过抛物线焦点的直线
- 格式:doc
- 大小:168.00 KB
- 文档页数:4
抛物线与方程【知识讲解】 1、定义平面内,到定点的距离与到定直线距离相等的点的轨迹(定点不在定直线上).其中定点称为抛物线的焦点,定直线称为抛物线的准线.【注】若定点在直线上,则轨迹为过该点垂直于直线的一条直线.2、抛物线的方程及其简单性质3、通径过抛物线的焦点F 作直线⊥l x 轴,交抛物线22y px =于,A B 两点,弦长2=AB p ,此时的弦长称为通径,此为所有的焦点弦中最短的弦.4、焦点弦的性质(1)过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,则①12p AF x =+,22p BF x =+;②12x x ⋅=定值24p ,12y y ⋅=定值2p -;③11||||FA FB +=定值2p ;④()1221122p x y x y y y +=-+. (2)过抛物线()220y px p =>的焦点F 作倾斜角为θ(斜率为k )的直线交抛物线于,A B (A 在B 上方)两点,则 ①1cos p A F θ=-上;②1cos p B F θ=+下;③2222s 1i 1n p k AB p θ⎛⎫+ =⎪⎝⎭=. (3)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线l 的垂线,垂足分别为,P Q ,设AB 中点为M ,过M 作准线的垂线,垂足为N ,则①AN BN ⊥;②PF QF ⊥;③NF AB ⊥;④PF AN ⊥;⑤QF BN ⊥;⑥以AB 为直径的圆与准线相切,切点即为N ; ⑦以()AF BF 为直径的圆与y 轴相切;⑧24PQ AF BF =; 24PQF APF BQF S S S ∆∆∆=⋅;⑨232sin ABQPp S θ=四边形. (4)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线l 的垂线,垂足分别为,P Q ,准线l 与x 轴交于H 点,O①AHF BHF ∠=∠; ②,,A O Q 三点共线; ③,,B O P 三点共线;(5)过抛物线()220y px p =>的焦点F 作直线1l 交抛物 线于,A B 两点,线段AB 的垂直平分线交x 轴于E 点,则12EF AB =. (6)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,G 为准线上的一动点,且直线GA 、GF 、GB 的斜率均存在,则直线GA 、GF 、GB 的斜率成等差数列,即2GA GB GF k k k +=.5、过点()(),00M m m >的直线交抛物线()220y px p =>于()()1122,,,A x y B x y 两点,则 ①12x x ⋅=定值2m ;②12y y ⋅=定值2pm -; ③2OA OB m p ⊥⇔=;④m p =时,2211||||MA MB +=定值21p . 6、设点是抛物线()220y px p =>的焦点,12,,,n P P P 是抛物线上的n 个不同的点,若120n FP FP FP +++=,则12n FP FP FP np +++=.【典型例题】例1、已知动点M 的坐标满足方程3412x y +-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 圆【变式】已知动点M 的坐标满足方程3412x y =+-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 直线例2、点P 与点()20F ,的距离比它到直线40x +=的距离小2,则P 的轨迹方程为_______.【变式】动圆M 与定直线2y =相切且与定圆C :22(3)1x y ++=相外切,则动圆圆心M 的轨迹方程为_______.【变式2】到y 轴的距离比到点()2,0F 的距离小2的动点P 的轨迹方程为_______.例3、抛物线24y x =的焦点坐标为_______.【变式】1【2014上海】若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为_______.【变式2】抛物线C 恒过定点()0,2A ,C 的准线为轴,则C 的顶点M 的轨迹方程为_______.例4、在抛物线24y x =上一点P ,使它到定点()2,2M 和焦点F 的距离之和最小,并求出距离之和的最小值.【变式1】设P 是抛物线28y x =上的一个动点,则点P 到直线4360x y -+=与点P 到y 轴的距离之和的最小值为________.【变式2】设P 是抛物线24y x =上的一个动点.(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值; (2)求点P 到直线220x y ++=的距离d 与点P 到抛物线焦点F 距离之和的最小值.【变式3】已知FAB ∆,点F 的坐标为(1,0),点A 、B 分别在图中抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,那么FAB ∆的周长的取值范围为 .例5、已知抛物线26y x =上存在三点,,A B C ,且ABC ∆的重心为抛物线的焦点为F ,则=FA FB FC ++_______.【变式】已知抛物线26y x =的焦点为F ,若该抛物线上存在四点123P P P 、、、4P ,满足1234=0FP FP FP FP +++,则1234=FP FP FP FP +++_______.例6、直线l 过()1,2A ,且与抛物线212y x =交于,M N 两点,且MA AN =,则直线l 的方程为_________;MN =_______.例7、抛物线24y x =的焦点为F ,若过F 点的直线与抛物线相交于,M N 两点,若4FM FN =-,则直线MN 的斜率为_______.【变式】【2014新课标】已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =, 则QF =_______.例8、过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且1021=+x x ,则=AB _____.【变式1】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点()02,M y ,若点M 到该抛物线焦点的距离为3,则OM =_____.【变式2】过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且10AB =,则ABO ∆重心的横坐标为_____.【变式3】过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且128y y +=,则=AB _____.例9、抛物线()220y px p =>的动弦AB 长为()2a a p ≥,求弦中点M 到y 轴的最短距离.【变式】抛物线()220y px p =>的动弦AB 长为()02a a p <<,求弦中点M 到y 轴的最短距离.例10、若抛物线2:1C y ax =-上存在关于直线20x y -=对称两点A 和B ,求实数a 的取值范围.例11、【2014四川】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是____.例12、已知抛物线()220y px p =>,过定点(),0p 作两条互相垂直的直线12l l 、,1l 与抛物线交于,P Q 两点,2l 与抛物线交于,M N 两点,设1l 的斜率为k ,若已知弦PQ 的中垂线在y 轴上的截距为32p pk k+,则弦MN 的中垂线在y 轴上的截距为__________.例13、设M 为抛物线2:4(0)C x py p =>准线上的任意一点,过点M 作曲线C 的两条切线,设切点为,A B .直线AB 是否过定点?如果是,求出该定点,如果不是,请说明理由.例14、过抛物线()220y px p =>的焦点F 作相互垂直的两条直线12,l l ,抛物线与1l 交于点12,,P P 与2l 交于点12,Q Q .证明:无论如何取直线12,l l ,都有121211PP Q Q +为一常数.例15、抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B . (1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.【变式1】已知定点(2,0)F ,直线:2l x =-,点P 为坐标平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,且FQ PF PQ ⊥+().设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 的直线1l 与曲线C 有两个不同的交点A 、B ,求证:111||||2AF BF +=; (3)记OA 与OB 的夹角为θ(O 为坐标原点,A 、B 为(2)中的两点),求cos θ的取值范围.11()22,B x y ,且OA OB ⊥.(1)证明21y y ⋅和12x x ⋅均为定值; (2)证明直线l 恒过定点P ; (3)求AB 的中点M 的轨迹方程;(4)过原点作AB 的垂线,垂足为N ,求N 的轨迹方程.(5)对于C 上除原点外的任意一定点()00,Q x y ,若仍有PA PB ⊥,请问是否还有直线l 恒过定点,若是,请求出定点'P ;若否,请说明理由.【变式3】设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的动直线交抛物线C 于点11(,)A x y ,22(,)B x y 且124y y =-.(1)求抛物线C 的方程;(2)若()2OE OA OB =+(O 为坐标原点),且点E 在抛物线C 上,求直线倾斜角. (3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证: 当0k 为定值时,12k k +也为定值.例16、在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程(2)设斜率为k 的直线过定点()2,1P -,求直线与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.11(1)当直线过点(),0M p 时,证明21y y ⋅为定值;(2)如果直线过点(),0M p ,过点M 再作一条与直线垂直的直线l '交抛物线C 于两个不同点D 、E .设线段AB 的中点为P ,线段DE 的中点为Q ,记线段PQ 的中点为N .问是否存在一条直线和一个定点,使得点N 到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.例18、动圆C 过定点F ,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.设圆心C 的轨迹Γ的程为()0,=y x F (1)求()0,=y x F ;(2)曲线Γ上的一定点()00,y x P (0y ≠0) ,方向向量()p y d -=,0的直线(不过P 点)与曲线Γ交与A 、B 两点,设直线PA 与PB 的斜率分别为PA k ,PB k ,计算PB PA k k +;(3)曲线Γ上的两个定点()000,y x P 、⎪⎭⎫ ⎝⎛''000,y x Q ,分别过点00,Q P 作倾斜角互补的两条直线N Q M P 00,分别与曲线Γ交于N M ,两点,求证直线MN 的斜率为定值.例19、已知抛物线()2:20C y px p =>和:M 228120x y x +-+=,过抛物线C 上一点()()000,0P x y y ≥作两条直线与M 相切与,A B 两点,圆心M 到抛物线准线的距离为92. (1)求抛物线C 的方程;(2)当P 点坐标为()2,2时,求直线AB 的方程;(3)设切线PA 与PB 的斜率分别为12,k k ,且1212k k ⋅=,求点()00,P x y 的坐标.例20、过抛物线()220y px p =>的对称轴上一点()(),00A a a >的直线与抛物线交于,M N 两点,自,M N 向直线:l x a =-作垂线,垂足分别为1M 、1N . (1)当2pa =时,求证:11AM AN ⊥; (2)记1AMM ∆、11AM N ∆、1ANN ∆的面积分别为123,,S S S ,是否存在实数λ,使得对任意的,都有2213S S S λ=成立,若存在,求出λ的值;若不存在,说明理由.。
证明抛物线焦点弦的18个结论重庆市开县临江中学张帮军2011.08/复习备考【内容摘要】关于抛物线的焦点弦到底有哪些结论呢?总结一下有四大类共18个结论,第一类是常见的基本结论;第二类是与圆有关的结论;第三类是由焦点弦得出有关直线垂直的结论;第四类是由焦点弦得出有关直线过定点的结论。
【关键词】证明抛物线焦点弦现在通过下面的例题来证明这些结论。
例:过抛物线y 2=2px (p >0)的焦点F 的一条直线AB 和此抛物线相交于A ,B 两点(α是直线AB 的倾斜角),准线l 的方程:x =-p 2,设点A (x 1,y 1),B(x 2,y 2),则有关抛物线的焦点弦有以下八个基本结论:(1)x 1x 2=p 24;(2)y 1y 2=-p 2;(3)|AF |=x 1+p 2;|BF |=x 2+p2(4)|AB |=x 1+x 2+p ;(5)|AB |=2p sin α;(6)|AF||BF|=p 2sin 2α;(7);1|AF |+1|BF |=2p(8)S △AOB =p22sin α证明:如图若α≠π2,则k =tan α因为点F(p 2,0),所以设直线AB 的方程为y =k (x -p 2)由y =k (x -p 2)y 2=2p px得k 2x 2-p (k 2+2)x +k 2p 24=0由根与系数的关系得:x 1x 2=p 24;x 1+x 2=p (k 2+2)k2∴(1)式得证∵A ,B 两点都在直线y 2=2px 上∴y 12=2px 1;y 22=2px 2∴(y 1y 2)2=4p 2x 1x 2=p 4∵y 1y 2<0,∴y 1y 2=-p 2即(2)式得证过点A ,B 分别作AA 1,BB 1与直线l 垂直,垂足为A 1,B 1即A 1(-p 2,y 1),B 1(-p 2,y 2)由抛物线定义知|AF |=|AA 1|=x 1+p 2;|BF |=|BB 1|=x 2+p 2即(3)式得证∵|AB |=|AF |+|BF |=x 1+x 2+p ∴(4)式得证∵x 1+x 2=p (k 2+2)k2,k =tan α∴|AB |=x 1+x 2+p =2p (k 2+1)k 2=2p (tan 2α+1)tan 2α=2p sin 2α即(5)式得证∵|AF ||BF |=(x 1+p 2)·(x 2+p 2)=x 1·x 2+p 2(x 1+x 2)+p 24=p 2(x 1+x 2+p )=p 2·2p sin 2α=p 2sin 2α∴(6)式得证∵1|AF |+1|BF |=|AF |+|BF ||AF |·|BF |=|AB ||AF |·|BF |=2psin 2α·sin 2αp 2=2p∴(7)式得证∵点O 到直线AB 的距离d 就是△AOB 的高∴h =d =p|k|21+k2姨=p sin α2∴S △AOB =12|AB|·h =12·2psin 2αp sin α2=p 22sin α∴(8)式得证下面来探究焦点弦与圆有关的四条结论:(1)以AB 为直径的圆M 与准线相切;(2)以AF 为直径的圆C 与y 轴准线相切;(3)以BF 为直径的圆D 与y 轴准线相切;(4)分别以AB ,AF ,BF 为直径的圆关系有:圆C 与圆D 外切;圆C 与圆D 既与y 轴相切又圆M 相内切。
抛物线过焦点的直线的结论
抛物线过其焦点的直线有一些特殊的性质。
首先,我们知道焦点是抛物线的一个重要特征点,它位于抛物线的对称轴上,并且具有一定的几何意义。
当一条直线通过抛物线的焦点时,我们可以推导出以下结论:
1. 直线与抛物线相交于两个点,这两个点在直线上对称于焦点。
这是因为抛物线的对称性质保证了直线与抛物线的交点在直线上对称。
2. 这两个交点到焦点的距离相等。
这是由于直线与抛物线的交点在直线上对称于焦点,根据对称性质可以得出。
3. 直线与抛物线的切线重合于焦点。
这是因为切线是经过抛物线上一点且与抛物线相切的直线,而通过焦点的直线也必然通过抛物线上的点,并且与抛物线相交于该点。
这些结论可以用来解决一些几何问题。
例如,可以利用这些性质确定抛物线与直线的交点位置,或者利用切线重合于焦点的性质来证明某些几何问题。
总之,抛物线过焦点的直线具有一些特殊的性质,通过利用这些性质,我们可以得出一些有关抛物线与直线交点及切线的重要结论。
性质:过抛物线的焦点的一条直线和抛物线相交,两个交点的纵坐标分别为,则。
证明:由题意知,直线若为x轴时,与题意不符。
(1)当过焦点的直线不垂直于x轴时,设方程为,即,代入方程中得。
设此方程的两根为,由韦达定理得。
(2)当直线与x轴垂直时,直线方程为,代入得,由韦达定理得。
例1、过抛物线焦点的直线与抛物线相交于两点,求证:抛物线在这两点的切线互相垂直。
分析:过抛物线上的任一点()的切线方程为。
证明:设抛物线方程为,过焦点的直线与抛物线交点A (),B()两点,两切线交于点T。
则切线TA与TB的方程分别为,,它们的斜率分别为。
由以上性质易得,故两切线互相垂直。
例2、过抛物线焦点F的一条直线与它交于P、Q两点,过P和抛物线的顶点的直线交准线于M。
求证:直线MQ平行于抛物线的对称轴。
证明:因抛物线的准线方程为,设F,P,,M,由题意知P、Q、M三点共线,直线方程为。
当时,,由以上性质得,故点M的纵坐标等于点Q的纵坐标,即直线MQ平行于抛物线的对称轴。
例3、过抛物线焦点F的一条直线交抛物线于P、Q两点,过点P作准线的垂线垂足为S,求证:S、O、Q三点共线。
证明:如图,设P(),Q(),则。
故线段OQ的斜率。
又因,,故S的坐标为。
设SO的斜率为,则,于是S、O、Q三点共线。
例4、过抛物线的焦点F,作一条直线垂直于它的对称轴,且与抛物线相交于两点,线段叫做抛物线的通径。
求通径的长。
解析:设(),()。
因直线过焦点F且垂直于对称轴,故,由本文讲的性质知,故。
DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
圆锥曲线中抛物线的有关结论山东省德州市实验中学 肖成荣由于抛物线的离心率是常数,导致了许多自身具有的规律性,再加上抛物线的方程比较简单,所以灵活性就更加显现,了解了抛物线的规律性后在处理抛物线的相关问题时会起到事半功倍的效果。
下面就抛物线的结论作以归整,供参考! 一、焦点)0,2(pF 处的结论 1、焦半径长:),(11y x A ,)0,2(p F ,2||1p x AF +=;2、焦点弦长:),(11y x A 、),(22y x B 在抛物线上,且AB 过焦点F ,则p x x AB ++=21||,或θ2sin 2||pAB =(θ为直线l 与抛物线对称轴的夹角);3、过焦点的直线与抛物线相交于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为M 、N ,MN 的中点为G 。
(1)两相切:①以焦半径AF 为直径的圆与y 轴相切;②以焦点弦AB 为直径的圆与抛物线的准线相切.(2)三直角:①∠AGB ②090=∠MFN ③GF (3)六定值:),(11y x A 、),(22y x B 的乘积是定值:21x x =243p OB OA -=⋅;②n BF m AF ==,mn GF =||.③22sin AOBp S θ∆= 二、点)0,(p D 处的结论例:抛物线px y 22=上的点到)0,(a A 的最近距离是多少?结论:)0,(p D 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点,)0,(a A 在)0,(p D 左边顶点到点)0,(a A 的距离最近,右边横坐标为p a -的那两个抛物线上的点到点)0,(a A 的距离最近. 三、点)0,2(p E 处的结论B A ,是抛物线)0(22>=p px y 上的两点,OB OA ⊥,),(11y x A ,),(22y x B ,则ⅰ.2214p x x =,2214p y y -=;ⅱ.直线AB 过定点)0,2(p ;ⅲ.求AB 中点的轨迹方程;ⅳ.过O 向AB 引垂线,求垂足T 的轨迹方程;ⅴ.求AOB ∆面积的最小值.结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p E .(2)2214p x x =,2214p y y -=.四、准线上的有关结论过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。
过抛物线的焦点的直线结论过抛物线的焦点的直线结论是指,过抛物线的焦点的任意一条直线都将把抛物线分成两部分,其中一部分在直线上方,另一部分在直线下方,并且这两部分之间的距离将会相等。
在数学中,抛物线是一种二次曲线,其形状类似于一个碗或者一个反弓形状。
抛物线有两个重要的焦点,它们分布在抛物线顶部的两侧,并且抛物线的对称轴垂直于两个焦点之间的线段。
抛物线的著名性质之一就是:过抛物线焦点的任意一条直线都将抛物线划分成两个部分。
其中一部分在直线上方,另一部分在直线下方,两部分之间的距离相等。
把这个性质定义成一个定理,可以用以下方式表示:定理:过抛物线焦点的任意一条直线将抛物线分成两部分,其中一部分在直线上方,另一部分在直线下方,两部分之间的距离相等。
证明:我们考虑从物理角度来证明这个定理。
首先,我们将把抛物线看做一条运动的路径,然后将它投射到一个竖直平面上。
假设一个物体从抛物线的顶部沿着该路径运动,以可控的速度向下运动。
当物体到达抛物线的任意一点时,它将具有一个具体的速度和无穷小位移量(如果我们将时间离散化)。
我们现在要考虑的是,假设我们有一条直线穿过抛物线的焦点。
我们必须证明,这条直线将把抛物线分成两个部分,其中一部分在直线上方,另一部分在直线下方,两部分之间的距离相等。
为了证明这个定理,我们首先需要证明以下事实:沿着任意直角三角形的斜边下降时,其投影物将向着斜边的中垂线移动。
为了理解这个事实,让我们考虑一个直角三角形ABC,其中∠B = 90°。
假设我们将其放在一个水平面上,让A和B分别靠在垂直于地面的两面墙上。
如果我们将C拉向地面,使得三角形倾斜,那么C将移动到斜边上,同时在地面上留下一个投影C'。
当我们继续往下拉C时,它将离斜边越来越近,而C'将在墙上沿着一条垂直于斜边的线向下移动。
现在,假设我们将我们的注意力转向一个过抛物线焦点的直线。
这条直线至少与抛物线上的一个点相交。
抛物线中过焦点的两条互相垂直的直线的结论The question you raised is about the conclusion regarding two mutually perpendicular lines passing through the focus of a parabola.In order to understand this concept, let's first recall some properties of a parabola. A parabola is a curve formed by the intersection of a cone and a plane parallel to one of its generating lines. It has several key elements: vertex, focus, directrix, axis, and latus rectum.When we have a parabola with its equation in standard form (y^2 = 4ax or x^2 = 4ay), we can determine various characteristics. Among them, the focus is an important point on the axis of symmetry. For the parabola with equation y^2 = 4ax, the focus F is located at (a/4, 0), while for x^2 = 4ay, it is located at (0, a/4).Now let's move on to discussing two mutually perpendicular lines passing through the focus. We can take any line thatpasses through the focus F and intersects the parabola at two distinct points P and Q.Firstly, let's consider Line L1 passing through F and P. Since P lies on the parabola, its coordinates can bewritten as (x1, y1). By using either equation of the parabola mentioned above and solving for x1 or y1 depending on which equation we choose, we can find the coordinates of P explicitly.As for Line L2 perpendicular to L1 passing through point F, we need to determine its slope first. The slope of L1 canbe found using basic calculus techniques. Once we have this slope (m) for L1, we know that L2 will have a slope equalto -1/m due to their perpendicularity.Next step is to find where Line L2 intersects with our chosen parabola. We can use the equation of the parabola to solve for x or y and find the corresponding coordinates (x2, y2) of the intersection point.Now we have two points on Line L2: F and (x2, y2). Theequation of L2 can be written using the slope-intercept form: y = mx + b. By substituting one of our known points into this equation, we can solve for the y-intercept b.Therefore, we have obtained both the slope and y-intercept of Line L2 and can express it in a specific form.To summarize, given a parabola, we can find two mutually perpendicular lines passing through its focus by following these steps:1. Choose any point P on the parabola.2. Determine the slope of Line L1 passing through F and P.3. Calculate -1/m to obtain the slope of Line L2 perpendicular to L1.4. Find where Line L2 intersects with the parabola and determine its coordinates (x2, y2).5. Substitute one known point into the slope-intercept form equation (y = mx + b) to solve for b.6. Express Line L2 in a specific form.这次我们的问题是关于通过抛物线焦点的两条相互垂直的直线的结论。
专题研究-------------------过抛物线焦点的弦
1.过抛物线2
2(0)y px p =>焦点F 的直线交抛物线于()()1122,,,A x y B x y
求证:2
2
1212,4
p y y p x x =-=
2. 1.过抛物线2
2(0)y px p =>焦点F 交抛物线于()()1122,,,A x y B x y 求证:OA OB ⋅=定值
3.过抛物线2
2(0)y px p =>焦点F 的()()1122,,,A x y B x y
求证:11
||||
AF BF +=定值
1122设 ,AO BO 分别交准线'
:2
p
l x =-于,C 求证:////BC x AD x 轴,轴
5过抛物线2
2(0)y px p =>焦点F 的直线交抛物线于()()1122,,,A x y B x y 设 ,AO BO 分别交准线'
:2
p
l x =-
于,C 求证:,,CF BFO DF AFO ∠∠平分平分
6.过抛物线2
2(0)y px p =>焦点F 1122准线'
:2
p
l x =-
交x 轴于K 求证:x AKB ∠轴平分
1122设M 准线'
:2
p
l x =-
上任一点,直线,,,,MA MF MB MA MF MB k k k 的斜率分别为 求证:,,MA MF MB k k k 成等差数列
8过抛物线2
2(0)y px p =>焦点F 的直线交抛物线于()()1122,,,A x y B x y ,求证:以AB 为直径圆与准线相切
1122分别过,A B 作抛物线的切线,设切线的交点为M ,求证:M MA MB ⊥在准线上,
10.过抛物线2
2(0)y px p =>焦点F 的直线交抛物线于()()1122,,,A x y B x y
分别过,A B 作抛物线的切线,设切线的交点为M ,线段AB 的中点为N ,求证://MN x 轴。