×105C.7.78×104D.77.8×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将77800用科学记数法表示为:7.78×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中互为相反数的是()A.+(+2)与﹣(﹣2)B.+(﹣2)与﹣(﹣2)C.+(+2)与﹣(﹣)D.+(﹣2)与﹣(+2)【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:A、2与2不是相反数,错误;B、﹣2与2是相反数,正确;C、2与﹣2是相反数,错误;D、2与﹣2是相反数,错误;故选B【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.下列各组中,不是同类项的是()A.x3y4与x3z4B.3x与﹣xC.5ab与﹣2ba D.﹣3x2y与【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可作出判断.【解答】解:A、所含的字母不同,不是同类项;B、C、D是同类项.【点评】本题考查了同类项定义,定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.6.如果1是关于x方程x+2m﹣5=0的解,则m的值是()A.﹣4 B.4 C.﹣2 D.2【考点】一元一次方程的解.【分析】将x=1代入即可得出m即可.【解答】解:∵x=1是关于x方程x+2m﹣5=0的解,∴1+2m﹣5=0,∴m=2,故选D.【点评】本题考查了一元一次方程的解,方程的解就是能够使方程左右两边相等的未知数的值.7.如图所示,点O在直线L上,∠1与∠2互余,∠α=116°,则∠β的度数是()A.144°B.164°C.154°D.150°【考点】余角和补角.【专题】计算题.【分析】要求∠β的大小,它与∠1互补,可以转化为求∠1,根据已知,∠α=116°,∠α和∠2互补就可求出∠2,根据,∠1与∠2互余,可以求出∠1,则问题可解.【解答】解:∵∠α+∠2=180°,又∠α=116°,∴∠2=64°,又∠1+∠2=90°,所以∠1=90°﹣64=26°,又∠β+∠1=180°,所以∠β=180°﹣∠1=154°.【点评】本题主要考查了互补,互余的概念,在图形中正确找出角之间的关系是关键.8.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=6,那么x=3C.如果x﹣3=y﹣3,那么x﹣y=0 D.如果mx=my,那么x=y【考点】等式的性质.【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【解答】解:A、如果s=ab,那么b=,当a=0时不成立,故A错误,B、如果x=6,那么x=12,故B错误,C、如果x﹣3=y﹣3,那么x﹣y=0,C正确,D、如果mx=my,那么x=y,如果m=0,式子不成立,故D错误.故选C.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.从点O引两条射线OA、OB,在OA、OB上分别截取OM=1cm,ON=1cm,则M、N 两点间的距离一定()A.小于1cm B.大于1cm C.等于1cm D.有最大值2cm【考点】两点间的距离.【专题】分类讨论.【分析】分类讨论:当OA与OB不共线时,根据三角形三边关系得到0<MN<2;当OA 与OB共线时,MN=OM+ON=2,所以0<MN≤2,然后对各选项进行判断.【解答】解:当OA与OB不共线时,0<MN<2,当OA与OB共线时,MN=OM+ON=1+1=2,所以M、N两点间的距离的最大值为2.故选D.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.注意分类讨论.10.把方程3x+去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)【考点】解一元一次方程.【分析】同时乘以各分母的最小公倍数,去除分母可得出答案.【解答】解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).故选:A.【点评】本题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.11.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【考点】数轴.【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.12.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82015的个位数字是()A.2 B.4 C.6 D.8【考点】尾数特征.【分析】易得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0,成周期性循环.那么让2015除以4看余数是几,得到相和的个位数字即可.【解答】解:2015÷4=503…3,循环了503次,还有3个个位数字为8,4,2,所以81+82+83+84+…+82015的和的个位数字是503×0+8+4+2=14.故81+82+83+84+…+82015的个位数字是4.故选:B.【点评】本题主要考查了数字的变化类﹣尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.二、填空题(本大题共6小题,每小题4分,共24分)13.有理数5.614精确到百分位的近似数为 5.61.【考点】近似数和有效数字.【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【解答】解:5.614可看到1在百分位上,后面的4不能进.所以有理数5.614精确到百分位的近似数为5.61.故答案为:5.61.【点评】本题考查精确度,精确到哪一位,即对下一位的数字进行四舍五入.14.若∠α的补角为76°28′,则∠α=103°32′.【考点】余角和补角;度分秒的换算.【专题】计算题.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.【点评】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.15.数轴上点A与B分别表示互为相反数的两个数,且点A在点B的左边,A,B之间的距离为8个单位,则A代表的数是﹣4.【考点】数轴;相反数.【分析】根据两数互为相反数,可用A表示B,再根据两点间的距离是大数减小数,可得关于A的方程,根据解方程,可得答案.【解答】解:由数轴上点A与B分别表示互为相反数的两个数,得B=﹣A.由点A在点B的左边,A、B之间的距离为7个单位,得﹣A﹣A=8.解得A=﹣4,故答案为:﹣4.【点评】本题考查了数轴,利用了相反数的关系:在一个数的前面加上负号就是这个数的相反数,还利用了数轴上两点间的距离是大数减小数.16.已知点C在直线AB上,若AC=4cm,BC=6cm,E、F分别为线段AC、BC的中点,则EF=5或1cm.【考点】两点间的距离.【分析】分类讨论点C在线段AB上,点C在线段AB的反向延长线上,根据中点分线段相等,可得AE与CE的关系,BF与CF的关系,可根据线段的和差,可得答案.【解答】解:点C在线段AB上,E、F分别为线段AC、BC的中点,CE=AE=AC=2cm,CF=BF=BC=3cm,EF=CE+CF=2+3=5cm;点C在线段AB的反向延长线上,E、F 分别为线段AC、BC的中点,CE=AE=AC=2cm ,CF=BF=BC=3cm , EF=CF ﹣CE=3﹣2=1cm , 故答案为:5cm 或1cm .【点评】本题考查了两点间的距离,分类讨论是解题关键.17.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是 100 元. 【考点】一元一次方程的应用.【分析】根据题意,找出相等关系为:进价×(1+20%)=200×60%,设未知数列方程求解. 【解答】解:设这件服装的进价为x 元,依题意得: (1+20%)x=200×60%, 解得:x=100,则这件服装的进价是100元. 故答案为100.【点评】此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=200×60%.18.点O 在直线AB 上,点A 1,A 2,A 3,…在射线OA 上,点B 1,B 2,B 3,…在射线OB 上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M 从O 点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O 为圆心的半圆匀速运动,即从O →A 1→B 1→B 2→A 2…按此规律,则动点M 到达A 10点处所需时间为 55π+10 秒.(结果保留π)【考点】规律型:图形的变化类.【分析】观察动点M 从O 点出发到A 4点,得到点M 在直线AB 上运动了4个单位长度,在以O 为圆心的半圆运动了(π1+π2+π3+π4)单位长度,然后可得到动点M 到达A 10点处运动的单位长度=4×2.5+(π1+π2+…+π10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π1+π2+π3+π4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π1+π2+…+π10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故答案为:55π+10【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出规律,再利用规律解决问题.也考查了圆的周长公式.三、解答题(本大题共5小题,共40分,解答时必须给出必要的演算过程或推理步骤)19.(1)计算:(﹣4)×(﹣3)+(﹣)﹣23(2)先化简,再求值:已知x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=.【考点】整式的加减—化简求值;有理数的混合运算.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=12﹣﹣8=3;(2)原式=x2﹣2x2+4y+2x2﹣2y=x2+2y,当x=﹣1,y=时,原式=1+1=2.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)4x﹣2=2x+4(2)﹣1=2+.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【解答】解:(1)方程移项合并得:2x=6, 解得:x=3;(2)方程去分母得:2(x+1)﹣4=8+2﹣x , 去括号得:2x+2﹣4=10﹣x , 移项合并得:3x=12, 解得:x=4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.某数学兴趣小组在用黑色围棋进行摆放图案的游戏中,一同学摆放了如下图案,请根据图中信息完成下列的问题:(1)填写下表:(2)第10个图形中棋子为 66 颗围棋;(3)该同学如果继续摆放下去,那么第n 个图案要用颗围棋;(4)如果该同学手上刚好有90颗围棋子,那么他按照这种规律从第①个图案摆放下去,是否可以摆放成完整的图案后刚好90颗围棋子一颗不剩?如果可以,那么刚好摆放完成几个完整的图案?如果不行,那么最多可以摆放多少个完整图案,还剩余几颗子?(只答结果,不说明理由)【考点】规律型:图形的变化类. 【专题】探究型.【分析】(1)由图可以得到表格中需要填写的数据;(2)由图可知每个图案需要的棋子数,从而可以求得第10个图形中的棋子数;(3)根据表格中的数据和图案,可以发现这些图形的规律,从而可以得到第n个图案需要的棋子数;(4)根据题意,可知排放的所有图案的棋子总数不大于90,从而可以解答本题.【解答】解:(1)由图可得,第一个图案3颗棋子,第二个图案6颗棋子,第三个图案10颗棋子.故答案为:6,10;(2)由图可得,第10个图案中的棋子为:1+2+3+4+5+6+7+8+9+10+11=66个,故答案为:66;(3)由图可知:第一个图案1+2颗棋子,第二个图案1+2+3颗棋子,第三个图案1+2+3+4颗棋子,故第n个图案的棋子为:1+2+3+…+(n+1)=颗,故答案为:;(4)不可以摆放成完整的图案,∵3+6+10+…+≤90,n为正整数,解得n=6,还剩余17个棋子,即最多可以摆放6个完整图案,还剩余17颗子.【点评】本题考查规律性:图形的变化类,解题的关键是明确题意,利用数形结合的思想发现其中的规律,找出所求问题需要的条件.22.油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人35人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片,如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【考点】一元一次方程的应用.【分析】可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(35﹣x)人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(35﹣x)人,根据题意可列方程:120x=2×80(35﹣x),解得:x=20,则35﹣x=15.答:生产圆形铁片的有20人,生产长方形铁片的有15人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.23.(1)如图1,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=140度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个方形的一个顶点重合放置,若OF平分∠DOB,那么OE平分∠AOC 吗?为什么?【考点】角的计算;余角和补角.【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB﹣∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3﹣(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=∠DOB和∠EOA=∠DOB=∠COA,从而得出答案.【解答】解:(1)∵两个图形是正方形,∴∠COD=90°,∠AOB=90°,∴∠COD+∠AOB=180°,∵∠AOD=40°,∴∠COB=∠COD+∠AOB﹣∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°①,∠1+∠3=60°②,又∠1+∠2+∠3=90°③,①+②﹣③得∠1=20°;(3)OE平分∠AOC,理由如下:∵∠COD=∠AOB,∴∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∵OF平分∠DOB,∴∠DOF=∠FOB=∠DOB,∴∠EOA=∠DOB=∠COA,∴OE平分∠AOC.【点评】此题考查了角的计算,用到的知识点是余角和补角,根据所给出的图形,找到角与角的关系是本题的关键.。
观么中学2015~2016年度第一学期七年级数学期末测试
(时间120分钟 满分150分)
班级 姓名 得分
一、选择题(共10小题,每小题4分,满分40分,在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)
1.我市2013年12月21日至24日每天的最高气温与最低气温如下表:
日期 12月21日
12月22日
12月23日
12月24日
最高气温 8℃ 7℃ 5℃ 6℃ 最低气温
-3℃
-5℃
-4℃
-2℃
则温差最大的一天是………………………………………………………………………………………【 】 A .12月21日 B .12月22日 C .12月23日 D .12月24日 2.如图1所示,A ,B 两点在数轴上,点A
对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】 A .-1
B .-2
C .-3
D .-4
3.与算式2
32
2
33++的运算结果相等的是…………………………………………………………【 】 A .3
3 B .3
2 C .5
3 D .6
3
4.化简)3
232)21(x --x (+的结果是……………………………………………………【 】 A .317+x - B .315+x - C .6
11
5x -- D .6115+x -
5.如下图,下列图形全部属于柱体的是……………………………………………………………………【 】
A B C D
6.如图2,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于……………【 】 A .30° B .45° C .50° D .60°
图2 图3
7.由四舍五入法得到的近似数3
10
8.8×,下列说法中正确的是………………………………………【 】
A .精确到十分位,有2个有效数字
B .精确到个位,有2个有效数字
C .精确到百位,有2个有效数字
D .精确到千位,有4个有效数字
8.如图3,下列说法中错误..
的是……………………………………………………………………………【 】 A .OA 的方向是东北方向 B .OB 的方向是北偏西60° C .OC 的方向是南偏西60° D .OD 的方向是南偏东60°
9.我市举行的青年歌手大奖赛今年共有a 人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的人数为x 人,则x 为( )。
……………………………………………………………………………【 】
A 、
3120%a ++ B 、(120%)3a ++ C 、 3
120%
a -+ D 、(120%)3a +-
10. 如图4,宽为50cm 的长方形图案由10个大小相等的小长方形拼成,其中一个小长方形的面积为【 】
A.4000cm 2
B. 600cm 2
C. 500cm 2
D. 400cm 2
二、填空题(本大题共8小题,每小题4分,满分32分)
11.已知∠α=36°14′25″,则∠α的余角的度数是_________ .
12.王老师每晚22:30都要看央视的电视节目,这一时刻钟面上时针与分针的夹角是 度.
13.单项式: 的系数是 次数是 。
14.()y x +-的相反数是 。
15.若 ,则 16.世界工程量最大的水利工程━━三峡工程今年6 月二期工程完工开始蓄水其混凝土浇筑量为5481700
立方米。
请用科学记数法表示5481700立方米,保留两个有效数字为:__ ______ 17.按下图所示的程序流程计算,若开始输入的值为3=x ,则最后输出的结果是____ .
18.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是 . 三、解答题(共78分)
19.计算下列各式(本题共2小题,每小题8分,共计16分)
(1))23(24)32(412)3(
22---×++÷÷ (2)24)75.337
811()1()21(25.032×++×÷----
否
将值给x ,再次运算
是
x
输入的值
计算2
)1(+x x 值大于100
输出结果
B 0
2
A
图1 图4
50c m
523
2b a π-5252=+x a =--x a 25
29
20.先化简再求值(8分)
其中,
21.解方程.(本题共2小题,每小题8分,共计16分)
(1) 3157146x x ---= (2)4
2
311212--=+-x x x
22.(8分) 如图所示,已知直线AB 上一点O,ο44=∠AOD ,ο32=∠BOC ,ο90=∠EOD ,OF 平分
COD ∠,求FOD ∠与EOB ∠的度数。
23.已知,如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM=6cm ,求CM 和AD 的长.(8分)
24.(10分)一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行
需要3小时,求两个城市之间的飞行路程?
25.(12分)一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
D C M B A A )3
123()31(22122y x y x x +-+--3
2
,2==y x D
A
F
C
B
O
E。