抛物线过焦点的直线的结论
- 格式:doc
- 大小:12.21 KB
- 文档页数:2
利用几个常用结论解决抛物线垂直焦点弦问题kuing近几日,在群内连续两次出现抛物线焦点弦问题,且我发现两题很相似,都可以用一些常用的熟知结论,几何化地去解决,不需要麻烦的代数化去解。
现整理如下。
先以引理结出这些常用结论,其详细证明这里略去,有兴趣可以自己试试证。
引理一:过抛物线焦点F 的直线交抛物线于两点A 、B 两点,过这两点分别作抛物线的切线,两切线交于点M ,则有:(1)AM BM ⊥;(2)FM AB ⊥;(3)点M 必在抛物线的准线上;引理二:(光学性质——抛物线)过抛物线焦点F 的光线经抛物线反射后的光线必定平行于抛物线的对称轴;引理三:过离心率为e ,焦准距为p 的圆锥曲线的焦点F 作两条互相垂直的直线,若这两条直线分别交圆锥曲线于A 、B 及C 、D ,且F 在A 、B 之间,F 在C 、D 之间,则有:21122e AB CD ep−+=; 引理四:梯形ABCD 中,AD 平行BC ,AC 与BD 交于点P ,过P 作与梯形两底边平行的直线交梯形两腰于E 、F ,则有211EF AD BC=+。
(注:前三个引理我均在人教论坛中某收集解释几何常用结论的贴中结出过;引理三我在论坛中贴过详细证明,用的是极坐标方法,搜索我的主题可以找到;引理四是初中内容)题一:解:(I )如图所示:由引理一,可知AMB ∆为直角三角形,M 为直角,点M 在准线上,过A ,B 分别作准线的垂线,垂足分别为A 1,B 1,取AB 的中点G ,连结GM 。
由于AMB ∆为直角三角形且M 为直角且GM 为其斜边上的中线,于是易得12∠=∠,引理二,可知234∠=∠=∠,因此得到14∠=∠,于是易知GM 也与准线垂直,即GM 为直角梯形AA 1B 1B 的中位线,所以显然A 、M 、B 三点的横坐标成等差数列,得证。
(II )由引理一,可知FM AB ⊥,因此由引理三以及抛物线离心率是e=1以及本题中易知焦准距为p=2,代入即知1114AB CD +=, 又易知四边形ABCD 的面积为12S AB CD =⋅,又由基本不等式有4111AB CD AB CD AB CD≥⋅+===+, 即得32S ≥,且等号成立当且仅当AB=CD 可取到,即四边形ABCD 的面积的最小值为32。
抛物线中的常用结论
抛物线是数学中的一个重要概念,它的常用结论有以下几个:
1.对于过抛物线 $y^2=2px(p>0)$ 焦点 $F$ 的弦 $AB$,
$M$ 为 $AB$ 的中点,准线为 $l$,$A$、$B$、$M$ 在 $l$ 上
的射影分别为 $C$、$D$、$N$,则有 $y_1y_2=-p^2$。
2.对于同样的 $AB$,则有 $\frac{x_1}{2} \cdot
\frac{x_2}{2} = p^2$。
3.$A$、$O$、$D$ 三点共线,$B$、$O$、$C$ 三点共线,或者证明 $AD$ 过点 $O$,$BC$ 过点 $O$。
4.$CF \perp DF$。
5.$NF \perp AB$。
6.设 $MN$ 交抛物线于 $Q$,则 $Q$ 平分 $MN$。
7.设 $AB$ 的垂直平分线交 $x$ 轴于 $E$,则有
$2FE=AB$。
8.$AN \perp BN$。
9.以 $AB$ 为直径的圆与准线 $l$ 相切。
10.设弦 $AB$ 的倾斜角为 $\alpha$,则有 $AB=\frac{1}{2} \cdot \frac{AF+BF}{P}=\frac{1}{2} \cdot \frac{2P}{\sin \alpha}$。
11.对于 $\triangle AOB$,有 $S_{\triangle AOB}=p^2$。
以上就是抛物线中的常用结论。
抛物线的常用结论抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路.结论1.若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-.即12,,2p x x 成等比数列.证明:焦点坐标为F(2p,0).设直线AB 的方程为:2p x my =+2222202y px y pmy p p x my ⎫=⎪⇒--=⎬=+⎪⎭2222121212122()224y y y y y y p x x p p p ⇒=-⇒=⋅= 2222()44p p p -== 推广:结论2.若AB 是过定点(,0)(0)P t t ≠的抛物线2(0)y ax a =≠的弦,且11(,)A x y ,22(,)B x y ,则:212x x t =,12y y at =-.即12,,x t x 成等比数列.(注:点P 不一定在抛物线的内部,开口向上或向下的情形可与此类推)证明:设直线AB 的方程为:x my t =+22y ax y amy at x my t ⎫=⇒--=⎬=+⎭222221212121222()()y y y y at y y at x x t a a a a-⇒=-⇒=⋅=== 特别地,当t a =时,212y y a =-,212.x x a =故12120x x y y OA OB +=⇒⊥. 可用文字叙述为:结论3.(1)过抛物线内对称轴上到顶点的距离等于通径的定点的弦对着顶点处的角是直角.(2)若抛物线的弦对着顶点处的角是直角,则弦过定点,定点是抛物线内部对称轴上到顶点的距离等于通径的点.以上性质可叙述为:抛物线的定点弦,端点坐标积恒定.结论4.过抛物线的准线与轴的交点作两条切线,则两切线垂直.当开口向左或向右时,切点的横坐标等于焦点的横坐标. 当开口向上或向下时,切点的纵等于焦点的纵坐标.(注:对抛物线的方程是标准方程时适用)推广:结论5.过抛物线2y ax =外一点(,0)t ((0)at <作抛物线的两切切线,则切点横坐标为 -t.证明:设两条切线中的任一条的方程为:x my t =+,220y ax y amy at x my t ⎫=⇒--=⎬=+⎭(*) ∵直线与抛物线相切.∴△=2222()41()040(4)0am at a m at a am t --⨯-=⇒+=⇒+= ∵ a ≠ 0 ∴am 2+4t =024am t ⇒=-.由(*)知:切点的纵坐标为2am . 代入x my t =+,得切点横坐标为2422am tt t t -+=+=-. 结论6.过抛物线2(0)y ax a =≠上一点P 00(,)x y 的切线的方程是:00()2ay y x x =+. 设过点P 00(,)x y 的切线的方程为:00()x x m y y -=-,则00x my x my =+-把00x my x my =+-代入2y ax =并整理,得200()0y amy a x my ---=由直线与抛物线相切知:22200004()0()2(2)40a m a x my am am y ax ∆=+-=⇒-+=由于点00(,)P x y 在抛物线上,故200y ax =,于是2220002()2()(2)(2)0(2)0y am am y y am y m a-+=⇒-=⇒=切线方程为:220000000002()()222y a a a x x y y y y y x x y y x x y a -=-⇒-=-⇒=-+ 00000()222a a ay y x x ax y y x x =++⇒=+. 结论7.过抛物线2(0)y ax a =≠的处侧一点00(,)P x y 作两条切线,则过两切点的直线方程为:00()2ay y x x =+ 证明:设两个切点为111222(,),(,)T x y T x y . 过111(,)T x y 的切线1PT 的方程为:11()2ay y x x =+由于点00(,)P x y 在切线1PT 上,故1001()2a y y x x =+,即:0110()2ay y x x =+ ∴点111(,)T x y 在直线00()2ay y x x =+上.同理可证:点222(,)T x y 在直线00()2ay y x x =+ ∴过两切点的直线方程为:00()2ay y x x =+ 结论8.过抛物线的两切线交点和切点弦中点的直线平行于对称轴或与对称轴重合,弦在对称轴上的截距与两切线交点的一次坐标反号.下面就抛物线方程为2(0)y ax a =≠的情形加以证明.证明:过抛物线2(0)y ax a =≠的处侧一点00(,)P x y 作两条切线,则过两切点的直线方程为:0000()22a y y x x ax y y ax =+⇒=-,代入2y ax =并整理,得20020y y y ax -+= 设两个切点为111222(,),(,)T x y T x y .12120022y y y y y y ++=⇒=. ∴切点弦120TT y 的中点的纵坐标为,与点P 的纵坐标示相同,故切点12T T 的中点和点P 的直线平于对称轴x 轴或与x 轴重合.把当0y =代入00()2ay y x x =+解得:0x x =-.即切点弦在对称轴上的截距与点的一次字母坐标,即横坐标互为相反数.以抛物线2(0)y ax a =≠内部一点00(,)P x y 为中点的弦所在的直线的方程是:200022a a y y x y x -=-. 结论9.抛物线的顶点为O,焦点为 F,焦准距为p ,抛物线上任一点为P,设∠OFP=θ, 证明:|0||||cos(180)EF PF θ=+-||cos p PF θ=-(1cos )||PF p θ⇒+=||1cos pPF θ⇒=+由前面结论知:0||1cos(180)1cos p pJF θθ==+-- 故||||||1cos 1cos p p PJ PF JF θθ=+=++-=22221cos sin p pθθ==- 当090θ=时,2sin θ的最大值为1,22sin p θ有最小值22.1pp =焦点弦PJ 最短.这时的焦点弦称为通径.特别地,抛物线2(0)y ax a =≠的倾斜角为非直角θ的弦点弦长=22||||1tan 1a a kθ=++. 抛物线2(0)x ay a =≠的倾斜角为非直角θ的弦点弦长=2||(1tan )a θ+=2||(1)a k + 结论10.通径是最短的焦点弦.结论11 焦点弦和顶点围成的三角形的面积等于半通径的平方除以弦与轴的夹角的正弦的商的一半.结论12.抛物线22(0)y px p =>(p 是焦准距)的焦点的两端点为1122(,)(,)A x y B x y 和,则1||2p FA x =+,2||2pFB x =+, 12||AB p x x =++ 例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 .解:12=29sin α(其中α为直线AB 的倾斜角),则sin 2α=±,所以直线AB 倾斜角为3π或23π. 结论13:三个相切:(1)以抛物线焦点弦为直径的圆与准线相切.(2)以焦点弦在准线上的射影为直径的圆和焦点弦相切. (3)以焦点弦为直径的圆和过顶点垂直于轴的直线相切.已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切.(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相切.证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP.由抛物线定义:AM AF =,,∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ,∴∠AFM=∠MFO.同理,∠BFN=∠NFO , ∴∠MFN=12(∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴12MP NP FP MN === ∴∠PFM=∠FMP∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB ∴以MN 为直径为圆与焦点弦AB 相切. 第三个相切的证明省略.结论14.焦点弦在准线上的射影对焦点处的角是直角.结论15.一条焦点弦的两条焦半径的倒数为定值,定值等于焦准距倒数的2倍. 下面对特殊情形加以证明:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值.证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =.则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数) 练习:1. 过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点,若线段PF 与FQ 的长分别是p q ,,则11p q+= 【解析:化为标准方程,得21(0)x y a a =>,从而12p a=.取特殊情况,过焦点F 的弦PQ 垂直于对BN BF =BAMNQP yxO FO A MNP yxF B称轴,则PQ 为通径,即12PQ p a ==,从而12p q a==,故114a p q +=】2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴.证明直线AC 经过原点O .【证明:抛物线焦点为02p F ⎛⎫⎪⎝⎭,.设直线AB 的方程为2p x my =+,代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,,则212y y p =-. BC x ∵∥轴,且点C 在准线12CO p k y =;又由2112y px =,得1112AO y p k x y ==, 故CO AO k k =,即直线AC 经过原点O .】 3.已知抛物线的焦点是(11)F ,,准线方程是20x y ++=,求抛物线的方程以及顶点坐标和对称轴方程.【解:设()P x y ,是抛物线上的任意一点,由抛物线的定义得=.整理,得222880x y xy x y +---=,此即为所求抛物线的方程.抛物线的对称轴应是过焦点(11)F ,且与准线20x y ++=垂直的直线,因此有对称轴方程y x =.设对称轴与准线的交点为M ,可求得(11)M --,,于是线段MF 的中点就是抛物线的顶点,坐标是(00),】 备选1.抛物线的顶点坐标是(10)A ,,准线l 的方程是220x y --=,试求该抛物线的焦点坐标和方程.解:依题意,抛物线的对称轴方程为220x y +-=.设对称轴和准线的交点是M ,可以求得6255M ⎛⎫- ⎪⎝⎭,.设焦点为F ,则FM 的中点是A ,故得焦点坐标为4255F ⎛⎫⎪⎝⎭,. 再设()P x y ,是抛物线上的任一点,根据抛物线的定义得化简整理得22444120x y xy x y ++--=,即为所求的方程. 例2已知A B ,为抛物线24x y =上两点,且OA OB ⊥,求线段AB 中点的轨迹方程.解析:设OA k t =,1OB OB OA k t ⊥⇒=-,据t 的几何意义,可得2244(44)A t t B t t ⎛⎫- ⎪⎝⎭,,,.设线段中点()P x y ,,则222214142214142.2x t t t t y t t t t ⎧⎛⎫⎛⎫=-=- ⎪ ⎪⎪⎝⎭⎝⎭⎪⎨⎛⎫⎛⎫⎪=+=+ ⎪ ⎪⎪⎝⎭⎝⎭⎩,消去参数t 得P 点的轨迹方程为22(4)x y =-.抛物线焦点弦性质1.1224p x x ⋅=,122y y p ⋅=-;2. 123222()2sin p p AB x x p x α=++=+= 3. '90AC B ∠=o ,''90A FB ∠=o4. 以AB 为直径的圆与准线l 相切,以AF 和BF 为直径的圆都与y 轴相切;5.112AF BF p+=; 6. A 、O 、'B 三点共线;B 、O 、'A 三点共线;7. 22sin AOB P S α=V ,23()2AOB S PAB =V (定值);(8. 1cos P AF α=-,1cos P BF α=+,22||1cos p AB α==-9. 'BC 垂直平分'B F ,'AC 垂直平分'A F ;10.'C F AB ⊥;12.11'('')22CC AB AA BB ==+;13.AB 3=p k y ;14.1OA k 15.412111y y y =+;16.1212tan =22y y p p x x α=--;17A'B'4AF BF =⋅;18.1C'F A'B'2=.椭双抛遇到焦半径可转成点准距。
当直线过抛物线焦点时的两个结论
作者:董超
来源:《新课程学习·下》2014年第11期
一、结论展示及证明
证明完毕.
说明:若抛物线方程为y2=-2px(p>0),则可得如下结论:
2.结论二:如图2所示,
设抛物线为y2=2px(p>0),焦点为F,直线l过点F,交抛物线于A,B两点,交y轴于点M,若
把①代入②得λ+μ=1,
故λ+μ为定值,且该定值为1.证明完毕.
说明:若抛物线方程为y2=-2px(p>0),则上述结论照样成立.
二、结论联想
1.在椭圆中
(b2+a2k2)x2-2a2k2cx+a2(k2c2-b2)=0
由条件知x1,x2是这个方程的两个实根.
①若k>0,则x1>x2,可得:
②若k
证明完毕.
说明:当点F为椭圆的左焦点时,结论如下:
证明:根据条件知,F的坐标为(c,0),且直线l必有斜率.
设直线l的斜率为k,则直线l方程为y=k(x-c),把其代入椭圆方程得(a2k2+b2)x2-2a2k2cx+a2k2c2-a2b2=0
设A,B两点坐标分别是(x1,y1),(x2,y2),则由上述方程可得:
证明完毕.
说明:若点F为椭圆的左焦点,结论也成立.
2.在双曲线中
作者简介:董超,男,出生于1974年9月,本科,就职于陕西省乾县杨汉中学,研究方向:高中数学基本问题的求解方法。
编辑赵飞飞。
圆锥曲线中抛物线的有关结论山东省德州市实验中学 肖成荣由于抛物线的离心率是常数,导致了许多自身具有的规律性,再加上抛物线的方程比较简单,所以灵活性就更加显现,了解了抛物线的规律性后在处理抛物线的相关问题时会起到事半功倍的效果。
下面就抛物线的结论作以归整,供参考! 一、焦点)0,2(pF 处的结论 1、焦半径长:),(11y x A ,)0,2(p F ,2||1p x AF +=;2、焦点弦长:),(11y x A 、),(22y x B 在抛物线上,且AB 过焦点F ,则p x x AB ++=21||,或θ2sin 2||pAB =(θ为直线l 与抛物线对称轴的夹角);3、过焦点的直线与抛物线相交于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为M 、N ,MN 的中点为G 。
(1)两相切:①以焦半径AF 为直径的圆与y 轴相切;②以焦点弦AB 为直径的圆与抛物线的准线相切.(2)三直角:①∠AGB ②090=∠MFN ③GF (3)六定值:),(11y x A 、),(22y x B 的乘积是定值:21x x =243p OB OA -=⋅;②n BF m AF ==,mn GF =||.③22sin AOBp S θ∆= 二、点)0,(p D 处的结论例:抛物线px y 22=上的点到)0,(a A 的最近距离是多少?结论:)0,(p D 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点,)0,(a A 在)0,(p D 左边顶点到点)0,(a A 的距离最近,右边横坐标为p a -的那两个抛物线上的点到点)0,(a A 的距离最近. 三、点)0,2(p E 处的结论B A ,是抛物线)0(22>=p px y 上的两点,OB OA ⊥,),(11y x A ,),(22y x B ,则ⅰ.2214p x x =,2214p y y -=;ⅱ.直线AB 过定点)0,2(p ;ⅲ.求AB 中点的轨迹方程;ⅳ.过O 向AB 引垂线,求垂足T 的轨迹方程;ⅴ.求AOB ∆面积的最小值.结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p E .(2)2214p x x =,2214p y y -=.四、准线上的有关结论过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
抛物线焦点弦22条结论抛物线是一种经典的数学曲线,被广泛应用于物理学、工程学、计算机图形学等领域。
在研究抛物线的性质和应用过程中,焦点和弦是两个重要的概念。
本文将介绍抛物线焦点弦的22条结论。
1. 抛物线的焦点是由平行于抛物线的直线反射后汇聚而成的点。
2. 抛物线的焦点是离抛物线顶点等距离的点。
3. 抛物线的焦点是所有平行于抛物线的直线的交点。
4. 抛物线的焦点是所有过抛物线的顶点的对称轴的交点。
5. 抛物线的焦点是所有与抛物线相切的直线的交点。
6. 抛物线的焦点是所有过抛物线的顶点并且与抛物线平行的直线的交点。
7. 抛物线的焦点是所有过抛物线的顶点并且与抛物线垂直的直线的交点。
8. 抛物线的焦点是所有经过抛物线的两个端点并且与抛物线垂直的直线的交点。
9. 抛物线的焦点是所有过抛物线的顶点且与抛物线切线垂直的直线的交点。
10. 抛物线的焦点是所有过抛物线的顶点且与抛物线切线平行的直线的交点。
11. 抛物线的焦点是所有与抛物线相交的直线的交点。
12. 抛物线的焦点是所有通过抛物线的两个端点且与抛物线相交的直线的交点。
13. 抛物线的焦点是所有过抛物线的顶点且与抛物线切线相交的直线的交点。
14. 抛物线的焦点是所有过抛物线的顶点且与抛物线切线平行且相交于抛物线的焦点的直线的交点。
15. 抛物线的焦点是所有过抛物线的顶点且与抛物线切线垂直且相交于抛物线的焦点的直线的交点。
16. 抛物线的焦点是所有过抛物线的顶点并且与抛物线切线平行于抛物线的对称轴的直线的交点。
17. 抛物线的焦点是所有过抛物线的顶点并且与抛物线切线垂直于抛物线的对称轴的直线的交点。
18. 抛物线的焦点是所有过抛物线的顶点且与抛物线对称轴平行的直线的交点。
19. 抛物线的焦点是所有过抛物线的顶点且与抛物线对称轴垂直的直线的交点。
20. 抛物线的焦点是所有通过抛物线的两个端点且与抛物线对称轴平行的直线的交点。
21. 抛物线的焦点是所有通过抛物线的两个端点且与抛物线对称轴垂直的直线的交点。
与抛物线焦点弦有关的几个结论在抛物线与直线的关系中,过抛物线焦点的直线与抛物线的关系尤为重要,这是因为在这一关系中具有一些很有用的性质,这些性质常常是高考命题的切入点.不妨设抛物线方程为y2=2px(p>0),则焦点,准线l的方程:.过焦点F的直线交抛物线于A(x1,y1)、B(x2,y2)两点,又作AA1⊥l, BB1⊥l,垂足分别为A1、B1.AB⊥x轴时,, , 此时弦AB叫抛物线的通径,它的长|AB|=2p.AB与x轴不垂直也不平行时,设弦AB所在直线的斜率为k(k≠0),则方程为(如图).由方程组消去y,得, 或消去x, 得.结论1:(定值),,结论2:y1y2=-p2(定值),.结论3:弦长.结论4:若此焦点弦AB被焦点F分成m,n两部分,则为定值.事实上,若AB⊥x轴,则m=n=p,.若AB与x轴不垂直,则..结论5:抛物线y2=2px(p>0)的焦点弦中通径最小.证法1:设弦AB所在的直线方程为.由方程组消去x,得y2-2pmy-p2=0.∴y1+y2=2pm,y1y2=-p2.当且仅当m=0,即弦AB为抛物线的通径时,它的长度最小且为2p.证法2:设过焦点F的弦AB所在直线的倾斜角为,则|AF|=|AA1|=p+|AF|cos, |BF|=|BB1|=p-|BF|cos,∴.,当且仅当=90°时,即弦AB为抛物线的通径时,它的长度最小且为2p.结论6:以焦点弦AB为直径的圆与抛物线的准线l相切(如图).事实上,取弦AB的中点C,作CC1⊥l,垂足为C1. 则.这表明圆心C到准线l的距离等于半径,故以焦点弦AB为直径的圆与抛物线的准线相切.结论7:以抛物线焦半径|AF|为直径的圆与y轴相切.事实上,.设AF的中点为D,则,∴D到y轴的距离.这表明圆心D到y轴的距离等于半径,故以抛物线焦半径|AF|为直径的圆与y轴相切.结论8:A1F⊥B1F(如图)事实上,设,则,。
由结论2有y1y2=-p2, ∴, 即A1F⊥B1F。
过抛物线的焦点的直线结论过抛物线的焦点的直线结论是指,过抛物线的焦点的任意一条直线都将把抛物线分成两部分,其中一部分在直线上方,另一部分在直线下方,并且这两部分之间的距离将会相等。
在数学中,抛物线是一种二次曲线,其形状类似于一个碗或者一个反弓形状。
抛物线有两个重要的焦点,它们分布在抛物线顶部的两侧,并且抛物线的对称轴垂直于两个焦点之间的线段。
抛物线的著名性质之一就是:过抛物线焦点的任意一条直线都将抛物线划分成两个部分。
其中一部分在直线上方,另一部分在直线下方,两部分之间的距离相等。
把这个性质定义成一个定理,可以用以下方式表示:定理:过抛物线焦点的任意一条直线将抛物线分成两部分,其中一部分在直线上方,另一部分在直线下方,两部分之间的距离相等。
证明:我们考虑从物理角度来证明这个定理。
首先,我们将把抛物线看做一条运动的路径,然后将它投射到一个竖直平面上。
假设一个物体从抛物线的顶部沿着该路径运动,以可控的速度向下运动。
当物体到达抛物线的任意一点时,它将具有一个具体的速度和无穷小位移量(如果我们将时间离散化)。
我们现在要考虑的是,假设我们有一条直线穿过抛物线的焦点。
我们必须证明,这条直线将把抛物线分成两个部分,其中一部分在直线上方,另一部分在直线下方,两部分之间的距离相等。
为了证明这个定理,我们首先需要证明以下事实:沿着任意直角三角形的斜边下降时,其投影物将向着斜边的中垂线移动。
为了理解这个事实,让我们考虑一个直角三角形ABC,其中∠B = 90°。
假设我们将其放在一个水平面上,让A和B分别靠在垂直于地面的两面墙上。
如果我们将C拉向地面,使得三角形倾斜,那么C将移动到斜边上,同时在地面上留下一个投影C'。
当我们继续往下拉C时,它将离斜边越来越近,而C'将在墙上沿着一条垂直于斜边的线向下移动。
现在,假设我们将我们的注意力转向一个过抛物线焦点的直线。
这条直线至少与抛物线上的一个点相交。
抛物线的相关结论:当A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:1、直线AB过焦点时,x1x2 = p²/4 ,y1y2 = -p²;(当A,B在抛物线x²=2py 上时,则有x1x2 = -p²,y1y2 = p²/4 ,要在直线过焦点时才能成立)2、焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;3、(1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))4、若OA垂直OB则AB过定点M(2P,0);5、焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);6、弦长公式:AB=√(1+k2)*│x1-x2│;7、△=b2-4ac;△=b2-4ac>0有两个实数根;△=b2-4ac=0有两个一样的实数根;△=b2-4ac<0没实数根;8、由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;9、标准形式的抛物线在(x0,y0 )点的切线是:yy0=p(x+x0),(注:圆锥曲线切线方程中x²=x*x0 , y² =y*y0 , x=(x+x0)/2 ,y=(y+y0)/2 )扩展资料:切线方程:抛物线y2=2px上一点(x0,y0)处的切线方程为:。
抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。
抛物线各类方程式的共同点:1、原点在抛物线上,离心率e均为1;2、对称轴为坐标轴;3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4抛物线各类方程式的不同点:1、对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;2、开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
抛物线过焦点的直线的结论
抛物线过其焦点的直线有一些特殊的性质。
首先,我们知道焦点是抛物线的一个重要特征点,它位于抛物线的对称轴上,并且具有一定的几何意义。
当一条直线通过抛物线的焦点时,我们可以推导出以下结论:
1. 直线与抛物线相交于两个点,这两个点在直线上对称于焦点。
这是因为抛物线的对称性质保证了直线与抛物线的交点在直线上对称。
2. 这两个交点到焦点的距离相等。
这是由于直线与抛物线的交点在直线上对称于焦点,根据对称性质可以得出。
3. 直线与抛物线的切线重合于焦点。
这是因为切线是经过抛物线上一点且与抛物线相切的直线,而通过焦点的直线也必然通过抛物线上的点,并且与抛物线相交于该点。
这些结论可以用来解决一些几何问题。
例如,可以利用这些性质确定抛物线与直线的交点位置,或者利用切线重合于焦点的性质来证明某些几何问题。
总之,抛物线过焦点的直线具有一些特殊的性质,通过利用这些性质,我们可以得出一些有关抛物线与直线交点及切线的重要结论。