卡塞格林望远镜
- 格式:doc
- 大小:28.50 KB
- 文档页数:5
专利名称:一种卡塞格林式的天文望远镜专利类型:发明专利
发明人:房勇
申请号:CN202010858373.8
申请日:20200824
公开号:CN111897123A
公开日:
20201106
专利内容由知识产权出版社提供
摘要:本发明适用于天文望远镜技术领域,提供了一种卡塞格林式的天文望远镜,包括主镜筒组件,主镜筒组件内设有共光轴的主反射镜、次反射镜和纠正镜组;拉杆调节组件,用于调节次反射镜相对主反射镜的距离和角度;调节螺丝组件,用于调节主反射镜相对次反射镜的距离和角度;六点支撑组件;六点支撑组件转动设置在调节螺丝组件上;用于支撑主反射镜。
本发明采用了两片反射镜,有效的利用了空间,缩短光学系统的长度,结构也更为紧凑;通过采用独特的三点扩六点的方式,保证了镜片安装时各点受力均匀不会产生塌陷;通过拉杆调节组件和调节螺丝组件可以方便地改变主反射镜和次反射镜的位置、角度,进而达到调节光轴的目的。
申请人:嘉兴锐星光学仪器有限公司
地址:314000 浙江省嘉兴市经济技术开发区金穗路79号5幢3层
国籍:CN
代理机构:北京专赢专利代理有限公司
代理人:刘梅
更多信息请下载全文后查看。
1848年建成的辛辛那提天文台折射望远镜影像。
折射望远镜折射望远镜是一种使用透镜做物镜,利用屈光成像的望远镜。
折射望远镜最初的设计是用于侦查和天文观测,但也用于其他设备上,例如双筒望远镜、长焦距的远距照像摄影机镜头。
较常用的折射式望远镜的光学系统有两种形式:即伽利略式望远镜和开普勒式望远镜,其优点是成像比较鲜明、锐利;缺点是有色差。
发展历史折射镜是光学望远镜最早的形式,第一架实用的折射望远镜大约在1608年出现在荷兰,由三个不同的人,密德堡的眼镜制造者汉斯•李普希和杨森、阿克马的雅各•梅提斯,各自独立发明的。
伽利略在1609年5月左右在威尼斯偶然听说了这个发明,就依据自己对折射作用的理解,改进并做出了自己的望远镜。
然后伽利略将他的发明细节公诸于世,并且在全体的议会中将仪器向当时的威尼斯大公多纳托展示。
伽利略也许声称独立地发明了折射望远镜,而没有听到别人也做了相同的仪器。
折射望远镜的设计架折射望远镜有两个基本的元件,做为物镜的凸透镜和目镜,折射望远镜中的物镜,将光线折射或偏折到镜子的后端。
折射可以将平行的光线汇聚在焦点上,不是平行的光线则汇聚到焦平面上。
这样可以使远方的物体看得更亮、更清晰和更大。
折射望远镜有许多不同的像差和变形需要进行不同类型的修正。
伽利略式望远镜与伽利略设计出来的原始形式相同的望远镜都称为伽利略望远镜。
他使用凸透镜做物镜,和使用凹透镜的目镜。
伽利略望远镜的影像是正立的,但视野受到限制,有球面像差和色差,适眼距(eye relief)也不佳。
开普勒式望远镜开普勒式望远镜是开普勒改善了伽利略的设计,在1611 年发明的。
他改使用一个凸透镜作为目镜而不是伽利略原来用的一个凹透镜。
这样安排的好处是从目镜射出的光线是汇聚的,可以有较大的视野和更大的适眼距,但是看见的影像是倒转的。
这种设计可以达到更高的倍率,但需要很高的焦比才能克服单纯由物镜造成的畸变。
(约翰•赫维留建造焦长45米的折射镜。
指导手册8’’ LX90施密特-卡塞格林望远镜(带Autostar手控器)Meade施密特-卡塞格林光学系统在Meade LX90的施密特-卡塞格林设计中,光线从右边进入,通过一个两面都是非球面的薄透镜(改正透镜)到达球面主镜,再反射到一个凸面副镜。
这个凸面副镜使主镜的有效焦距加倍,然后光线通过主镜中心的通孔在焦平面上会聚。
Meade的LX90施密特-卡塞格林系统包括了一个8.25’’的大型主镜,可以比标准尺寸的主镜产生更大的可见视野。
要注意的是如果采用的不是大型主镜,上图的光线2会完全消失。
在相同口径的情况下,Meade的施密特-卡塞格林系统对偏轴光线的集光率比其他的同类系统高出10%。
主镜导光管内侧表面的光阑可以显著提高月球、行星和深空天体的对比度。
这些光阑可以有效地去除离轴的杂散光线。
说明:Meade的名称和图标是在美国和世界主要国家专利局注册的商标,LX90是Meade仪器公司的商标。
2000 Meade仪器公司英文版本:LX-90_manual.pdf如何创建自己的导向观测 (32)路标 (35)识别 (36)先进的高度/方位角对准 (37)浏览 (37)用LX90摄影 (38)可选的配件 (39)日常维护 (41)校准 (41)检查光学部件 (43)测量望远镜的运动 (43)Meade客户服务 (43)望远镜的规格 (44)附录A:极轴对准 (45)附录B:有用的图表 (48)附录C:训练马达 (49)天文学基础 (50)恒星的路标 (52)快速上手指南建议你将提供的三脚架安装到LX90之后再进行观测。
在室内将望远镜和Autostar安装好,借此熟悉各个组成部分及其操作,然后再将望远镜搬到室外的夜空下进行观测。
1、将三脚架从包装纸箱中取出,使之垂直放置,三脚架的腿部朝下,且处于折叠状态。
用手握住其中一条腿,使三脚架的全部重量落在另外两条腿上,然后轻轻地将它们完全拉开。
2、在三脚架每条腿的底部安装两个固定螺钉(一共是6个),使用这些螺钉来调节三脚架内部可伸缩部分的高度,然后将它们锁紧,但是不要用力过大。
Zemax光学设计:一个带校正器的卡塞格林望远镜的设计实例引言:折反射系统相比于折射系统的主要优点有:1.由于光路折叠而更紧凑;2.可以做到很大口径;3.可以很好校正色差,因为大多数的光焦度在反射镜而不是在透镜上。
4.可以做到从紫外到红外非常宽的波段。
5.反射镜与透镜的佩兹瓦尔曲面的曲率相反,可以实现较平的视场。
在两反射镜系统中,次镜构成的孔径的中心拦光(Central Obscuration),这不仅会造成能量的损失,也会使MTF的低频至中频部分随着中心拦光面积的增大而显著减小。
同时,因为两反射镜系统像的位置很接近于主镜位置,所以几乎所有的主镜都需要挖一个洞。
这个洞的大小限制了最大的像面尺寸,而且洞的大小必须远小于主镜的口径。
例如,通常中心拦光或洞的大小是主镜直径的30%,即线性拦光比为0.3,有效口径减小了0.09(0.32),此时MTF的中低频端变化不明显。
一般拦光比不要大于0.3。
典型的牛顿望远物镜仅用一个抛物凹面作为主反射镜,它可以形成一个直接用眼睛看的像。
在此基础上,添加一个凸双曲面的次反射镜,就成了卡塞格林望远镜(Cassegrain Telescope)。
由于主镜和次镜都是圆锥曲面,每个面上都没有球差,但是每个面都有彗差和像散,而这限制了可用的视场角。
另外,由于两个反射镜的半径不一样,还存在场曲。
设计仿真:.1.建立一个简单的卡塞格林望远镜系统.首先输入系统特性参数,如下:在系统通用对话框中设置孔径。
在孔径类型中选择“Entrance Pupil Diameter”,并根据设计要求输入“3800”;在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,设定0.365um、0.5876um和0.850um共3个波长,如下图:查看LDE:2D Layout:查看点列图:查看Ray Fan:从点列图和Ray Fan可以看出,这个系统有明显的彗差和像散。
.2.在卡塞格林望远镜中加入像面校正器.临近焦面的双片式透镜可以校正彗差和像散。
专利名称:一种卡塞格林望远镜装调机构及装调方法
专利类型:发明专利
发明人:钱俊宏,吴小龑,张蓉竹,刘国栋,杨晓敏,胡流森,刘婷,刘何伟
申请号:CN202011050503.1
申请日:20200929
公开号:CN112230440A
公开日:
20210115
专利内容由知识产权出版社提供
摘要:本发明公开了一种卡塞格林望远镜装调机构及装调方法,所述卡塞格林望远镜装调机构包括用于向卡塞格林望远镜的主镜出射光束的激光器、用于驱动所述激光器绕主镜的光轴转动的回转机构以及垂直设置于主镜的光轴上的受光件,所述激光器的出射光光轴平行于主镜的光轴,所述受光件可沿主镜的光轴方向移动;在对卡塞格林望远镜进行装调时,先使激光发射器发出的激光光轴平行于主镜的光轴,在主镜的背面一端设置一组受光件,旋转激光器和移动受光件,通过比对不同位置下受光件上由若干投射点组成圆形的圆心和直径的变化,来调整主镜与次镜之间的间距及倾角,减少球差、慧差和离焦等像差的影响,测量设备结构简单,无需使用干涉仪,操作方便。
申请人:四川大学,中国工程物理研究院流体物理研究所
地址:610000 四川省成都市一环路南一段24号
国籍:CN
代理机构:成都睿道专利代理事务所(普通合伙)
代理人:潘育敏
更多信息请下载全文后查看。
实验四施密特—卡塞格林望远镜系统(Schmidt-Cassegrain)一、实验目的1.掌握Zemax中非球面镜面的定义与输入方法2.掌握Zemax中利用非球面镜的优化像差;3.熟悉Zemax中MTF的使用。
二、实验内容1.设计一个带多项式非球面矫正器施密特—卡塞格林系统;2.优化该系统的色球差。
三、实验器材1.p c机一台2.Z emax软件3.Z emax Manual一册(英文版)四、实验过程施密特-卡塞格林望远镜是在1931年由德国光学家施密特发明的优秀广视野望远镜。
在镜筒最前端的光学元件是施密特修正板,这块板是经过研磨接近平行的非球面薄透镜,可以确实的改正与消除主镜造成的球面像差。
自从1960年代,星特朗(Celestron)公司介绍了这一型的望远镜之后,数以万计的业余天文学家已经购买和使用过施密特-卡塞格林望远镜,直径从20厘米(8英寸)到48厘米(16英寸)都有。
本次实验是设计一个带多项式非球面矫正器施密特—卡塞格林系统 (Schmidt-Cassegrain) 。
设计的使用范围为可见光谱。
我们将采用10英寸的孔径,10英寸的后焦距(从主镜的后面到焦点)。
输入数据:由于只有矫正板和主反射面,进行这个设计是比较简单的,因此我们开始时先在光阑后插入两个面。
选择“SYSTEM”,“GENERAL”,输入10作为孔径值。
在同一个屏幕上,将单位“毫米(Millimeters)”改为“英寸(Inches)”。
选择“SYSTEM”,“WAVELENGTHS”,得到“波长数据”屏幕,设置3个波长:486,587,和656,其中587为主波长。
现在,我们将使用缺省的视场角0度,在Lens Data Editor中输入数据,如下表。
光阑被放在主面曲率半径的中心,这是为了排除视场像差(如彗差),它是Schmidt设计的特点。
我们可以选择2D Layout演示一下图形以验证一切是否就绪。
现在我们将加入辅助镜面,并安放像平面。
一种校准rc和其他卡塞格林家族望远镜的
方法
校准RC(斜向圆柱镜)和其他卡塞格林家族望远镜的方法主要涉及以下几个步骤:
1. 确定光路:首先,需要确定望远镜的光路结构。
RC望远镜和其他卡塞格林家族望远镜具有复杂的光学结构,包括主镜、次镜以及其他组件。
对于
精确的校准,需要了解每个镜片的位置和角度。
2. 镜片调整:校准过程中,需要调整主镜和次镜的位置和角度。
确保主
镜的中心对准次镜,使之完美匹配。
可通过微调螺丝来调整镜片的位置。
3. 准直器校准:准直器是望远镜中的一个重要组件,用于校准光路。
通
过调整准直器的位置和角度,确保望远镜的光线准直。
可以使用目镜或者衍
射格等工具进行准直器的校准。
4. 减少光学偏差:为了减少光学偏差,可以使用校准器件,如波前传感器、自动反射器等,进行镜面修正。
这些校准器件可以有效检测并纠正光学
系统中的误差,提高望远镜的成像质量。
5. 反复测试和调整:校准过程需要经过多次测试和调整。
可以使用星图、天体观测和其他测试手段来检验望远镜的成像效果。
根据测试结果,反复调
整望远镜的各个参数,直到达到期望的校准效果。
总结起来,校准RC和其他卡塞格林家族望远镜的方法主要包括确定光路、镜片调整、准直器校准、减少光学偏差和反复测试和调整。
通过这些步骤,可以实现望远镜的精确校准,提高其成像质量和准确度。
卡塞格林望远物镜设计报告1. 引言卡塞格林望远物镜是一种常用于天文观测的光学系统。
本报告旨在介绍卡塞格林望远物镜的设计原理和关键参数,并给出一个实际设计案例。
2. 设计原理卡塞格林望远物镜是一种反射式望远镜,其基本原理是通过反射光学,将被观测的光线从主镜反射至副镜,再通过副镜反射至焦平面。
主要由主镜和副镜组成。
- 主镜:是卡塞格林望远物镜的核心元件,一般采用抛物面形状,其作用是将光线反射至副镜。
- 副镜:位于主镜焦点处,用于反射光线至焦平面。
副镜一般采用凹球面或椭球面形状。
3. 关键参数卡塞格林望远物镜的性能与以下关键参数密切相关:- 主镜直径:直径越大,光收集能力越强,分辨率越高。
- 主镜焦距:焦距决定物镜的放大倍数和视场大小。
- 副镜曲率半径:副镜曲率半径与主镜焦距、视场大小等参数相互关联。
- 副镜直径:副镜直径要足够大,以保证充分接收主镜反射的光线。
4. 设计案例我们以设计口径为200mm的卡塞格林望远物镜为例进行设计。
4.1 主镜设计根据经验公式,我们选择主镜直径为200mm,焦距为1000mm。
接着,我们根据主镜直径和焦距计算主镜的曲率半径。
根据抛物面公式,我们得到主镜曲率半径为2000mm。
进一步,我们可以绘制光线追迹图,校验主镜的设计是否能将光线反射到副镜。
4.2 副镜设计根据主镜焦距和视场要求,我们选择副镜焦距为200mm。
根据凹球面公式,我们可以计算出副镜的曲率半径为400mm。
我们还需要确定副镜直径,保证副镜能够接收到主镜反射的光线。
根据实际经验,我们可以将副镜直径设定为主镜直径的一半,即100mm。
4.3 光学系统检查在设计完成后,我们需要对整个卡塞格林望远物镜的光学系统进行检查。
可以通过光路追迹和MTF(调制传递函数)等方法,评估物镜的成像能力、分辨率、畸变等性能指标。
5. 结论本报告介绍了卡塞格林望远物镜的设计原理和关键参数,并给出了一个实际的设计案例。
卡塞格林望远物镜以其紧凑、高分辨率的特点,在天文观测领域得到了广泛应用。
卡塞格林望远镜的结构形式11种,主要是根据主镜和次镜面型及有无校正器来分的,以下就是这11种的类型及结构形式(主镜面型在前,次镜在后)。
1、Classical Cassegrain 抛物面双曲面2、Ritchey-Chretien 双曲面双曲面3、Dall-Kirkham 椭圆面球面4、Houghton-Cassegrain 双凸透镜+双凹透镜球面球面5、Schmit-Cassegrain 施密特校正器面型任意6、Maksutov-Cassegrain 弯月透镜球面球面7、Schmidt-meniscus Cassegrain施密特校正器+弯月透镜球面球面8、Mangin-Cassegrain 多个球面透镜球面球面9、Pressmann-Camichel 球面椭圆面10、Schiefspiegler 斜反射离轴11、Three-mirror Cassegrain 三片反射镜面型任意以下详细介绍这几种卡塞格林结构形式:1、Classical Cassegrain (经典的卡塞格林系统):"传统的"卡塞格林望远镜有抛物面镜的主镜,和双曲面的次镜将光线反射并穿过主镜中心的孔洞,折叠光学的设计使镜筒的长度紧缩。
在小望远镜和照相机的镜头,次镜通常安装在封闭望远镜镜筒的透明光学玻璃板上的光学平台。
这样的装置可以消除蜘蛛型支撑架造成的"星状"散射效应。
封闭镜筒虽然会造成集光量的损失,但镜筒可以保持干净,主镜也能得到保护。
它利用双曲面和抛物面反射的一些特性,凹面的抛物面反射镜可以将平行于光轴入射的所有光线汇聚在单一的点上-焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦点的光线反射至另一个焦点上。
这一类型望远镜的镜片在设计上会安放在共享一个焦点的位置上,以便光线能在双曲面镜的另一个焦点上成像以便观测,通常外部的目镜也会在这个点上。
抛物面的主镜将进入望远镜的平行光线反射并汇聚在焦点上,这个点也是双曲线面镜的一个焦点。
卡塞格林望远镜的结构形式11种,主要是根据主镜和次镜面型及有无校正器来分的,以下就是这11种的类型及结构形式(主镜面型在前,次镜在后)。
1、Classical Cassegrain 抛物面双曲面2、Ritchey-Chretien 双曲面双曲面3、Dall-Kirkham 椭圆面球面4、Houghton-Cassegrain 双凸透镜+双凹透镜球面球面5、Schmit-Cassegrain 施密特校正器面型任意6、Maksutov-Cassegrain 弯月透镜球面球面7、Schmidt-meniscus Cassegrain施密特校正器+弯月透镜球面球面8、Mangin-Cassegrain 多个球面透镜球面球面9、Pressmann-Camichel 球面椭圆面10、Schiefspiegler 斜反射离轴11、Three-mirror Cassegrain 三片反射镜面型任意以下详细介绍这几种卡塞格林结构形式:1、Classical Cassegrain (经典的卡塞格林系统):"传统的"卡塞格林望远镜有抛物面镜的主镜,和双曲面的次镜将光线反射并穿过主镜中心的孔洞,折叠光学的设计使镜筒的长度紧缩。
在小望远镜和照相机的镜头,次镜通常安装在封闭望远镜镜筒的透明光学玻璃板上的光学平台。
这样的装置可以消除蜘蛛型支撑架造成的"星状"散射效应。
封闭镜筒虽然会造成集光量的损失,但镜筒可以保持干净,主镜也能得到保护。
它利用双曲面和抛物面反射的一些特性,凹面的抛物面反射镜可以将平行于光轴入射的所有光线汇聚在单一的点上-焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦点的光线反射至另一个焦点上。
这一类型望远镜的镜片在设计上会安放在共享一个焦点的位置上,以便光线能在双曲面镜的另一个焦点上成像以便观测,通常外部的目镜也会在这个点上。
抛物面的主镜将进入望远镜的平行光线反射并汇聚在焦点上,这个点也是双曲线面镜的一个焦点。
施密特-卡塞格林镜筒组件Edge HD型施密特-卡塞格林镜筒组件使用手册•禁止使用裸眼和未妥善滤光的望远镜直接观测太阳,这将导致永久性的视力损伤。
•不要用望远镜来将太阳直接投影到任何平面上,聚焦的光束可能损坏望远镜内的光学元件。
•不要使用置于目镜前端的太阳滤光片,不要使用未经安全认证的赫歇尔棱镜天顶来观测太阳。
望远镜的聚焦作用将可能导致这些元件剧烈吸热和爆裂。
爆裂之后日光将毫无过滤的射入人眼导致损伤。
•望远镜不要疏于管理。
在操作时要有熟悉操作的成人在现场,尤其是在有小孩在场的情况下。
警告目 录安装安装目视后背 ………………………………………………… 01安装天顶镜 …………………………………………………… 01安装目镜 ……………………………………………………… 01计算放大倍率 ………………………………………………… 02安装光学寻星镜 ……………………………………………… 02基本使用校准寻星镜 …………………………………………………… 03调焦 …………………………………………………………… 03成像方向 ……………………………………………………… 03观测窍门 ……………………………………………………… 04望远镜维护光学器件护理和清洁 ............................................. 05光轴准直 (05)01安装安装目视后背目视后背是把其他附件连接到望远镜上的附件。
部分镜筒出厂时已经安装好目视后背,部分镜筒后面安装了一个防尘盖。
如果用户收到的镜筒未安装目视后背,请按下面的说明安装:1.移除镜筒后面的防尘盖。
2.把目视后背上的滚花压环顺时针拧到镜筒后面的外螺纹上。
3.把目视后背上的固定螺丝转到一个舒适的位置,继续顺时针转动滚花压环,直到目视后背固定在镜筒后面。
目视后背固定后,用户可以安装其他附件,比如目镜,天顶镜等。
移除目视后背,只需要简单的逆时针转动滚花压环,直到从镜筒后面完全脱离。
基于卡塞格林系统的望远物镜设计在望远镜的设计中,物镜是非常重要的一个组成部分。
物镜的设计好坏直接影响到望远镜的成像质量。
而卡塞格林系统是一种常见且广泛应用的望远镜设计系统,由于它能够有效减少色差和减小像差,因此被广泛应用于天文望远镜的设计中。
在进行望远物镜设计时,我们可以借助ZEMAX这个光学设计软件来进行仿真和优化。
下面介绍一下基于卡塞格林系统的望远物镜设计的一般流程。
1.确定设计目标:首先,我们需要明确望远物镜的设计目标,例如视场角、放大倍数、像差控制要求等。
这些目标将指导我们在后续的设计优化中进行权衡。
2.设定初始参数:根据设计目标,我们需要设定一些初始参数,例如物镜焦距、透镜数量、透镜曲率等。
这些参数将作为优化的初始值,通过反复迭代进行微调和优化。
3.光学系统设置:在ZEMAX中,我们可以建立光学系统模型,添加透镜元件,并设置透镜的表面特性和材料属性。
同时,还需要设定入射光源和接收面的位置和特性,以便进行成像仿真。
4.成像分析:通过ZEMAX提供的成像仿真功能,我们可以对光线经过透镜系统后的成像质量进行评估。
这包括检查像差情况、确定像散和色差等指标,以及评估成像质量。
5.优化设计:根据实际仿真结果,我们可以通过调整透镜的参数和几何形状来优化设计。
在ZEMAX中,可以通过参数化的方式对透镜的曲率、厚度等参数进行微调。
通过多次迭代优化,逐步改善成像质量。
6.结果分析:优化设计完成后,我们需要重新进行光学仿真,并对结果进行分析。
这包括观察成像质量是否满足设计要求,如视场平直度、成像质量等。
同时,还要对颜色像差进行分析,确保色差控制得到满足。
7.性能评估:在设计完成后,我们可以通过ZEMAX提供的光学分析工具对望远物镜的性能进行评估。
如成像分辨率、MTF曲线等。
通过这些评估结果,我们可以确定设计的优劣,并进行必要的改进和调整。
总结来说,基于卡塞格林系统的望远物镜设计是一个复杂而繁琐的过程。
ZEMAX作为光学设计软件,提供了强大的工具和功能,可以帮助我们进行光学仿真、优化和结果分析。
中心孔的卡塞格林系统结构说到“中心孔的卡塞格林系统结构”,嘿,这个名字听起来就有点儿像某种高科技的宇宙武器,对吧?但别担心,实际上它并不像你想象的那么神秘。
卡塞格林系统,简单来说,就是一种天文望远镜的设计。
你知道,我们通常看到的望远镜,要么是长长的一根管子,要么就是那种看起来像巨大的照相机。
可卡塞格林系统呢,它特别聪明,巧妙地利用了反射镜和透镜的组合,能让你在看天体的时候,不用费劲地调整角度,反而能看到更清晰、更详细的图像,简直是科学家和天文爱好者的福音。
这个“中心孔”是怎么回事呢?其实也不复杂。
卡塞格林系统的设计里,最有趣的地方就是它的“反射镜加透镜”组合。
它使用两个主要的反射镜,一个大一个小。
大反射镜就像望远镜的“眼睛”,负责把远处的光收集起来。
而那个小反射镜,则位于大反射镜的中心,负责把光线反射到望远镜的侧面——也就是那个我们说的“中心孔”位置。
你可能会问,为什么要弄个孔呢?这个孔有啥用呢?这个孔的作用可大了。
它就像是卡塞格林系统的“秘密武器”,能大大减少光的损失,还能让系统变得更紧凑、更高效。
为什么这么说呢?想象一下,如果没有这个孔,光线通过反射镜时可能会被浪费掉,或者受到不必要的干扰。
而有了中心孔,光线能直接通过反射镜的中间,不会被那些不必要的部分阻挡掉,效果自然就好得多。
巧妙的是,这个中心孔还让望远镜变得更加小巧和精致,不像传统的那种大而笨重的设计,放在天文台里,占地方不说,还不好搬动。
而卡塞格林系统,正好解决了这个问题,既能提供高质量的图像,又不至于让你的天文探索变得笨重难移。
这种设计的优势可能不太容易被察觉,毕竟大部分天文爱好者或普通人,最关注的可能还是望远镜能不能看到星星、能不能看到月亮上的坑坑洼洼,能不能让人拍出超级震撼的宇宙照片。
但仔细想想,卡塞格林系统的独特设计让这些一切变得更加简单、清晰,而且更高效。
你就可以想象,在使用这种望远镜的时候,你甚至不用担心那些繁琐的调试和调整,轻松对焦,清晰见远。
天文望远镜是观测天体的重要手段,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。
随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
从第一架光学望远镜到射电望远镜诞生的三百多年中,光学望远镜一直是天文观测最重要的工具,下面就对光学望远镜的发展作一个简单的介绍。
折射式望远镜:1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。
1609年,伽利略制作了一架口径4。
2厘米,长约1。
2米的望远镜。
他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。
伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。
现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。
所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。
从此,消色差折射望远镜完全取代了长镜身望远镜。
但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。
世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。
卡塞格林系统1.卡塞格林望远镜(Cassegrain telescope)由两块反射镜组成的一种反射望远镜,1672年为卡塞格林所发明。
反射镜中大的称为主镜,小的称为副镜。
通常在主镜中央开孔,成像于主镜后面。
它的焦点称为卡塞格林焦点。
有时也按图中虚线那样多加入一块斜平面镜,成像于侧面,这种卡塞格林望远镜,又称为耐司姆斯望远镜。
卡塞格林望远镜中,副镜不仅将像由F 移至F ,而且将它放大,副镜的放大率通常为2.5~5倍,由于主镜的相对口径一般为1/2.5~1/5,变为卡塞格林望远镜后,相对口径常为1/7~1/15,但也可以超出这个范围。
例如,有些校正场曲的卡塞格林望远镜,副镜与主镜的表面曲率半径相等,副镜的放大率仅约1.6倍;也有的卡塞格林望远镜副镜是平面镜。
此外,反射望远镜中的折轴望远镜,从光学系统来说,也是一种卡塞格林望远镜,由于要将像成到很远处,副镜的放大率常达到10倍以上。
卡塞格林望远镜的主、副镜面,可以有种种不同的形式,光学性能也随之而不同。
主要的形式有:主镜是旋转抛物面的,常称为经典的卡塞格林望远镜。
根据圆锥曲线的光学性质,副镜只要是以F 、F 为两焦点的旋转双曲面,则原来无球差地会聚到F 点的光线,经过这种副镜反射后,将无球差地会聚到F 点。
但这种望远镜有彗差,也有一定的像散和场曲。
一个主镜相对口径1/3、卡塞格林望远镜相对口径1/8、像成在主镜后面不远处的系统,在理想像平面(近轴光的像平面)上,若要求像的弥散不超过1,可用视场直径约为9。
平行于光轴的光满足等光程和正弦条件的卡塞格林望远镜,近似地说,也就是消除了三级球差和彗差的卡塞格林望远镜,称为里奇-克列基昂望远镜,简称R-C望远镜。
主镜是球面的,为了消除球差,副镜近似于旋转扁球面。
这种望远镜的优点是主镜加工比较容易,使用上的特点是可以去掉副镜,在主镜球心处加上改正透镜,转换成施密特望远镜。
德意志民主共和国陶登堡史瓦西天文台反射镜口径2米的望远镜,就是这种类型的。
这种望远镜的彗差很大,可用视场很小。
主镜相对口径为1/3、卡塞格林望远镜相对口径为1/8、像成在主镜后面不远处的这种望远镜,若要求像在理想像平面上的弥散不超过1,则可用视场直径约为13。
副镜是球面的,为了消除球差,主镜近似于旋转椭球面。
这种系统的优闶侨菀字圃飑o副镜的调整简单。
其像差大小介于抛物面主镜和球面主镜之间(较接近抛物面主镜)。
各种卡塞格林望远镜需要较大的视场的工作时,常在焦点前加入像场改正透镜。
在卡塞格林望远镜焦点处可以安置较大的终端设备,并不挡光,且观测操作也较方便。
对于一个兼具有主焦点系统、卡塞格林系统和折轴系统的望远镜,卡塞格林望远镜的相对口径是中等的,它适用于作中等光力、较大比例尺的照相和其他工作,一般在这里进行的主要工作有较大光谱仪的分光观测、直接照相和像增强器照相、光电测光和红外观测等。
2.天文望远镜的光学系统天文光学望远镜是观测天体的重要仪器之一。
望远镜的作用就是放大远处物体的张角,使人眼能看清角距更小的细节。
望远镜的另一个作用是把物镜收集到的比瞳孔直径(最大约8mm)粗得多的光束,送入人眼。
使观测者能看到原来看不到的暗弱物体。
望远镜由物镜和目镜两组镜头及其他配件组成。
通常按照物镜的种类,将望远镜的光学系统分为三类:折射系统、反射系统及折反射系统。
一、折射系统用透镜将光线会聚的系统就是折射系统。
早期的折射系统用一块单透镜制作,由于玻璃对不同颜色的光的折射率不同,会产生严重的色差。
为了克服色差引起的成像模糊,用不同折射率的玻璃可搭配成各种消色差的折射系统。
常见的有双胶合物镜、双分离物镜、三分离物镜等,分述于下:1、双胶合物镜这是一种常用的消色差望远物镜,用不同折射率的冕牌玻璃和火石玻璃搭配而成,当合理选配时可同时校正球差,色差及正弦差。
但由于热胶合会产生玻璃变形而影响精度,一般口径不宜超过80mm。
自从有了紫外固化冷胶后,胶合透镜的口径大大增大。
南京天文仪器研制中心的KP150SR,口径为150mm,为冷胶双胶合透镜,成像质量颇为理想。
但由于这种物镜不能校正轴外像差,视场角不宜太大,相对孔径也不宜过大。
双胶合物镜不能校正二级光谱,其值与焦距成正比,是个定值。
只有用特种火石玻璃做负透镜时,二级光谱可减少三分之一(例如ED镜头)。
如果莹石玻璃作正透镜,二级光谱可以再降低六分之一。
2、双分离物镜用于口径较大的望远镜物镜。
由于可以利用正负透镜之间的间隙设计,使带球差有所降低,但色球差依然不能校正,二级光谱反而有所增大,其他像差校正与双胶合透镜雷同。
但装备稍困难一些,对物镜框的要求高一些。
南京天文仪器研制中心的KP200R物镜即为双分离物镜。
3、三分离物镜由于可以任意选择镜面的曲率半径、透镜材料、透镜厚度及相互间隙,可以有利地校正色球差。
在相对孔径很小时,如果玻璃选择合适,是可以消除二级光谱的,我们将此类物镜称之为复消色差物镜。
三合透镜也可设计成天体照相物镜。
4、四片以上的物镜为了获得大口径、大相对孔径的透镜系统,满足拍摄和观测大视场天体的需要,可以设计不同组合的折射式天体照相物镜系统。
南京天文仪器研制中心的KPl50P及KP80P分别是口径为150mm及80mm的照相物镜。
特别是KPl50P(见下图),为了消除残余球差将第五面修成非球面,60视场像质优良(相对孔径1/4.5)但是,由于天体照相物镜的材料及制作费用都十分高,因此价格也十分可观。
以上折射系统仅是几种例子,根据使用者不同要求,还可有多种设计,像质也可十分优良二、反射系统反射望远镜在天文望远镜中应用十分广泛。
由于这种系统对玻璃材料在光学性能上没有特殊要求,光线不需透过材料本身,而重量较轻无色差又是反射镜的一大优点,因此大口径的望远镜都采用反射式。
但是反射物镜表面精度对光程的影响是双倍的,如果仅由一个反射表面来成像,则此表面所需的精确度(垂直入射光)比单个折射表面的精确度要高四倍。
可见反射表面磨制的要求是很高的。
再加上需经常重新镀反射面及部件组装、校正的困难,反射系统在科普望远镜中应用受到限制。
反射望远镜中常用的有牛顿系统、卡塞格林系统、格雷果里系统、折轴系统,等等。
现代的大型反射望远镜,大都通过镜面的变换,在同一个望远镜上得到不同的系统,以用于不同的观测项B。
下面分别介绍常用的几种系统:1、牛顿系统牛顿系统是反射系统中最简单的光学系统(见下图)。
为了消去球差,主镜一般制成抛物面。
但当相对孔径减小到1/12以下,主镜可制作为球面。
它的结构简单,磨制比较容易,成本低廉。
国内外爱好者自制的天文望远镜大多采用此系统。
但由于轴外像差较大,视场不宜做得过大,且眼望方向与镜筒指向方向不一致,使观测者寻星较为困难。
但是,相对孔径较大的抛物面牛顿系统,往往被采用作为口径较大的物镜系统,其像质优良,光力强对拍摄视场不大的视面天体十分合用。
2、经典卡塞格林系统及R-C系统经典卡塞格林系统的主镜为抛物面,副镜为双曲面(见下图),而R-C系统主镜为双曲面,副镜也是双曲面。
此二类系统在大望远镜制作中经常使用,光学质量甚佳。
由于主副镜均为非球面,加工难度甚大,制作成本高昂,再加上视场角较小,所以科普天文望远镜中不常用。
南京天文仪器研制中心的KP400K采用卡塞格林系统。
3、格雷高里系统这个系统也是由二个反射面组成(见下图),主镜仍为抛物面;而副镜为椭球面。
此系统形成正立像,其镜筒比卡塞格林及R-C系统的长一些。
在反射望远镜中,有时会设计成多个焦点,用以产生不同的相对孔径、视场角及焦距。
在大型望远镜设计中,在一个镜筒中分别留有主焦点、卡焦及折轴焦点。
而在科普仪器中将卡焦与牛顿焦点并存,对使用者大有益处。
例如南京天文仪器研制中心的KP350KⅣ型反射望远镜中,巧妙地用装插45。
反射镜来切换卡焦和牛顿焦点,从而使相对孔径分别为1/12和1/4.2,拓宽了望远镜的应用范围。
三、折反射望远镜此系统便于校正轴外像差,以球面镜为基础,加入适当的折射元件,用来校正球差,得以取得良好的光学质量。
应用最广泛的有施密特望远镜与马克苏托夫望远镜两类。
1、施密特系统及施密特-卡塞格林系统施密特系统由球面反射镜和施密特正镜组成(见下图),改正镜是一个透射元件(也有反射式施密特),其中一面是平面,另一面是非球面。
非球面的面形能够使中央的光束略有会聚,而边缘的光束略有发散,这样能使整个系统的球差得到很好的校正,且主镜不产生彗差、像散和畸变,而仅有场曲。
专业望远镜往往把接收器制成球面而得以消除场曲,它的大视场、优像质,在专业天文望远镜中得以青睐。
但是,施密特系统不能用于目视,在科普天文望远镜中甚少应用。
将施密特系统稍加改型,加一球面反射镜使成像在卡焦上,此系统即为施密特-卡塞格林系统。
这种系统在科普望远镜中应用很多。
南京天文仪器研制中心的KP300S即为此类型。
由于此系统除反射面外仅有一薄改正镜,因此色差很小,再加上改正镜封住镜筒。
克服了卡塞格林系统主镜裸露而易积尘的缺点。
特别需要指出的是,目前有些国外商家将仅有一平面封口玻璃的反射系统称之为"施-卡系统"是不正确的。
2、马克苏托夫系统和马克苏托夫-卡塞格林系统马克苏托夫望远镜系统由球面反射主镜和负弯月形透镜组成。
在一定条件下,弯月形副镜可不产生色差,且能补偿球面主镜所产生的球差。
此外,光阑和厚透镜的位置接近于主镜的球心,产生的轴外像差很小。
由于全部光学表面均为球面,加工比较容易。
但口径增大时,厚透镜大而重很不利,且此系统与施密特系统一样而无法目视。
科普望远镜中用的马克苏托夫望远镜一般是指马克苏托夫-卡塞格林式望远镜(见上图)。
加一球面反射镜使成像在卡焦。
此系统像质优良,且光学零件表面均为球面,容易加工,较易装、校,在小型天文望远镜中时有应用。
南京天文仪器研制中心的KPl20M(120望远镜)及KPl60M均采用此系统。
除上述较著名的折反射望远镜的物镜光学系统外,尚有一些多种结构型式,成像质量也很好,不一一赘述。