第十五章 电路方程的矩阵形式
- 格式:ppt
- 大小:1.36 MB
- 文档页数:63
Chapter 15 电路方程的矩阵形式主要内容 1.关联矩阵,回路矩阵,割集矩阵; 2.KCL, KVL 的矩阵形式;3.回路电流(网孔电流)方程、结点电压方程、割集电压方程的矩阵形式;§15-1 割集KCL 和KVL 所表示的电路中各电压、电流之间的约束关系取决于电路中各元件的连接方式。
电路的拓扑 ---- 电路中各元件的连接方式。
电路拓扑性质用图论及矩阵代数进行研究(图,回路,树,割集等)。
1. 割集:是G 的一个支路集合,移去这些支路,将使G 分离为两个部分,如果少移去其中任意一条支路,图仍将是连通的。
可以用在连通图G 上作闭合面的方法来判断确定一个割集,与闭合面相切割的所有支路构成一个割集(因移去这些支路,G 被分离为两部分)。
割集:),,,( ),,,,( ),,,,( ),,,( ),,,( ),,,( ),,,(d c b a f c e a f d e b c e d f c b b e a f d a 非割集:),,,(),,,(c b e a e d aKCL 适用于任何一个闭合面,属于同一割集的所有支路的电流满足KCL ,若一个割集的所有支路都连接在同一个接点上,割集的KCL 方程即变为结点上的KCL 方程2. 独立割集:一组线性独立的KCL 方程对应的割集。
应用割集法,首先必须选择一组独立割集。
① 选定连通图的一个树,则任何连支集合不能构成一个割集;因移去全部连支,剩下的子图(树)仍是连通的,故任何连支集合不能构成割集.② 连通图的每一个树支与一些相应的连支可以构成一个割集。
因移去全部连支,剩下子图为树,再移去一个树支,则树被分离成 21 T T 和两部分,于是联结 21 T T 和的那些连支和这条树支必构成一个割集。
③ 单树支割集(基本割集)由树的一条树支与相应的一些连支所构成的割集为单树支割集。
如下图中 ),,( ),,,( ),,,(d f a f c b e b a④n 个结点和b 条支路的连通图,其树支数为 (n -1),有(n -1)个单树支割集,称为基本割集组。
第十五章电路方程的矩阵形式重点:1.关联矩阵;2. 结点电压方程的矩阵形式;3. 状态方程。
难点:电路状态方程列写的直观法和系统法。
§ 15.1 图的矩阵表示1. 有向图的关联矩阵2.电路的图是电路拓扑结构的抽象描述。
若图中每一支路都赋予一个参考方向,它成为有向图。
有向图的拓扑性质可以用关联矩阵、回路矩阵和割集矩阵描述 3. 关联矩阵是用结点与支路的关系描述有向图的拓扑性质。
4. 回路矩阵是用回路与支路的关系描述有向图的拓扑性质。
5. 割集矩阵是用割集与支路的关系描述有向图的拓扑性质。
6. 本节仅介绍关联矩阵以及用它表示的基尔霍夫定律的矩阵形式。
7.一条支路连接某两个结点,则称该支路与这两个结点相关联。
支路与结点的关联性质可以用关联矩阵描述。
设有向图的结点数为 n ,支路数为b ,且所有结点与支路均加以编号。
于是,该有向图的关联矩阵为一个 」阶的矩阵,用 表示。
它的每一行对应一个结点,每一列对应一条支路,它的任一元素 定义如下:8.,表示支路 k 与结点j 关联并且它的方向背离结点9.-1 一,表示支路k 与结点j 关联并且它指向结点; 10.n:A,表示支路k 与结点j 无关联。
对于图 15.1 所示的有向图,它的关联矩阵是1 23 45 61'-I -1 0 1 0 0A=2 0 0 1 -1-1 D 3 41 0 0 0+1 +4 0 +1 -1 0图 15.1J-的每一列元素之和为零。
关联矩阵丄的特点:①每一列只有两个非零元素,一个是+1,—个是-1,如果把 的任一行划去,剩下的矩阵用 亠』表示,并称为降阶关联矩阵(今后主要用这种降阶关联矩阵, 所以往往略去“降阶”二字) ,被划去的行对应的结点可以当作参 考结点。
例如,若以结点4为参考结点,把上式中'3-的第4行划去,得 A0 0-1 0+1 -+1的第3行划去,得 A0 01-1 0 0 -1或一个-1 ,每一个这样的列必对应于与参考结从而画岀有向图。