第一节傅立叶级数与傅里叶积分
- 格式:ppt
- 大小:1.15 MB
- 文档页数:8
傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换是数学中重要的工具,它们在信号处理、图像处理和物理学等领域中有着广泛的应用。
本文将介绍傅里叶级数和傅里叶变换的概念,并探讨它们之间的关系。
一、傅里叶级数的概念傅里叶级数是一种将周期信号分解为一系列正弦和余弦函数的方法。
它基于傅里叶分析的原理,将一个周期为T的周期信号f(t)表示为:f(t) = a0 + Σ[an*cos(nω0t) + bn*sin(nω0t)]其中,a0是信号直流分量的系数,an和bn是信号的谐波分量的系数,n为谐波的阶数,ω0为基频的角频率。
傅里叶级数可以理解为将一个周期信号分解为不同频率成分的叠加。
二、傅里叶变换的概念傅里叶变换是一种将非周期信号分解为不同频率成分的方法。
它的基本思想是将信号f(t)在整个实数轴上进行积分变换,得到频率域上的表示。
傅里叶变换的定义如下:F(ω) = ∫[f(t)*e^(-jωt)]dt其中,F(ω)表示信号在频率域上的表示,f(t)为原始信号,e^(-jωt)为旋转因子。
傅里叶变换将一个时域上的信号转换为频域上的表示,以便更好地分析信号的频谱特性。
三、傅里叶级数与傅里叶变换的关系傅里叶级数可以看作是傅里叶变换在周期信号上的特殊情况。
当一个信号f(t)为周期信号时,其傅里叶变换和傅里叶级数之间存在着对应关系。
具体而言,傅里叶级数是傅里叶变换在周期为T的周期信号上的反离散化。
通过傅里叶级数,我们可以将一个周期信号分解为多个谐波成分,每个谐波成分对应着傅里叶变换的频谱。
四、应用实例傅里叶级数和傅里叶变换在信号处理和图像处理中有着广泛的应用。
以音频信号为例,我们可以通过傅里叶级数将音频信号分解为不同频率的音调,进而进行声音合成和音乐分析。
而傅里叶变换则可以将非周期信号的频谱特性表示出来,如在图像处理中可以用于图像压缩和特征提取。
傅里叶级数和傅里叶变换的关系使得我们能够更好地理解和处理信号和图像。
总结傅里叶级数和傅里叶变换是处理周期信号和非周期信号的有效工具,它们在信号处理和图像处理中有着广泛的应用。
傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是数学中重要的概念,广泛应用于信号处理、图像处理、通信系统等领域。
它们为我们理解和分析周期信号以及非周期信号提供了有效的数学工具。
本文将分别介绍傅里叶级数和傅里叶变换的基本概念、性质和应用。
一、傅里叶级数傅里叶级数是指将一个周期函数表示成一系列正弦和余弦函数的和。
它的基本思想是利用正弦和余弦函数的基本频率,将一个周期函数分解成多个不同频率的谐波分量,从而得到函数的频谱内容。
在数学上,傅里叶级数表示为:\[f(t) = \sum_{n=-\infty}^{\infty}c_ne^{i \omega_n t}\]其中,$c_n$代表系数,$e^{i \omega_n t}$是正弦和余弦函数的复数形式,$\omega_n$是频率。
将周期函数用傅里叶级数表示的好处是,可以通过调整系数来控制频谱内容,进而实现信号的滤波、合成等操作。
傅里叶级数的性质包括线性性、对称性、频谱零点等。
线性性意味着可以将不同的周期函数的傅里叶级数叠加在一起,得到它们的叠加函数的傅里叶级数。
对称性则表示实函数的傅里叶级数中系数满足一定的对称关系。
频谱零点表示在某些特殊条件下,函数的傅里叶级数中某些频率的系数为零。
傅里叶级数的应用广泛,例如在音频信号处理中,利用它可以进行音乐合成、乐音分析和音频压缩等操作。
此外,在图像处理领域,傅里叶级数被广泛应用于图像滤波、增强、噪声消除等方面。
二、傅里叶变换傅里叶变换是傅里叶级数的推广,用于处理非周期信号。
它将时域的信号转换为频域的信号,从而可以对信号进行频谱分析和处理。
傅里叶变换的定义为:\[F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i \omega t}dt\]其中,$F(\omega)$表示信号的频域表示,$f(t)$为时域信号,$\omega$为连续的角频率。
傅里叶变换可以将时域的信号分解成不同频率的复指数函数,并用复数表示频谱信息。
傅里叶级数与傅里叶变换的数学原理我们都知道,信号在通信中起着重要的作用,例如音频、视频和图像等。
在这些信号中,每个数据点代表着信号在某个时间或空间位置的值。
要理解这些信号,就需要了解信号如何以及为什么能够被表示为不同频率的正弦或余弦波的组合。
傅里叶级数和傅里叶变换是用于分解和表示信号的重要数学工具。
一、傅里叶级数在介绍傅里叶级数之前,我们先了解一下周期函数。
周期函数是指满足$f(x+T)=f(x)$的函数$f(x)$,其中$T$是一个固定的周期。
我们可以将其表示为三角函数的和,即$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}[a_n \cos(n \omegax)+b_n \sin(n \omega x)]$$其中$a_0$、$a_n$和$b_n$是常数,$\omega$是角频率,表示单位时间内正弦波的循环数。
这个式子就是傅里叶级数的定义。
如何求出傅里叶系数呢?可以使用以下公式:$$a_n=\frac{2}{T}\int_{-T/2}^{T/2}{f(x)\cos(n \omega x)\mathrm{d}x}$$$$b_n=\frac{2}{T}\int_{-T/2}^{T/2}{f(x)\sin(n \omega x)\mathrm{d}x}$$这两个公式可以通过积分的方式求解出来,而系数$a_0$可以这样求解:$$a_0=\frac{2}{T}\int_{-T/2}^{T/2}{f(x) \mathrm{d}x}$$于是我们可以将周期函数表示为傅里叶级数的形式。
这种分解方法为我们理解信号提供了重要的数学工具。
二、傅里叶变换当信号不再是周期函数时,我们需要使用傅里叶变换来分析信号。
傅里叶变换是傅里叶级数的推广。
傅里叶变换定义为:$$F(\omega)=\int_{-\infty}^{\infty}{f(t)e^{-i \omega t}\mathrm{d}t}$$其中$i$是虚数单位,$\omega$是频率。
第一章 傅里叶积分变换所谓积分变换,实际上就是通过积分运算,把一个函数变成另一个函数的一种 变换.这类积分一般要含有参变量,具体形式可写为:()()ττF dt t f t k ba−−→−⎰记为),(这里()t f 是要变换的函数,称为原像函数;()τF 是变换后的函数,称为像函数;()τ,t k 是一个二元函数,称为积分变换核 .数学中经常利用某种运算先把复杂问题变为比较简单的问题,求解后,再求其逆运算就可得到原问题的解. 如,初等数学中,曾经利用取对数将数的积、商运算化为较简单的和、差运算; 再如,高等数学中的代数变换,解析几何中的坐标变换,复变函数中的保角变换, 其解决问题的思路都属于这种情况.基于这种思想,便产生了积分变换.其主要体现在: 数学上:求解方程的重要工具; 能实现卷积与普通乘积之间的互相转化. 工程上:是频谱分析、信号分析、线性系统分析的重要工具.1.傅里叶级数的指数形式在《高等数学》中有下列定理:定理1.1 设()t f T 是以()0T T <<∞为周期的实函数,且在,22T T ⎛⎫-⎪⎝⎭上满足狄利克雷条件,即()t f T 在一个周期上满足:(1)连续或只有有限个第一类间断点; (2)只有有限个极值点. 则在连续点处,有()()∑∞=++=10sin cos 2n n n T t n b t n a a t f ωω (1)其中()dt t f T a TT T ⎰-=2201,()() ,2,1cos 122==⎰-n tdt n t f T a TT T n ω,()() .2,1sin 122==⎰-n tdt n t f T b T T T n ω,在间断点0t 处,(1)式右端级数收敛于()()20000-++t f t f T T .又2cos φφφi i e e -+=,ie e i i 2sin φφφ--=,.于是()∑∞=--⎪⎪⎭⎫⎝⎛-+++=10222n t in t in nt in t in n T i e e b e e a a t f ωωωω∑∞=-⎪⎭⎫⎝⎛++-+=10222n t in n n t in n n e ib a e ib a a ωω 令,200a c =2n nn ib a c -=, 2n n n ib a c +=-, ,,3,2,1 -n 则 ()∑∞-∞==n tin nT ec t f ω()()2201212i t i t in t i t i t in t n n c c e c e c e c e c e c e ωωωωωω------=+++⋅⋅⋅++⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅(2)(2)式称为傅里叶级数的复指数形式,具有明显的物理意义. 容易证明n c 可以合写成一个式子 ,即()() ,2,1,0122±±==--⎰n dt e t f T c t in TT T n ω. (3)2.傅里叶积分任何一个非周期函数 ()t f , 都可看成是由某个周期函数()t f T 当T →+∞时转化而来的. 即()t f T T ∞→=lim ()t f =.由公式(2) 、(3)得()()t in n TT in T T e d e f T t f ωωτττ∑⎰∞-∞=--⎥⎦⎤⎢⎣⎡=221,可知()()t in n TT in T T e d e f T t f ωωτττ∑⎰∞-∞=--+∞→⎥⎦⎤⎢⎣⎡=221lim , 令1,--=∆=n n n n n ωωωωω,则T πω2=或nT ωπ∆=2 .于是()()t i n TT i TT n n e d e f T t f ωτωττ∑⎰∞-∞=--+∞→⎥⎦⎤⎢⎣⎡=221lim ()n t i n T T i T n n n e d e f ωττπωτωω∆⎥⎦⎤⎢⎣⎡=∑⎰∞-∞=--→∆22021lim , 令()()t i i TT T n T n n e d e f ωτωττπωφ][2122--⎰=,故()t f ()nn nTn ωωφω∆=∑∞-∞=→∆0lim. (4)注意到当,0→∆n ω即∞→T 时,()()t i i n n T n n e d e f ωτωττπωφωφ][21)(-+∞∞-⎰=→. 从而按照积分的定义,(4)可以写为:()t f ()⎰+∞∞-=ωωφd ,或者()()ωττπωωτd e d e f t f t i i ⎰⎰+∞∞-+∞∞--=][21. (5)公式(5)称为函数()t f 的傅氏积分公式.定理1.2 若()t f 在(-∞, +∞)上满足条件:(1) ()t f 在任一有限区间上满足狄氏条件; (2) ()t f 在无限区间(-∞, +∞)上绝对可积,即()dt t f ⎰+∞∞-收敛, 则(5)在()t f 的连续点成里; 而在()t f 的间断点0t 处应以()()20000-++t f t f 来代替.上述定理称为傅氏积分定理. 可以证明,当()t f 满足傅氏积分定理条件时,公式(5) 可以写为三角形式,即()()()()()()⎪⎩⎪⎨⎧-++=-⎰⎰∞+∞+∞-.,200,]cos [1其它连续点处,在t f t f t f t f d d t f ωττωτπ(6)上一节介绍了:当()t f 满足一定条件时,在()t f 的连续点处有:()()ωττπωωτd e d e f t f t i i ⎰⎰+∞∞-+∞∞--=][21.从上式出发,设()()dt e t f F t i ωω-+∞∞-⎰= (1)则()t f ()ωωπωd e F t i ⎰+∞∞-=21 (2)称(1)式,即()()dt e t f F t i ωω-+∞∞-⎰=为()t f 的傅里叶变换简称傅氏变换,记为()=ωF F ()}{t f .称(2)式,即()t f ()ωωπωd e F t i ⎰+∞∞-=21为傅里叶逆变换简称傅氏逆变换,记为()t f =F 1-[()t f ].(1)式和(2)式,定义了一个变换对()ωF 和()t f 也称()ωF 为()t f 的像函数;()t f 为的原像函数 ,还可以将()t f 和()ωF 用箭头连接: ()t f ↔()ωF .例 1 求函数()t f ⎩⎨⎧≥<=-0,0,0t e t t β的傅氏变换及其积分表达式其中 0>β.这个函数称为指数衰减函数,在工程中常遇到.解:根据定义, 有()()dt e t f F t i ωω-+∞∞-⎰==dt e e t i t ωβ-+∞-⎰0=dt e t i ⎰+∞+-0)(ωβ=ωβi +1=22ωβωβ+-i . 这就是指数衰减函数的傅氏变换.根据积分表达式的定义,有()t f ()ωωπωd e F t i ⎰+∞∞-=21ωωβωβπωd e i ti ⎰+∞∞-+-=2221注意到t t eti ωωωsin cos +=, 上式可得()t f ()ωωωωβωβπd t i t i sin cos 2122++-=⎰+∞∞-=ωωβωωβπd tt ⎰+∞++022sin cos 1. 因此⎪⎩⎪⎨⎧>=<=++-∞+⎰.0,,0,2,0,0sin cos 022t e t t d t t t βππωωβωωβ 例2 求()t f =2t Ae β-的傅氏变换其中 0,>βA ---钟形脉冲函数.解: 根据定义, 有()()dt et f F ti ωω-+∞∞-⎰==dt e Ae t i t ωβ-+∞∞--⎰2,=βω42-Aedt Aei t ⎰∞+∞-⎪⎪⎭⎫ ⎝⎛+-22βωββωβπ42-=Ae .这里利用了以下 结果:()02>=⎰∞+∞--βωπβdx e x . 2.傅里叶变换的物理意义如果仔细分析周期函数和非周期函数的傅氏积分表达式()∑∞-∞==n t in n T e c t f ω,()t f ()ωωπωd e F t i ⎰+∞∞-=21,以及n c 和()ωF 的表达式()() ,2,1,0122±±==--⎰n dt e t f T c tin TT T n ω,()()dt e t f F t i ωω-+∞∞-⎰=,由此引出以下术语: 在频谱分析中, 傅氏变换()ωF 又称为()t f 的频谱函数, 而它的模()||ωF 称为()t f 的振幅频谱(亦简称为谱). 由于ω是连续变化的, 我们称之为连续频谱,因此对一个时间函数作傅氏变换, 就是求这个时间函数的频谱. 显然,振幅函数()||ωF 是角频率ω的偶函数, 即()||ωF ()||ω-=F ,()||ωF 的辐角()ωF arg 称为相角频谱, 显然()ωF arg ()()⎰⎰∞+∞-+∞∞-=tdtt f tdt t f ωωcos sin arctan ,相角频谱()ωF arg 是ω的奇函数.例3 求单个矩形脉冲函数()t f =⎪⎪⎩⎪⎪⎨⎧>≤,2,0,2,a t a t E 的频谱图.解:()()dt e t f F t i ωω-+∞∞-⎰=dte E t i a a ω--⎰=222sin222ωωωωa Ea a e i E ti =--, 频谱为()||ωF =|2sin2|ωωa E. 请画出其频谱图.以上术语初步揭示了傅氏变换在频谱分析中的应用,更深入详细的理论会在有关专业课中详细介绍!在物理和工程技术中, 有许多物理、力学现象具有脉冲性质. 它反映出除了连续分布的量以外,还有集中于一点或一瞬时的量,例如冲力、脉冲电压、点电荷、质点的质量等等. 研究此类问题需要引入一个新的函数,把这种集中的量与连续分布的量来统一处理。
傅里叶级数与傅里叶积分变换整理1 基本概念首先理清下面的概念:三角函数形式傅里叶级数(系数含1/T )三角函数形式傅里叶级数改写为复指数形式傅里叶级数(系数含1/T ) 复指数形式傅里叶积分,系数1/T 变为1/(2π)三角函数形式傅里叶积分(将复指数核函数改写为三角函数形式,利用奇偶性变为余弦核函数).复指数形式傅里叶积分与更一般的积分变换:象函数,象原函数和核2 基本公式和变换过程欧拉公式,是连接复指数和三角函数,频域和时域的桥梁cos()sin()i e t i t ωωω=+三角函数改写为复指数形式:cos 2i i e e θθθ-+=,sin 2i i e e i θθθ--=2.1 三角函数形式的傅里叶级数“级数”就是对数列求和。
三角函数形式傅里叶级数, 系数1/T复指数形式傅里叶级数, 系数1/T复指数形式傅里叶积分, 系数1/(2π)上述四种形式都包括了傅里叶正变换和逆变换的过程 f (t ) = F -1 ( F ( f (t ) ) )更一般的积分变换形式三角函数形式傅里叶积分, 系数1/(2π)01()(cos sin )2T n n n a f x a n x b n x ωω∞==++∑其中/20/2/2/2/2/222()2()cos 2()sin T T T T n T T T n T TT a f x dx T a f x n xdx T b f x n xdx T πωωω---====⎰⎰⎰注意这里的系数含1/T2.2 复指数形式的傅里叶级数我们可以把三角函数形式的傅里叶级数改写为复指数形式,最后甚至合并成一个简单的式子:0101011/2000/2/2/2()()222()2221()21()cos ()sin 2n n in x in x in x in xT n n n in x in x n n n n n i xi x n n n n T i x T T T n n n T T T T a e e e e f x a b i a a ib a ib e e c c ec e a c f x e dx T a ib c f x n dx i f x n dx T ωωωωωωωωωω--∞=∞-=∞∞-==-⋅⋅---+-=++-+=++=++==-==-∑∑∑∑⎰⎰,其中/2/2/2/2/2/21()1()2()n T T i n xT T T i n xn n n T T i xT n f x e dx T a ib c f x e dx T f x c e ωωω-⋅⋅-⋅⋅--∞-∞⎡⎤=⎢⎥⎣⎦+===⎰⎰⎰∑最后其中/2/21()n T i xn T Tc f x e dx T ω--=⎰,n n ωω= 即/2/21()()n n T i xi x T T T f x f x e dx e T ωω∞--∞-⎡⎤=⎢⎥⎣⎦∑⎰2.3 复指数形式的傅里叶积分要知道傅里叶级数最初是用于周期函数的。