施密特-卡塞格林系统的优化设计
- 格式:pdf
- 大小:1.61 MB
- 文档页数:20
基于zemax的反射式系统的结构设计基于zemax的反射式系统的结构设计11。
球面和非球面22。
典型的反射系统32。
1 牛顿望远镜(抛物面镜)42.2 经典卡塞格林系统52。
3 里奇—克列基昂(R—C系统)62。
4 格里高里系统92。
5 马克苏托夫—卡塞格林式102。
6 施密特-卡塞格林系统142。
7 施密特弯月形卡塞格林162。
8 达尔—奇克汉卡塞格林162.9 霍顿—卡塞格林(H—C系统)172.10 阿古诺夫—卡塞格林182。
11 普雷斯曼-卡米歇尔卡塞格林192。
12 ”离轴”或”斜反射”反射镜卡塞格林202。
13 三反-卡塞格林(Three-mirror Cassegrain)203. 反射式的特点214. 参考与鸣谢215。
附录221。
球面和非球面球面只用一个参数即表面半径(或曲率)来定义。
球面折射强烈,球差明显。
若使表面形状自光轴向外越来越平坦,则可以逐渐减小折射角,最终使所有光线会聚到同一焦点。
对比:球面边缘较陡,非球面平坦,可校正球差(主要应用).非球面不能只用一个曲率来定义,因其局部曲率在其表面范围内变化,常用解析公式描述,有时也用表面内坐标点的矢高表示。
最普遍形式是旋转对称的非球面,矢高为:22i i z a r =+∑,其中,c 为顶点处基本曲率,k 为圆锥曲线常数,r 为垂直光轴方向的径向坐标;2i i a r 为非球面的高次项。
圆锥曲线常数k表面类型 0 球面 K 〈—1 双曲面 K=—1 抛物面 —1〈k<0 椭球面 k>0扁椭球面当非球面非旋转对称时,将其表示成双锥形表面形式或变形非球面形式.双锥形表面有沿正交方向的两个基本曲率和两个圆锥曲线常数;变形非球面在两个正交方向上还附加高次项。
非球面的另一个形式是超环面(即复曲面),超环面具有环形面包圈的形状。
当非球面的高次项为0,非球面采用旋转对称的圆锥曲面横截面形式,其性质:A.不论反射面还是折射面,圆锥曲面对于一组特定的共轭点无球差。
卡塞格林式离轴反射系统准直仪的设计与装调方法徐正奎1,王春兴1,王世锦2,王贵全1,蔡顺文1,李晓斌1,黄声1(1. 昆明物理研究所,云南昆明 650223;2. 重庆军代局驻昆明地区第一军代室,云南昆明 650032)摘要:根据生产需要,设计、生产了焦距为8m的卡塞格林式离轴反射系统准直仪,并构建先进装调方法精准装校,通过干涉图像和干涉条纹的判读,使卡式准直仪系统的成像质量接近设计水平,解决生产中准直仪最长焦距只有3m而无对应的产品所需空间频率的红外鉴别率测试靶板问题。
关键词:离轴反射系统;四杆靶;装调方法中图分类号:TP274 文献标识码:A 文章编号:1001-8891(2020)12-1164-06Design and Development of a Cassegrain Off-axis Reflection System CollimatorXU Zhengkui1,WANG Chunxing1,WANG Shijing2,WANG Guiquan1,CAI Shunwen1,LI Xiaobin1,HUANG Sheng1(1. Kunming Institute of Physics, Kunming 650223, China; 2. The First Military Commissary Department Garrisoned in Kunming ofChongqing Military Commissary Bureau, Kunming 650032, China)Abstract:We design and develop a Cassegrain off-axis reflection system collimator with a focal length of 8m according to production requirements and construct an advanced installation and adjustment method to accurately calibrate it. Through the interpretation of images and interference fringes, the imaging quality of the collimator system is found to be close to the designed value. We solve the problem of the infrared discrimination test target board in production because the longest focal length of the existing collimator focal length is 3m, and there is no corresponding spatial frequency required by the product.Key words:off-axis reflection system, four targets, alignment method0引言平行光管检测设备准直仪按光学透镜形式分为透射式系统和反射式系统。
施密特-卡塞格林系统的优化设计本次实验将使用到:polynomial aspheric surface, obscurations,apertures, solves, optimization, layouts, MTF plots。
本次实验是完成Schmidt-Cassegrain 及polynomial aspheric corrector plate。
这个设计是要在可见光谱中使用,需要一个10 inches的aperture 和10 inches 的back focus。
开始,先把primary corrector, System, General, 在aperture value 中键入10。
同在一个screen 把unit “Millimeters”改为“Inches”。
再把Wavelength 设为3个,分别为0.486,0.587,0.656,且0.587定为主波长。
也可以在wavelength 的screen 中按底部的select 键,选默认波长。
默认的field angle value,其值为0。
依序键入如下LED 表的相关数据,此时the primary corrector为MIRROR 球镜片。
2D图如下:现在加入第二个corrector,并且决定imagine plane 的位置。
输入如下的LDE,注意到primary corrector 的thickness 变为-18,比原先的-30小,这是因为要放second corrector 并考虑到其size 大小的因素。
在surface4 的radius 设定为variable,通过optimization, Zemax可以定下他的值。
先看看他的layout,应如下图所示。
调出merit function, reset 后,改变“Rings” option 到5。
The rings option 决定光线的sampling density(采样密度), default value 为3,此实验要求为5。
H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:光机系统设计实验名称:基于ZMAX的光机系统设计班级:0936203姓名:蔡海蛟学号:6090120331哈尔滨工业大学一.实验目的(1)熟悉并掌握ZMAX软件的使用(2)熟悉光学系统设计的步骤及方法(3)了解牛顿式望远镜和施密特—卡塞格林系统,并对其相差有一定了解(4)学会用ZMAX设计简单的光学系统,并对系统进行像质分析和系统优化二.基本原理(1)实验一、牛顿望远镜牛顿望远镜是最简单的用来矫正轴上像差的望远镜。
牛顿望远镜是由一个简单的抛物线形镜面组成的,而且除此之外别无它物。
抛物线很好地矫正了所有阶的球差,将望远镜使用在轴上系统,就没有其他的像差。
(2)实验二、带有非球面矫正器的施密特—卡塞格林系统施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
施-卡望远镜的设计是以伯恩哈德施密特的施密特摄星仪为基础:使用球面镜做主镜(沿袭施密特摄星仪的设计)以施密特修正板来改正球面像差承袭卡塞格林的设计,以凸面镜做次镜,施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
在施密特-卡塞格林系统,光通过薄的非球面校正透镜进入镜筒,然后接触球面主镜。
被球面主镜反射的光线折回镜筒开口中部的第二反射镜,然后再次被第二反射镜反射,光线通过镜筒内部中间的管子聚集在目镜形成图象。
三.系统结构(1)实验一、牛顿望远镜图一.牛顿望远镜原理图利用ZMAX设计牛顿望远镜:设计一个1000mm F/5的望远镜(及需要一个曲率半径为2000mm的镜面,和一个200mm 的孔径)。
移动光标到第一面,即光阑面的曲率半径列,输入-2000.0,负号表示为凹面。
现在在同一个面上输入厚度值-1000,这个负号表示通过镜面折射后,光线将往“后方”传递。
施密特-卡塞格林望远镜的设计(一)摘要 ZEMAX光学设计程序是一个完整的光学设计软件,包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。
ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。
ZEMAX能够模拟连续和非连续成像系统及非成像系统。
关键字:光学,模拟1.Zmax软件的介绍 ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。
ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其他软件不同的是 ZEMAX 的 CAD 转档程序都是双向的,如 IGES 、 STEP 、 SAT 等格式都可转入及转出。
而且 ZEMAX可仿真 Sequential 和 Non-Sequential 的成像系统和非成像系统, ZEMAX 当前有: SE 及 EE 两种版本。
序列性( Sequential )光线追迹大多数的成像系统都可由一组的光学表面来描述,光线按照表面的顺序进行追迹。
如相机镜头、望远镜镜头、显微镜镜头等。
ZEMAX 拥有很多优点,如光线追迹速度快、可以直接优化并进行公差计算。
ZEMAX 中的光学表面可以是反射面、折射面或绕射面,也可以创建因光学薄膜造成不同穿透率的光学面特性;表面之间的介质可以是等向性的,如玻璃或空气,也可以是任意的渐变折射率分布,折射率可以是位置、波长、温度或其它特性参数的函数。
同时也支持双折射材料,其折射率是偏振态和光线角度的函数。
在 ZEMAX 中所有描述表面的特性参数包括形状、折射、反射、折射率、渐变折射率、温度系数、穿透率和绕射阶数都可以自行定义。
非序列性( Non-Sequential )光线追迹很多重要的光学系统不能用 Sequential 光线追迹的模式描述,例如复杂的棱镜、光机、照明系统、微表面反射镜、非成像系统或任意形状的对象等,此外散射和杂散光也不能用序列性分析模式。
卡塞格林系统1.卡塞格林望远镜(Cassegrain telescope)由两块反射镜组成的一种反射望远镜,1672年为卡塞格林所发明。
反射镜中大的称为主镜,小的称为副镜。
通常在主镜中央开孔,成像于主镜后面。
它的焦点称为卡塞格林焦点。
有时也按图中虚线那样多加入一块斜平面镜,成像于侧面,这种卡塞格林望远镜,又称为耐司姆斯望远镜。
卡塞格林望远镜中,副镜不仅将像由F 移至F ,而且将它放大,副镜的放大率通常为2.5~5倍,由于主镜的相对口径一般为1/2.5~1/5,变为卡塞格林望远镜后,相对口径常为1/7~1/15,但也可以超出这个范围。
例如,有些校正场曲的卡塞格林望远镜,副镜与主镜的表面曲率半径相等,副镜的放大率仅约1.6倍;也有的卡塞格林望远镜副镜是平面镜。
此外,反射望远镜中的折轴望远镜,从光学系统来说,也是一种卡塞格林望远镜,由于要将像成到很远处,副镜的放大率常达到10倍以上。
卡塞格林望远镜的主、副镜面,可以有种种不同的形式,光学性能也随之而不同。
主要的形式有:主镜是旋转抛物面的,常称为经典的卡塞格林望远镜。
根据圆锥曲线的光学性质,副镜只要是以F 、F 为两焦点的旋转双曲面,则原来无球差地会聚到F 点的光线,经过这种副镜反射后,将无球差地会聚到F 点。
但这种望远镜有彗差,也有一定的像散和场曲。
一个主镜相对口径1/3、卡塞格林望远镜相对口径1/8、像成在主镜后面不远处的系统,在理想像平面(近轴光的像平面)上,若要求像的弥散不超过1,可用视场直径约为9。
平行于光轴的光满足等光程和正弦条件的卡塞格林望远镜,近似地说,也就是消除了三级球差和彗差的卡塞格林望远镜,称为里奇-克列基昂望远镜,简称R-C望远镜。
主镜是球面的,为了消除球差,副镜近似于旋转扁球面。
这种望远镜的优点是主镜加工比较容易,使用上的特点是可以去掉副镜,在主镜球心处加上改正透镜,转换成施密特望远镜。
德意志民主共和国陶登堡史瓦西天文台反射镜口径2米的望远镜,就是这种类型的。
卡塞格林望远镜的结构形式11种,主要是根据主镜和次镜面型及有无校正器来分的,以下就是这11种的类型及结构形式(主镜面型在前,次镜在后)。
1、Classical Cassegrain 抛物面双曲面2、Ritchey-Chretien 双曲面双曲面3、Dall-Kirkham 椭圆面球面4、Houghton-Cassegrain 双凸透镜+双凹透镜球面球面5、Schmit-Cassegrain 施密特校正器面型任意6、Maksutov-Cassegrain 弯月透镜球面球面7、Schmidt-meniscus Cassegrain施密特校正器+弯月透镜球面球面8、Mangin-Cassegrain 多个球面透镜球面球面9、Pressmann-Camichel 球面椭圆面10、Schiefspiegler 斜反射离轴11、Three-mirror Cassegrain 三片反射镜面型任意以下详细介绍这几种卡塞格林结构形式:1、Classical Cassegrain (经典的卡塞格林系统):"传统的"卡塞格林望远镜有抛物面镜的主镜,和双曲面的次镜将光线反射并穿过主镜中心的孔洞,折叠光学的设计使镜筒的长度紧缩。
在小望远镜和照相机的镜头,次镜通常安装在封闭望远镜镜筒的透明光学玻璃板上的光学平台。
这样的装置可以消除蜘蛛型支撑架造成的"星状"散射效应。
封闭镜筒虽然会造成集光量的损失,但镜筒可以保持干净,主镜也能得到保护。
它利用双曲面和抛物面反射的一些特性,凹面的抛物面反射镜可以将平行于光轴入射的所有光线汇聚在单一的点上-焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦点的光线反射至另一个焦点上。
这一类型望远镜的镜片在设计上会安放在共享一个焦点的位置上,以便光线能在双曲面镜的另一个焦点上成像以便观测,通常外部的目镜也会在这个点上。
抛物面的主镜将进入望远镜的平行光线反射并汇聚在焦点上,这个点也是双曲线面镜的一个焦点。
卡塞格林望远镜的结构形式11种,主要是根据主镜和次镜面型及有无校正器来分的,以下就是这11种的类型及结构形式(主镜面型在前,次镜在后)。
1、Classical Cassegrain 抛物面双曲面2、Ritchey-Chretien 双曲面双曲面3、Dall-Kirkham 椭圆面球面4、Houghton-Cassegrain 双凸透镜+双凹透镜球面球面5、Schmit-Cassegrain 施密特校正器面型任意6、Maksutov-Cassegrain 弯月透镜球面球面7、Schmidt-meniscus Cassegrain施密特校正器+弯月透镜球面球面8、Mangin-Cassegrain 多个球面透镜球面球面9、Pressmann-Camichel 球面椭圆面10、Schiefspiegler 斜反射离轴11、Three-mirror Cassegrain 三片反射镜面型任意以下详细介绍这几种卡塞格林结构形式:1、Classical Cassegrain (经典的卡塞格林系统):"传统的"卡塞格林望远镜有抛物面镜的主镜,和双曲面的次镜将光线反射并穿过主镜中心的孔洞,折叠光学的设计使镜筒的长度紧缩。
在小望远镜和照相机的镜头,次镜通常安装在封闭望远镜镜筒的透明光学玻璃板上的光学平台。
这样的装置可以消除蜘蛛型支撑架造成的"星状"散射效应。
封闭镜筒虽然会造成集光量的损失,但镜筒可以保持干净,主镜也能得到保护。
它利用双曲面和抛物面反射的一些特性,凹面的抛物面反射镜可以将平行于光轴入射的所有光线汇聚在单一的点上-焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦点的光线反射至另一个焦点上。
这一类型望远镜的镜片在设计上会安放在共享一个焦点的位置上,以便光线能在双曲面镜的另一个焦点上成像以便观测,通常外部的目镜也会在这个点上。
抛物面的主镜将进入望远镜的平行光线反射并汇聚在焦点上,这个点也是双曲线面镜的一个焦点。
施密特-卡塞格林镜筒组件Edge HD型施密特-卡塞格林镜筒组件使用手册•禁止使用裸眼和未妥善滤光的望远镜直接观测太阳,这将导致永久性的视力损伤。
•不要用望远镜来将太阳直接投影到任何平面上,聚焦的光束可能损坏望远镜内的光学元件。
•不要使用置于目镜前端的太阳滤光片,不要使用未经安全认证的赫歇尔棱镜天顶来观测太阳。
望远镜的聚焦作用将可能导致这些元件剧烈吸热和爆裂。
爆裂之后日光将毫无过滤的射入人眼导致损伤。
•望远镜不要疏于管理。
在操作时要有熟悉操作的成人在现场,尤其是在有小孩在场的情况下。
警告目 录安装安装目视后背 ………………………………………………… 01安装天顶镜 …………………………………………………… 01安装目镜 ……………………………………………………… 01计算放大倍率 ………………………………………………… 02安装光学寻星镜 ……………………………………………… 02基本使用校准寻星镜 …………………………………………………… 03调焦 …………………………………………………………… 03成像方向 ……………………………………………………… 03观测窍门 ……………………………………………………… 04望远镜维护光学器件护理和清洁 ............................................. 05光轴准直 (05)01安装安装目视后背目视后背是把其他附件连接到望远镜上的附件。
部分镜筒出厂时已经安装好目视后背,部分镜筒后面安装了一个防尘盖。
如果用户收到的镜筒未安装目视后背,请按下面的说明安装:1.移除镜筒后面的防尘盖。
2.把目视后背上的滚花压环顺时针拧到镜筒后面的外螺纹上。
3.把目视后背上的固定螺丝转到一个舒适的位置,继续顺时针转动滚花压环,直到目视后背固定在镜筒后面。
目视后背固定后,用户可以安装其他附件,比如目镜,天顶镜等。
移除目视后背,只需要简单的逆时针转动滚花压环,直到从镜筒后面完全脱离。
说明书目录• 不要直接利用裸眼或者是通过天文望远镜直视太阳(除非您已经有适当的太阳滤光镜)。
这将可能对您的眼睛造成永久且无法挽回的伤害。
• 任何时候都不能用望远镜把太阳投影到任何表面上。
内部聚集的热量可能损坏望远镜或望远镜上的附件。
• 任何时候都不能使用目镜端太阳滤光镜或赫歇尔棱镜天顶。
聚集在望远镜内部的热量可能导致这些设备出现裂缝或爆炸,使漏出的阳光直接照射到人眼。
• 任何时候都不能让望远镜处于无人管理的状态,或交给孩子以及不熟悉正确操作程序的成年人。
警告简介 ................................................................................. 01CPC 结构图...................................................................... 02组装 ................................................................................... 03手控器 ............................................................................. 06望远镜基础知识............................................................. 07天文学基础...................................................................... 09天体观测 ......................................................................... 12天体摄影 ........................................................................ 14望远镜维护 ..................................................................... 18可选配件 ......................................................................... 20附录 A –技术规格 ........................................................ 22附录B – 星图 (24)简介恭喜您购买了星特朗 CPC 天文望远镜! CPC GPS 引领了下一代计算机自动化望远镜。
施密特-卡塞格林系统的优化设计
本次实验将使用到:polynomial aspheric surface, obscurations,apertures, solves, optimization, layouts, MTF plots。
本次实验是完成Schmidt-Cassegrain 及polynomial aspheric corrector plate。
这个设计是要在可见光谱中使用,需要一个10 inches的aperture 和10 inches 的back focus。
开始,先把primary corrector, System, General, 在aperture value 中键入10。
同在一个screen 把unit “Millimeters”改为“Inches”。
再把Wavelength 设为3个,分别为0.486,0.587,0.656,且0.587定为主波长。
也可以在wavelength 的screen 中按底部的select 键,选默认波长。
默认的field angle value,其值为0。
依序键入如下LED 表的相关数据,此时the primary corrector为MIRROR 球镜片。
2D图如下:
现在加入第二个corrector,并且决定imagine plane 的位置。
输入如下的LDE,注意到primary corrector 的thickness 变为-18,比原先的-30小,这是因为要放second corrector 并考虑到其size 大小的因素。
在surface4 的radius 设定为variable,通过optimization, Zemax
可以定下他的值。
先看看他的layout,应如下图所示。
调出merit function, reset 后,改变“Rings” option 到5。
The rings option 决定光线的sampling density(采样密度), default value 为3,此实验要求为5。
执行optimization, 用Automatic 即可,你会发现merit function 的值为1.3,不是很理想,这是剩余的RMS波差所导致的。
关掉merit function,从system 中选Update All,
则secondary corrector 的radius 已变成41.83。
调出OPD图所示,发现其离焦且有球差,大概约有4 个wave aberration需要矫正。
改变surface 1 的surface type 从standard 改为“Even Asphere”,这种面型允许为非球面校正器指定多项式非球面系数,按OK。
回到surface 1 列中,往右移到4th Order Term, 把此项设为变量,6th, 8th 都设为变量后再次执行optimization。
评价函数将会下降,这是由于ZEMAX平衡了高阶球差。
把OPD plot update,其应如下图所示,你会发现spherical aberration已被大大地减少。
不同的三个波长值有不同的数量的球差, 这就是色差,下一步我们矫正色差。
依据经验,为了矫正色球差,我们需要用轴上颜色来平衡它。
这是一个常用的设计方法,即在同一种像差中,用低阶像差来平衡高阶像差。
色球差是一阶轴上色差的高阶分量。
为了引入轴上色差,我们将改变第一面,即校正器的前面的曲率(这也使校正板Plate易于装配,其原因我们此处不作讨论)。
现在设置第一面的半径为变量,再次优化(Tools,Optimization,Automatic)。
评价函数将会再次下降。
再看看update 后OPD plot 图,如下图所示
这就是我们所要设计的目的,残余的像差residual aberration 小于1/20波长。
现在我们打开视场角,调整设计,从system, field中,把field angle 的值设为3个,分别是0.0, 0.3, 0.5。
现在更新并查看OPD图,你将会在全视场看到大约1/2波长的彗差,我们只要再优化就可以很容易地改正它。
因为我们已改变了视场,我们必须重新创建评价函数。
这是非常重要的一点!你必须鉴别缺省的评价函数是建立在你所定义的波长和视场基础上的,如果你改变这些值,你必须重新创建评价函数。
复位merit function后把merit function的“Rings”改变为“4”后执行optimization。
则新的OPD如下图所示,虽有不同的field angle,但是所有的aberrations 却可以接受。
假设我们将要用这个望远镜来拍摄。
我们可能会对调制传递函数(MTF)感兴趣,它指明了像的对比是空间频率(通常以毫米的倒数为单位)的函数。
要看MTF图,可从主菜单中选择Analysis,MFT,FFT Modulation Transfer Function。
MTF显示如下图所示。
MTF图是一种非常有用的分析工具。
图中显示了所有已给定视场的切向和径向的响应。
但是,图中仍然有些错误。
一个有知识的设计者会认识到,所显示的数据是一个圆形光瞳的自相关。
真正的问题所在是我们还没有说明系统中的这几个通光孔径和遮挡,存在着由辅助镜面引起的遮挡,并且,在主反射面上还有一个缺口。
如果我们加入这些影响,性能会减低,特别是在中间的空间频率方面。
既然secondary corrector 放在primary 的前面中心位置上,则入射光一定有部分被挡住,并且在primary 上有个洞把成像的光放出去,此洞也需纳入考虑要改正这个分析时的缺点。
回到LDE,在曲面3的第一项中点两下,从Aperture types中选Circular Aperture,在Min Radius 中键入1.7,即入射光离光轴的半径需大于1.7 才可进入,此动作再处理primary 上的洞,同时把Max
Radius改为6。
辅助镜面上的遮挡较为复杂,在光学上它需要被放置在辅助镜面前面。
由于ZEMAX是按顺序地追迹光线的,我们必须将它放置在主反射面前。
做起来要比解释它容易得多,所以要有一点信心,努力进行下列步骤。
当仍然在第三面时,按下 Insert 键,在校正面和主反射面之间键插入一个新的面。
将新面(即第3面)的厚度从0改为20。
往上移一行,将第2面的厚度由60改为40。
对于主反射面来说,校正器与它的距离现在就是60,我们已经简单地加入了一个中介面。
调整surface 3 的Aperture type,设定为Circular Obscuration。
把Max Radius 订为2.5,按OK 后跳出。
同时设定surface 3 的semi-diameter 也是2.5,
update 后的MTF,你会发现performance 已降低,特别是在medial spatial fre q uencies 部分。