半导体物理学——半导体与金属的接触
- 格式:pdf
- 大小:3.05 MB
- 文档页数:43
第七章 金属和半导体接触引言:金属与半导体接触类型:1、 整流接触:金属与轻掺杂半导体形成的接触表现为单向导电性,即具有整流特性,但电流通常由多子所荷载。
由于这种器件主要靠电子导电,消除了非平衡少子的 存储,因而频率特性优于p –n 结;又由于它是在半导体表面上形成的接触,便于散热,所以可以做成大功率的整流器;在集成电路中用作箝位二极管,可以提高集成电路的速度,通常称为肖特基势垒二极管,简称肖特基二极管。
2、 欧姆接触:这种接触正反向偏压均表现为低阻特性,没有整流作用,故也称为非整流接触。
任何半导体器件最后都要用金属与之接触并由导线引出,因此,获得良好的欧姆接触是十分必要的。
§7.1 金属半导体接触及其能带图本节内容:1、 金属和半导体的功函数2、 接触电势差3、 阻挡层与反阻挡层4、 表面态对接触势垒的影响课程重点:金属的功函数:在绝对零度的电子填满了费米能级F E 以下的所有能级,而高于F E 的能级则全部是空着的。
在一定温度下,只有F E 附近的少数电子受到热激发,由低于F E 的能级跃迁到高于F E 的能级上去,但是绝大部分电子仍不能脱离金属而逸出体外,这说明金属中的电子虽然能在金属中自由运动,但绝大多数所处的能级都低于体外能级。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属内部的电子是在一个势阱中运动。
用0E 表示真空中静止电子的能量,金属功函数的定义是0E 与F E 能量之差,用m W 表示,即m F m E E W )(0-=它表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。
功函数的大小标志着电子在金属中束缚的强弱,m W 越大,电子越不容易离开金属。
半导体的功函数和金属类似:即把真空电子静止能量0E 与半导体费米能级S F E )(之差定义为半导体的函数,即s F s E E W )(0-=。
因为半导体的费米能级随杂质浓度变化,所以半导体的功函数也与杂质浓度有关。
第七章金属和半导体的接触1. 基本概念1)什么是金属的功函数?答:金属费米能级的电子逸出到真空中所需要的能量,即()m F m E E W −=0。
其中E 0:真空中电子的静止能量,(E F )m :金属的费米能。
随着原子序数的递增,金属的功函数呈周期性变化。
2)什么是半导体的电子亲和能?答:半导体导带底的电子逸出到真空中所需要的能量,即C 0E E −=χ。
其中E 0:真空中电子的静止能量,E C :半导体导带底的能量。
3)以金属-n 型半导体接触为例,如果金属的功函数大于半导体的功函数,即W m >W s ,则半导体表面的空间电荷、电场和表面势垒具有什么特点?如果W m >W s ,又如何呢?答:金属-n 型半导体接触,如果W m >W s ,电子从半导体流向金属。
半导体表面形成正的空间电荷区,电场方向由体内指向表面,形成表面势垒。
在势垒区,空间电荷主要由电离施主形成,电子浓度比体内低很多,为高阻区域,称为阻挡层。
如果W m <W s ,电子从金属流向半导体,势垒区电子浓度比体内大很多,为高电导区,称为反阻挡层。
4)什么是表面态对势垒的钉扎?答:表面态密度存在时,即使不与金属接触,表面也会形成势垒。
高的表面态密度,可以屏蔽金属接触的影响,使半导体势垒高度几乎与金属的功函数无关,即势垒高度被高的表面态密度钉扎(pinned )5)为什么金属-n 型半导体接触器件具有整流作用?答:外加电压V ,如果使金属的电势升高,由于n 型半导体高阻挡层为高阻区,外压V 将主要降落在阻挡层,则势垒下降,电阻下降。
反之,如果金属的电势下降,则势垒增高,势垒区电子减少(多子),电阻更高。
因此阻挡层具有类似于pn 结的整流作用。
6)以金属-n 型半导体接触为例,写出势垒宽度大于电子的平均自由程时,其扩散电流密度与电压的关系。
与pn 结的电流密度-电压关系比较,各自具有什么相同和不同的特点?答:金属-n 型半导体接触,扩散电流为⎟⎟⎠⎞⎜⎜⎝⎛−=1kT qV sD e J J ,()T k qVr D D sD D e V V qN J 02/102−⎭⎬⎫⎩⎨⎧−=εεσ 与pn 结的电流密度-电压关系比较,二者均具有单向性的特征;所不同的是,金属-n 型半导体接触的反向电流随外加电压增加呈1/2次方增加,而pn 结的反向电流不随电压变化。
金属-半导体接触是电子器件中的一个重要概念,通常用于制造二极管、晶体管等半导体元件。
在金属和半导体之间形成的界面处,由于它们的能带结构不同,会发生能带弯曲现象。
1. 金属的能带结构:金属的价带和导带重叠,形成了连续的能带,因此金属内部有大量的自由电子可以移动,表现出良好的导电性。
2. 半导体的能带结构:半导体的价带和导带之间存在禁带,没有自由电子,但在外部激励(如加热或光照)下,部分价带电子可以跃迁到导带,形成电子-空穴对,从而具有导电能力。
3. 金属-半导体接触能带弯曲:当金属与半导体接触时,金属中的自由电子会扩散到半导体中,使半导体靠近金属一侧的费米能级升高,导致能带发生弯曲。
这种弯曲使得半导体中的载流子浓度增加,增强了半导体的导电性。
4. 肖特基势垒:在金属-半导体接触区域形成的这种能带弯曲也被称为肖特基势垒。
它阻碍了电子从半导体向金属的进一步扩散,同时允许电子从金属向半导体扩散,因此金属-半导体结呈现出单向导通特性。
5. 应用:金属-半导体接触的能带弯曲原理被广泛应用于半导体器件的设计和制造中,例如硅太阳能电池、场效应晶体管等。
总之,金属-半导体接触能带弯曲是一个重要的物理现象,对于理解半导体器件的工作原理以及设计新型半导体器件具有重要意义。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 (eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处得金-半肖特基势垒接触。
金-半肖特基势垒接触得整流效应就是半导体物理效应得早期发现之一:§7、1金属半导体接触及其能级图一、金属与半导体得功函数1、金属得功函数在绝对零度,金属中得电子填满了费米能级E F 以下得所有能级,而高于E F 得能级则全部就是空着得。
在一定温度下,只有E F 附近得少数电子受到热激发,由低于E F 得能级跃迁到高于E F 得能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够得能量。
所以,金属中得电子就是在一个势阱中运动,如图71所示。
若用E 0表示真空静止电子得能量,金属得功函数定义为E 0与E F 能量之差,用W m 表示:它表示从金属向真空发射一个电子所需要得最小能量。
W M 越大,电子越不容易离开金属。
金属得功函数一般为几个电子伏特,其中,铯得最低,为1、93eV;铂得最高,为5、36 eV 。
图72给出了表面清洁得金属得功函数。
图中可见,功函数随着原子序数得递增而周期性变化。
2、半导体得功函数与金属类似,也把E 0与费米能级之差称为半导体得功函数,用W S 表示,即因为E FS 随杂质浓度变化,所以W S 就是杂质浓度得函数。
与金属不同,半导体中费米能级一般并不就是电子得最高能量状态。
如图73所示,非简并半导体中电子得最高能级就是导带底E C 。
E C 与E 0之间得能量间隔被称为电子亲合能。
它表示要使半导体导带底得电子逸出体外所需要得最小能量。
利用电子亲合能,半导体得功函数又可表示为式中,E n =E C -E FS 就是费米能级与导带底得能量差。
表71 几种半导体得电子亲与能及其不同掺杂浓度下得功函数计算值 材料 (eV) W S (eV)图71 金属中得电子势阱图7-2 一些元素得功函数及其原子序数 图73 半导体功函数与电子亲合能二、有功函数差得金属与半导体得接触把一块金属与一块半导体放在同一个真空环境之中,二者就具有共同得真空静止电子能级,二者得功函数差就就是它们得费米能级之差,即W M-W S =E FS-E FM。
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
材料χ (eV) W S (eV)N D (cm-3)N A (cm-3)10141015 1016 1014 1015 1016 Si 4.05 4.37 4.31 4.25 4.87 4.93 4.99 Ge 4.13 4.43 4.37 4.31 4.51 4.57 4.63 GaAs4.074.294.234.175.205.265.32二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。