7 金属和半导体接触
- 格式:ppt
- 大小:621.50 KB
- 文档页数:53
大工《半导体物理》考研重点第一章、半导体中的电子状态●了解半导体的三种常见晶体结构即金刚石型、闪锌矿和纤锌矿型结构;以及两种化合键形式即共价键和离子键在不同结构中的特点。
●了解电子的共有化运动;●理解能带不同形式导带、价带、禁带的形成;导体、半导体、绝缘体的能带与导电性能的差异;●掌握本征激发的概念。
●理解半导体中电子的平均速度和加速度;●掌握半导体有效质量的概念、意义和计算。
●理解本征半导体的导电机构;●掌握半导体空穴的概念及其特点。
●理解典型半导体材料锗、硅、砷化镓和锗硅的能带结构。
重要术语:1.允带2.电子的有效质量3.禁带4.本征半导体5.本征激发6.空穴7.空穴的有效质量知识点:学完本章后,学生应具备以下能力:1.对单晶中的允带和禁带的概念进行定性的讨论。
2.讨论硅中能带的分裂。
3.根据K-k关系曲线论述有效质量的定义,并讨论它对于晶体中粒子运动的意义。
4.本征半导体与本征激发的概念。
5.讨论空穴的概念。
6.定性地讨论金属、绝缘体和半导体在能带方面的差异。
第二章、半导体中的杂质和缺陷能级●掌握锗、硅晶体中的浅能级形成原因,多子和少子的概念;●了解浅能级杂质电离能的计算;●了解杂质补偿作用及其产生的原因;。
●了解锗、硅晶体中深能级杂质的特点和作用;●理解错误!未找到引用源。
-错误!未找到引用源。
族化合物中的杂质能级的形成及特点;●了解等电子陷阱、等电子络合物以及两性杂质的概念;●了解缺陷(主要是两类点缺陷弗仑克耳缺陷和肖脱基缺陷)、位错(一种线缺陷)施主或受主能级的形成。
重要术语1.受主原子2.载流子电荷3.补偿半导体4.完全电离5.施主原子6.非本征半导体7.束缚态知识点:学完本章后,学生应具备如下能力:1.描述半导体内掺人施主与受主杂质后的影响。
2.理解完全电离的概念。
第三章热平衡时半导体中载流子的统计分布●掌握状态密度,费米能级的概念;●掌握载流子的费米统计分布和波尔兹曼统计分布;●掌握本征半导体的载流子浓度和费米能级公式推导和计算;●掌握非简并半导体载流子浓度和费米能级公式推导和计算、杂质半导体的载流子浓度以及费米能级随掺杂浓度以及温度变化的规律;●了解简并半导体及其简并化条件。
第6章 p-n 结1、一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =5´1015cm -3,求该pn 结室温下的自建电势。
解:pn 结的自建电势结的自建电势 2(ln)D A D iN N kT V qn=已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=´代入后算得:1517132510100.026ln0.36(2.410)D V V ´´=´=´4.4.证明反向饱和电流公式(证明反向饱和电流公式(证明反向饱和电流公式(6-356-356-35)可改写为)可改写为)可改写为2211()(1)i s n n p p b k T J b q L L s s s =++ 式中npb m m =,n s 和p s 分别为n 型和p 型半导体电导率,i s 为本征半导体电导率。
证明:将爱因斯坦关系式p p kT D qm =和nnkT D q m =代入式(式(6-356-356-35))得 0000()p n p n S p n n pn p n p p nn p J kT n kT p kT L L L L m m m m m m =+=+因为002i p p n n p=,002i n nn p n =,上式可进一步改写为,上式可进一步改写为00221111()()S n p i n p i n p p p n n n p p nJ kT n qkT n L p L n L L m m m m m m s s =+=+ 又因为又因为()i i n p n q s m m =+22222222()(1)i i n p i p n q n q b s m m m =+=+即22222222()(1)i i i n p p n q q b s s m m m ==++ 将此结果代入原式即得证将此结果代入原式即得证2222221111()()(1)(1)n p i i Sp np pn np pnqkT b kT J q b LL q b L L m m s s mssss=+=××+++ 注:严格说,迁移率与杂质浓度有关,因而同种载流子的迁移率在掺杂浓度不同的p 区和n区中并不完全相同,因而所证关系只能说是一种近似。
( 1 ) p-n 结势垒区中存在有空间电荷和强的电场。
(V)( 2 )单边突变的 p+ -n 结的势垒区主要是在掺杂浓度较高的 p+型一边。
(× )( 3 )热平衡、非简并 p-n 结(同质结)的势垒高度可以超过半导体的禁带宽度。
( ×)(4)突变 p-n 结因为是由均匀掺杂的 n 型半导体和 p 型半导体构成的,所以势垒区中的电场分布也是均匀的。
(×)( 5 )因为在反向电压下 p-n 结势垒区中存在有较强的电场,所以通过 p-n 结的反向电流主要是多数载流子的漂移电流。
( × )( 6 ) p-n 结所包含的主要区域是势垒区及其两边的少数载流子扩散区。
(V)( 7 ) p-n 结两边准费米能级之差就等于 p-n 结上所加电压的大小。
( V )( 8 ) 金属与半导体接触一般都形成具有整流特性的 Schottky 势垒,但如果金属与较高掺杂的半导体接触却可以实现欧姆接触。
(V)(9)BJT 的共基极直流电流增益α0,是除去集电极反向饱和电流之外的集电极电流与发射极电流之比。
( V )( 10 ) BJT 的特征频率 f T 决定于发射结的充电时间、载流子渡越中性基区的时间、集电结的充电时间和载流子渡越集电结势垒区的时间。
(V)( 11 )集电极最大允许工作电流 I CM 是对应于晶体管的最高结温时的集电极电流。
(×)( 12 )使 BJT 由截止状态转换为临界饱和状态,是由于驱动电流 I BS =I CS/β≈V CC/βR L 的作用;而进一步要进入过驱动饱和状态,则还需要人为地在集电极上加正向电压。
( ×)( 13 )在过驱动饱和状态下工作的 BJT ,除了需要考虑基区中的少数载流子存储效应以外,还需要考虑集电区中的少数载流子存储效应。
(V)( 14 ) 异质结双极型晶体管 (HBT),由于采用了宽禁带的发射区,使得注射效率与发射结两边的掺杂浓度关系不大,所以即使基区掺杂浓度较高,也可以获得很高的放大系数和很高的特征频率。
第一篇习题 半导体中的电子状态1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、 试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
第一篇题解 半导体中的电子状态 刘诺 编1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、E P=-E nD、m P*=-m n*。
1-4、解:(1)Ge、Si:a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)GaAs:a)E g(300K)第二篇习题-半导体中的杂质和缺陷能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
第1篇一、基础知识部分1. 请简述半导体材料的基本概念及其分类。
2. 解释什么是本征半导体、n型半导体和p型半导体,并说明它们之间的区别。
3. 什么是掺杂?为什么掺杂对于半导体的应用至关重要?4. 什么是载流子?请分别说明电子和空穴载流子的性质。
5. 什么是能带?简述价带、导带和禁带的概念。
6. 什么是能级?请解释能级与能带之间的关系。
7. 什么是施主和受主?它们在半导体中的作用是什么?8. 请解释半导体中的电导率是如何受到温度影响的。
9. 什么是霍尔效应?它在半导体中的应用有哪些?10. 什么是PN结?简述PN结的形成过程、特性和应用。
二、器件原理部分1. 请简述晶体管的工作原理,包括NPN和PNP晶体管。
2. 什么是场效应晶体管(FET)?请解释其工作原理和特性。
3. 什么是MOSFET?请说明其结构、工作原理和优缺点。
4. 什么是二极管?请解释二极管的基本特性和应用。
5. 什么是三极管?请说明三极管的基本特性和应用。
6. 什么是整流器?请列举几种常见的整流器类型及其工作原理。
7. 什么是稳压器?请说明稳压器的工作原理和应用。
8. 什么是放大器?请解释放大器的基本特性和应用。
9. 什么是滤波器?请列举几种常见的滤波器类型及其工作原理。
10. 什么是振荡器?请解释振荡器的基本特性和应用。
三、电路设计部分1. 请简述半导体电路设计的基本流程。
2. 什么是模拟电路和数字电路?请分别说明它们的特点。
3. 什么是电路仿真?请列举几种常见的电路仿真软件。
4. 什么是版图设计?请说明版图设计的基本流程和注意事项。
5. 什么是集成电路封装?请列举几种常见的集成电路封装类型。
6. 什么是测试与验证?请说明测试与验证在半导体电路设计中的重要性。
7. 什么是电路优化?请列举几种常见的电路优化方法。
8. 什么是电源设计?请说明电源设计的基本原则和注意事项。
9. 什么是信号完整性?请解释信号完整性对电路设计的影响。
10. 什么是电磁兼容性?请说明电磁兼容性在电路设计中的重要性。
金属与半导体接触后费米能级一样吗1. 引言1.1 金属与半导体的能级特性金属和半导体是两种在电子能带结构方面具有明显差异的物质。
金属通常具有高导电性和良好的电子流动性,其能带结构呈现连续的态密度分布,电子几乎填满了费米能级以下的能级,而在费米能级以上则存在着大量空缺态,使得金属能够轻易导电。
相比之下,半导体的能带结构则具有明显的带隙,使得其电导性较差。
在绝对零度下,半导体的价带全满,导带空缺,费米能级处于带隙中。
金属与半导体的能级特性差异导致它们在接触时会发生电荷转移和费米能级的调整。
当金属与半导体接触时,由于费米能级一致性原则,两者之间的费米能级会趋于一致。
在接触处形成的Schottky接触或Ohmic接触会导致电子从金属流向半导体或者从半导体流向金属,最终使得两者之间建立起稳定的电荷平衡态。
1.2 费米能级的定义费米能级,又称费米面能级或费米面,是固体物理学中一个重要的概念。
它指的是在热平衡时,电子系统中电子的能级达到50%的概率,也就是说费米能级是将电子分布的概率分为两等分的能级。
通常情况下,费米能级是指在零度时电子能级最高的能级。
在绝对零度时,费米能级以下的所有能级都被电子所填满,而费米能级以上的能级则为空。
费米能级在固体中起着至关重要的作用,它不仅关系到电子的导电性质,还决定了物质的电子输运、化学反应等性质。
在金属中,费米能级通常位于导带底部,这意味着金属中的电子能够自由传导并具有良好的导电性。
而在半导体中,费米能级则位于禁带中部,处于导带和价带能级之间,这使得半导体表现出了半导体的特性,即具有一定的导电性但电阻相对较大。
费米能级的位置不仅取决于材料的性质,还受到温度、掺杂等因素的影响。
在研究金属与半导体接触后费米能级的调整过程中,费米能级的定义和性质是至关重要的。
通过对费米能级的理解,可以更好地解释金属与半导体接触后电子态的变化和界面特性的形成。
2. 正文2.1 金属与半导体接触的费米能级调整金属与半导体接触后费米能级调整是一个非常重要的物理现象,它直接影响着材料的电子输运性质和器件的性能。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E 以下的所有能级,而高于E 的能级则全部是空着的。
在一定温度下,只有E 附近的少数电子受到热激发,由低于E 的能级跃迁到高于E 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 表示真空静止电子的能量,金属的功函数定义为E 与E 能量之差,用W 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 与费米能级之差称为半导体的功函数,用W 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E 。
E 与E 之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
图7-1 金属中的电子图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值(eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W -W =E FS -E FM 。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
金属-半导体接触1.金属与半导体接触概论以集成电路(IC)技术为代表的半导体技术在近十几年来已经取得了迅速发展,带来的是一次又一次的信息科技进步,没有哪一种技术能像它一样,带来社会性的深刻变革。
半导体技术的实现依赖于半导体的生产与应用,而在半导体的应用过程中,必然会涉及到半导体与金属电极的接触。
大规模集成电路中的铝-硅接触就是典型的实例。
金属与半导体接触大致可以分为两类[1]:一种是具有整流特性的肖特基接触(也叫整流接触),导体中的电子将向金属转移,使金属带负电,但是金属作为电子的的“海洋”,其电势变化非常小;而在半导体内部靠近半导体表面的区域则形成了由电离施主构成的正电荷空间层,这样便产生由半导体指向金属的内建电场,该内建电场具有阻止电子进一步从半导体流向金属的作用。
因此,金属与半导体接触的内建电场所引起的电势变化主要发生在半导体的空间电荷区[2],使半导体中近表面处的能带向上弯曲形成电子势垒;而空间电荷区外的能带则随同E FS一起下降,直到与E FM处在同一水平是达到平衡状态,不再有电子的流动,如图1.1.3。
图1.1.3:W M>W S的金属与N型半导体接触前后的能带变化,(a)接触前(b)接触后相对于E FM而言,平衡时E FS下降的幅度为W M-W S。
若以V D表示这一接触引起的半导体表面与体内的电势差,显然有qV D=W M-W S(1.1)式中,q是电量,V D为接触电势差或半导体的表面势;qV D也就是半导体中的电子进入金属所必须越过的势垒高度;同样的,金属中的电子若要进入半导体,也要越过一个势垒。
高度为式1.2,式中,qφM极为肖特基势垒的高度。
qφM=W M-χ=qV D+En(1.2)当金属与N型半导体接触时,若W M>W S,则在半导体表面形成一个由电离施主构成的空间电荷区,其中电子浓度极低,对电子的传导性极低,是一个高阻区域,常被称为电子阻挡层。
(2)金属与N型半导体接触,W M<W S时若W M<W S,由于金属与半导体的费米能级不平衡,电子将从金属流向半导体,在半导体表面区域形成负电荷空间区。